

Course Guide: Programming in Python 1 MRK - 2016-09-23

Course Information: Programming in Python

General information
Course name: Programming in Python
Code: INF-22306
Credits: 6 ECTS (168 hours)
Language: English
Schedule (period 2): all mornings during first six weeks of period 2

• lectures on Wednesday 8:30–10:15 (week 1)
and Monday 8:30–10:15 (weeks 2–6)

• supervised study (class exercises)
Tuesday 10:30–12:15 (weeks 2–6)
and Thursday 8:30–10:15 (weeks 2–6)

• rest of the time computer labs
interim exam: December 23, 8:30–11:30
[This course is also offered in period 1 in the afternoons.]

Coordinator: ir. M.A. Zijp, Leeuwenborch room 6026, tel.: 484079
Examiner/Lecturer: drs. M.R. Kramer
Other staff involved: ir. A. Kassahun, ir. G. Moerland, dr S.A. Osinga

Keywords
programming, algorithms, Python (programming language), software libraries

Profile of the course
Software plays an important role in many domains. Very often, scientists are writing or
adapting computer programs to process or analyze their data and present their results in a
suitable format (e.g. on the Internet). This course does not aim to produce professional
programmers, but rather to build understanding of the underlying principles and equip future
academics with basic skills to create computer programs for small-scale use. The same
principles are needed for writing custom code in many simulation, modeling, and engineering
tools.
The programming language Python serves a broad application domain ranging from short
scripts to full-blown software systems (e.g. Google uses Python). The course gives an
introduction to libraries of available components, and how to use these for building your own
software.

Learning outcomes
After the course, students should be able to:

• implement a given algorithm as a computer program (in Python)
• adapt and combine standard algorithms to solve a given problem (includes numerical

as well as non-numerical algorithms)
• adequately use standard programming constructs: repetition, selection, functions,

composition, modules, aggregated data (arrays, lists, etc.)
• explain what a given program (in Python) does
• identify and repair coding errors in a program
• understand and use object based software concepts (constructing OO software will be

dealt with in the course Software Engineering)
• use library software for (e.g.) building a graphical user interface, web application, or

mathematical software

Course Guide: Programming in Python 2 MRK - 2016-09-23

Study materials
Textbook:

• Sarah Mount, James Shuttleworth and Russel Winder: “Python for Rookies” (ISBN
978-1-84480-701-7) [we use 10 out of 13 chapters]

Software:
• Python(x,y) including IDLE [free software, pre-installed in the PC rooms]

Materials on Blackboard:
• Tutorials on the software environment (IDLE)
• Short introductions to some Python libraries not covered in the book
• Reading guide to the book
• Additional exercises and assignments – and pointers to assignments from the book
• Lecture slides
• Example exam with answers

Activities
A major part of the course consists of computer lessons.
Students start with tutorials on Python and IDLE (software environment for Python), with
embedded exercises.
After the first few days, work alternates in blocks of two hours between programming
assignments and exercises (and tutorials). While one or more groups continue tutorials and
exercises (later only exercises), the other group(s) do programming assignments. In the next
block, the groups switch activities: the group(s) that started at assignments, work on tutorials
and exercises again, and vice versa.
From the second week onwards, we schedule two blocks of class exercises – two hours per
session. The emphasis of these sessions is on the concepts of programming and recurring
programming structures. Students have to write (small) programs on paper first, and then a
teacher will demonstrate how to build up the program by means of explicit input from
students’ work.
Assignments and class exercises focus on learning how to program. Together they cover the
learning outcomes. Exercises proper (during computer lessons) focus more on elements of the
Python language and particular libraries. Often, those exercises prepare for using a technique
in the assignments. Many exercises are strongly linked with the book. Students are
encouraged to study the book along with these exercises. One slot of two hours per week is
especially dedicated to studying the book.
To provide for enough assistance and feedback on assignments, more staff is available during
assignments blocks (PI) than during exercises blocks (PE). Feedback on class exercises is
incorporated in the class exercise sessions.
The emphasis of the lectures, on Mondays (except the first week on Wednesday), is on
illustrating key topics in programming, as well as zooming into some details of the language.
Attending the lectures does not substitute for studying the book, however.

Assessment
For formal assessment we use a written exam (closed book). The exam consists of open
questions, both programming and explaining/correcting problems in a given piece of program.
A written exam for a programming course may seem strange at first, but the key issues of
programming are no different on paper than at the computer screen. Moreover, during a
written exam, candidates are not distracted by small errors in the details: at the screen they
may cost hours, on paper they might cost one tenth of a point – if anything at all.
Assignments and exercises during the course will not be graded. Students can ask staff to
check their programs during the hours scheduled for assignments. Also, a selection of
assignments is discussed explicitly during class exercises. Together, the assignments cover
the learning outcomes. A student who has completed all assignments should be confident
about the exam result.

Course Guide: Programming in Python 3 MRK - 2016-09-23

Principal themes
Programming is about manipulating data in some form. Even for the most elementary
operations, data has to be stored in the memory of the computer. The terms values, variables,
types, expressions and operators give a more precise view on storing and manipulating data.
Functions are the key building blocks of computer programs. They are, usually small, pieces
of program code that perform one coherent task, e.g. computing a value from some other
values.
The term control structures denotes all programming constructs that help to repeat or skip
some parts of code depending on values of variables. One aspect is how to write such control
structures. Another, much more important aspect is how to use such structures appropriately.
Software libraries (modules). Modern programming languages consist of a relatively small
core and many additional parts. Those additional parts are called libraries or (especially in
Python) modules. The course teaches how to use a number of the modules that come with
Python, and also how to define your own modules.
Structured types. For dealing with large amounts of data (in memory rather than in files),
programming languages use structured data often referred to as arrays. In Python, even more
powerful data types (lists, tuples, dictionaries) are integrated in the language.
File processing. Data in computer memory is present for as long as the program that handles
the data is running. Files are the primary means to store data outside memory. The techniques
for reading and writing files are collectively called file processing.
Nowadays, a program without a graphical user interface (GUI) is almost unthinkable. The
course shows how to use standard modules for building such GUIs.
In current software engineering practice, testing each program part is an indispensable aspect.
The course pays attention to how to develop small tests in the context of test driven
development.

Outline of the course
Week 1: Introduction to Python and IDLE. Introduction to values (numeric as well as string),
variables, types, expressions and operators, functions, and control structures.
Week 2: More on choices, loops (also loop design), functions, and recursion. Introduction to
indexing and slicing (on strings).
Week 3: Structured types. Changing the content of lists (arrays). Mutability and aliasing.
Python specific types: tuples and dictionaries.
Week 4: More on defining functions. Defining modules. File processing, composing
(formatting) output, and decomposing (parsing) input.
Week 5: Defining custom structured types (classes). Introduction to graphical user interfaces
(GUIs).
Week 6: Testing and test driven development. More on GUIs, including threading.

Schedule
There are several groups. All groups start with the tutorials (see Blackboard) on Monday
morning of the first week. After four blocks of two hours, groups alternate between
assignments and tutorials/exercises. While one or more groups do assignments, other groups
do exercises and vice versa. The first block (or for some groups the last block) on Friday
mornings is scheduled for studying the book.
From the second week onwards, class exercises are scheduled for the second half of Tuesday
mornings and the first half of Thursday mornings.
Lectures are scheduled for the first half of Monday mornings, except for the first week. The
lecture for the first week is scheduled for the first half of Wednesday morning.
For rooms and schedules per group, please refer to information on Blackboard.

