Course Information: Programming in Python

General information

Course name: Programming in Python

Code: INF-22306

Credits: 6 ECTS (168 hours)

Language: English

Schedule (period 2): all mornings during first wigeks of period 2

e lectures on Wednesday 8:30-10:15 (week 1)
and Monday 8:30-10:15 (weeks 2—-6)
* supervised study (class exercises)
Tuesday 10:30-12:15 (weeks 2—6)
and Thursday 8:30-10:15 (weeks 2-6)
e rest of the time computer labs
interim exam: December 23, 8:30-11:30
[This course is also offered in period 1 in theeafoons.]
Coordinator: ir. M.A. Zijp, Leeuwenborch room 602él,: 484079
Examiner/Lecturer: drs. M.R. Kramer
Other staff involved: ir. A. Kassahun, ir. G. Maerd, dr S.A. Osinga

Keywords
programming, algorithms, Python (programming lamg)asoftware libraries

Profile of the course

Software plays an important role in many domairex\bften, scientists are writing or
adapting computer programs to process or analgiedhta and present their results in a
suitable format (e.g. on the Internet). This coulses not aim to produce professional
programmers, but rather to build understandindnefunderlying principles and equip future
academics with basic skills to create computer raomg for small-scale use. The same
principles are needed for writing custom code imynsimulation, modeling, and engineering
tools.

The programming language Python serves a broadtapiph domain ranging from short
scripts to full-blown software systems (e.g. Goagges Python). The course gives an
introduction to libraries of available componeratsgd how to use these for building your own
software.

Learning outcomes

After the course, students should be able to:

* implement a given algorithm as a computer progran®Python)

» adapt and combine standard algorithms to solveengiroblem (includes numerical
as well as non-numerical algorithms)

» adequately use standard programming constructstitiep, selection, functions,
composition, modules, aggregated data (arrays, &¢t.)

» explain what a given program (in Python) does

* identify and repair coding errors in a program

» understand and use object based software conasptst(ucting OO software will be
dealt with in the course Software Engineering)

» use library software for (e.g.) building a graplhigser interface, web application, or
mathematical software

Course Guide: Programming in Python 1 MRK - 2016-09-23

Study materials

Textbook:
» Sarah Mount, James Shuttleworth and Russel WifiBgthon for Rookies” (ISBN
978-1-84480-701-7) [we use 10 out of 13 chapters]
Software:
» Python(x,y) including IDLE [free software, pre-iafied in the PC rooms]
Materials on Blackboard:
» Tutorials on the software environment (IDLE)
» Short introductions to some Python libraries natezed in the book
* Reading guide to the book
» Additional exercises and assignments — and poitdesssignments from the book
* Lecture slides
* Example exam with answers

Activities

A major part of the course consists of computesdes.

Students start with tutorials on Python and IDL&t{@are environment for Python), with
embedded exercises.

After the first few days, work alternates in blod€éswo hours between programming
assignments and exercises (and tutorials). Whigeaormore groups continue tutorials and
exercises (later only exercises), the other grougi{gorogramming assignments. In the next
block, the groups switch activities: the groupl@ttstarted at assignments, work on tutorials
and exercises again, and vice versa.

From the second week onwards, we schedule two $lotcklass exercises — two hours per
session. The emphasis of these sessions is ooitieeqts of programming and recurring
programming structures. Students have to write m@grams on paper first, and then a
teacher will demonstrate how to build up the pragtsy means of explicit input from
students’ work.

Assignments and class exercises focus on learminwgd program. Together they cover the
learning outcomes. Exercises proper (during commpessons) focus more on elements of the
Python language and particular libraries. Oftenséhexercises prepare for using a technique
in the assignments. Many exercises are strongtgdirwith the book. Students are
encouraged to study the book along with these &sercOne slot of two hours per week is
especially dedicated to studying the book.

To provide for enough assistance and feedback igraments, more staff is available during
assignments blocks (PI) than during exercises Bl@ek). Feedback on class exercises is
incorporated in the class exercise sessions.

The emphasis of the lectures, on Mondays (excedirst week on Wednesday), is on
illustrating key topics in programming, as wellzamming into some details of the language.
Attending the lectures does not substitute foryghglthe book, however.

Assessment

For formal assessment we use a written exam (closekl). The exam consists of open
guestions, both programming and explaining/comectiroblems in a given piece of program.
A written exam for a programming course may seeange at first, but the key issues of
programming are no different on paper than at tmeprter screen. Moreover, during a
written exam, candidates are not distracted bylsnars in the details: at the screen they
may cost hours, on paper they might cost one wrahpoint — if anything at all.
Assignments and exercises during the course wilbe@raded. Students can ask staff to
check their programs during the hours scheduleddsignments. Also, a selection of
assignments is discussed explicitly during clags@ses. Together, the assignments cover
the learning outcomes. A student who has compltessignments should be confident
about the exam result.

Course Guide: Programming in Python 2 MRK - 2016-09-23

Principal themes

Programming is about manipulating data in some f@wen for the most elementary
operations, data has to be stored in the memattyeofomputer. The ternvalues, variables,
types, expressions and operator s give a more precise view on storing and manipugatiata.
Functions are the key building blocks of computer prograiitey are, usually small, pieces
of program code that perform one coherent taskcemputing a value from some other
values.

The termcontroal structures denotes all programming constructs that help peaeor skip
some parts of code depending on values of variaBles aspect is how to write such control
structures. Another, much more important aspelabig to use such structures appropriately.
Software libraries (modules). Modern programming languages consist of a relgtismall
core and many additional parts. Those additionds@ae called libraries or (especially in
Python) modules. The course teaches how to usenbenof the modules that come with
Python, and also how to define your own modules.

Structured types. For dealing with large amounts of data (in menmatier than in files),
programming languages use structured data oftemreefto as arrays. In Python, even more
powerful data types (lists, tuples, dictionaria®) iategrated in the language.

File processing. Data in computer memory is present for as lonpaprogram that handles
the data is running. Files are the primary mearssaie data outside memory. The techniques
for reading and writing files are collectively aallfile processing.

Nowadays, a program withouigaaphical user interface (GUI) is almost unthinkable. The
course shows how to use standard modules for hgiklich GUIs.

In current software engineering practitesting each program part is an indispensable aspect.
The course pays attention to how to develop sresibtin the context aoést driven
development.

Outline of the course

Week 1: Introduction to Python and IDLE. Introdoctito values (numeric as well as string),
variables, types, expressions and operators, fums;tand control structures.

Week 2: More on choices, loops (also loop desigmgtions, and recursion. Introduction to
indexing and slicing (on strings).

Week 3: Structured types. Changing the conteristsf (arrays). Mutability and aliasing.
Python specific types: tuples and dictionaries.

Week 4: More on defining functions. Defining modul€ile processing, composing
(formatting) output, and decomposing (parsing) tnpu

Week 5: Defining custom structured types (clasdapduction to graphical user interfaces
(GUIs).

Week 6: Testing and test driven development. Mor&blls, including threading.

Schedule

There are several groups. All groups start withtttberials (see Blackboard) on Monday
morning of the first week. After four blocks of tmurs, groups alternate between
assignments and tutorials/exercises. While onearemroups do assignments, other groups
do exercises and vice versa. The first block (ostime groups the last block) on Friday
mornings is scheduled for studying the book.

From the second week onwards, class exercisesladded for the second half of Tuesday
mornings and the first half of Thursday mornings.

Lectures are scheduled for the first half of Mondayrnings, except for the first week. The
lecture for the first week is scheduled for thetfialf of Wednesday morning.

For rooms and schedules per group, please refefaionation on Blackboard.

Course Guide: Programming in Python 3 MRK - 2016-09-23

