Energy efficient bead milling of microalgae: Effect of bead size on disintegration and release of proteins and carbohydrates

Postma, P.R.; Suarez Garcia, E.; Safi, Carl; Yonathan, K.; Olivieri, G.; Barbosa, M.J.; Wijffels, R.H.; Eppink, M.H.M.


The disintegration of three industry relevant algae (Chlorella vulgaris, Neochloris oleoabundans and Tetraselmis suecica) was studied in a lab scale bead mill at different bead sizes (0.31 mm). Cell disintegration, proteins and carbohydrates released into the water phase followed a first order kinetics. The process<br/>is selective towards proteins over carbohydrates during early stages of milling. In general, smaller beads led to higher kinetic rates, with a minimum specific energy consumption of 60.47 kWh kgDW1 for 0.3 mm beads. After analysis of the stress parameters (stress number and stress intensity), it appears that<br/>optimal disintegration and energy usage for all strains occurs in the 0.30.4 mm range. During the course of bead milling, the native structure of the marker protein Rubisco was retained, confirming the mildness f the disruption process.