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ABSTRACT 

 

Remote sensing is a key tool for precision agriculture 

applications as it is capable of capturing spatial and 

temporal variations in crop status. However, satellites often 

have an inadequate spatial resolution for precision 

agriculture applications. High-resolution Unmanned Aerial 

Vehicles (UAV) imagery can be obtained at flexible dates, 

but operational costs may limit the collection frequency. 

The current study utilizes data fusion to create a dataset 

which benefits from the temporal resolution of Formosat-2 

imagery and the spatial resolution of UAV imagery with the 

purpose of monitoring crop growth in a potato field. The 

correlation of the Weighted Difference Vegetation Index 

(WDVI) from fused imagery to measured crop indicators at 

field level and added value of the enhanced spatial and 

temporal resolution are discussed. The results of the 

STARFM method were restrained by the requirement of 

same-day base imagery. However, the unmixing-based 

method provided a high correlation to the field data and 

accurately captured the WDVI temporal variation at field 

level (r=0.969). 

 

Index Terms— UAV, STARFM, unmixing-based data 

fusion, precision agriculture, WDVI 

 

1. INTRODUCTION 

 

Precision agriculture aims to maximize agricultural 

production in a sustainable manner by optimizing the use of 

input resources. This may provide economic and 

environmental benefits and play an important role in global 

food security. The key behind precision agriculture is 

quantifying spatial and temporal variation in crop conditions 

in order to apply variable management strategies within a 

field [1].  

Remote sensing is capable of observing such variation 

in plant growth indicators such as canopy nitrogen content 

and plant biomass [2]. A number of studies describe the use 

of multispectral satellite imagery for precision agriculture 

applications [3]. However, factors such as inadequate spatial 

or temporal resolution and cloud cover [4] have limited the 

effectiveness of utilizing satellite imagery. Alternatively, 

Unmanned Aerial Vehicles (UAV) have been proposed for 

precision agriculture applications [5] as they can provide 

hyperspectral imagery with a higher spatial resolution and 

more flexible acquisition times [6]. However, operational 

requirements may inhibit monitoring of large areas and the 

frequency of flights. 

Recently, much research has been done on the 

application of data fusion between medium-resolution 

imagery such as MODIS [7] and MERIS [8], [9] and high-

resolution datasets such as Landsat to obtain a fused image 

dataset with a daily temporal resolution and a spatial 

resolution of 30 m. Two prevalent data fusion methods are 

the Spatial and Temporal Adaptive Reflectance Fusion 

Model (STARFM) [7] and unmixing-based data fusion [8], 

[9]. These methods could be adapted to fuse multispectral 

satellite imagery such as Formosat-2 with hyperspectral 

imagery obtained from an UAV platform for precision 

agriculture applications.  

The objective of the current study is to develop a 

method for data fusion between Formosat-2 imagery and 

hyperspectral UAV imagery of a potato field in the 

Netherlands to obtain a fused dataset for crop monitoring in 

precision agriculture applications. The resulting image time 

series benefits from an increased temporal resolution 

obtained from the multispectral satellite imagery, and an 

increased spatial resolution obtained from the UAV dataset. 

 

2. METHODOLOGY 

 

2.1. Study Area 

 

The study area is a potato field at 51°19’ N and 5°10’14” E, 

near the village of Reusel in the Netherlands. At the 

beginning of the 2013 growing season, the field was divided 

into four zones and applied with differing initial nitrogen 

fertilization rates: 0, 90, 162 and 252 kgN.ha
-1

. Six 

experimental plots of 13x30 m were delimited per zone, for 

which SPAD, LAI and spectral reflectances were measured 

weekly between June 6
th

 and August 23
rd

, 2013.  More 



 

 

information regarding the experimental setup can be found 

in Kooistra et al. [10]. 

 

2.2. Imagery 

 

A hyperspectral system on an UAV consisting of a Specim 

ImSpector V10 2/3” spectrograph mounted on an 

Aerialtronics Altura AT8 octocopter was developed by the 

Wageningen University (WU) Laboratory of Geo-

information Science and Remote Sensing (GRS) under the 

Smart Inspectors project [10]. This UAV was flown over the 

study area at four dates (June 6, June 14, July 5 and July 17, 

2013) to obtain imagery with 101 spectral bands at a spatial 

resolution of 1 m. All images have been georeferenced, 

orthorectified and atmospherically corrected [10]. 

Formosat-2 imagery have a spatial resolution of 8 m, 

and consists of four multispectral bands [11]. During the 

2013 growing season, 42 Formosat-2 images were available 

over the study area. However, only eight dates were cloud-

free: April 24, June 6, June 8, July 2, July 8, July 18, July 

22, and August 2, 2013. The cloud-free images were 

georeferenced and radiometrically corrected using the 

coefficients provided in the metadata. The QUAC method 

[12] was applied to atmospherically correct the Formosat-2 

image of June 6th. An empirical line correction was then 

applied between all the other Formosat-2 images and the 

June 6th image, to calibrate the spectral signature 

throughout the time series. Finally, calibration coefficients 

were obtained from the UAV and Formosat-2 images of 

June 6th, and all Formosat-2 images were calibrated to the 

UAV imagery. 

 

2.3. Data fusion 

 

The current study made use of two data fusion algorithms: 

an unmixing-based algorithm and STARFM. The unmixing-

based algorithm is based on previous works by [8], [9]. It 

considers a linear mixing model in which the resolution of 

the medium-resolution imagery is assumed to be a 

summation of the spectra of each endmember within the 

pixel weighted by the abundance of the endmember within 

the pixel. The endmembers are obtained by performing a 

clustering algorithm, in this case a k-means clustering, on 

the high-resolution input data (i.e. the UAV imagery). The 

abundances of each endmember can be calculated by 

overlaying the medium-resolution imagery and the high-

resolution unsupervised classification. The unmixing-based 

method is applied using a moving-window to allow for 

spectral heterogeneity of endmembers throughout the scene. 

Furthermore, the current application utilized Bayesian 

theory to restrain the unmixing process by including a priori 

endmember spectra selected from homogenous Formosat-2 

pixels [13]. 

The STARFM method is based on the premise that both 

high- and medium-resolution imagery observe the same 

spectral reflectances, biased by a systematic error. This error 

is consistent over short spatial and temporal intervals. Using 

a reference pair of high- and medium-resolution images on a 

base date, the bias is calculated by selecting neighbors based 

on selection criteria [7] within a set search distance to form 

a linear system of equations. Once the bias has been 

obtained from the base image pair, it can then be applied to 

a medium-resolution image on a different day to obtain a 

synthetic high-resolution image. In the current application, 

Formosat-2 provided the medium-resolution imagery and 

the UAV provided the high-resolution imagery. To apply 

the STARFM method, both sources of imagery must have 

corresponding spectral bands. Therefore, the spectral bands 

of the hyperspectral UAV imagery corresponding to the 

wavelengths of each of the four Formosat-2 bands was 

averaged to create a UAV image with four spectral bands. 

The input parameters of each algorithm were first 

optimized by applying data fusion to the UAV imagery on 

June 6th and the Formosat-2 imagery on July 17th, which 

allowed for the comparison of the fused image to the actual 

UAV image of July 17th. For the unmixing-based method, 

the moving window size was varied from 3x3 to 29x29 

Formosat-2 pixels in steps of 4 and the number of spectral 

clusters was varied from 2 to 16 in steps of 2. The quality of 

the fusion was determined by calculating the spectral  and 

spatial ERGAS [14]. For the STARFM method, the 

maximum search distance was varied from 15 m to 105 m, 

and the number of spectral slices was varied from 10 to 40. 

The fusion quality was analyzed by calculating Pearson’s 

correlation and the RMSE to the ground-truth UAV image. 

Next, data fusion was applied to each Formosat-2 

image. For the unmixing-based method, each Formosat-2 

image was fused with the closest preceding UAV image. As 

there was no UAV image preceding April 24th, this 

Formosat-2 image was fused with the UAV image on June 

6th. The STARFM method requires an input base pair of 

Formosat-2 and UAV imagery on the same date. Therefore, 

only the UAV images on June 6th and July 17th could be 

used to create the data fusion time series. 

 

2.4. Validation 

 

The Weighted Difference Vegetation Index (WDVI) [15] 

was used to calculate the correlation between the imagery 

and the field data. The SPAD measurements were converted 

to leaf chlorophyll using the coefficients presented by [16], 

and multiplied by the LAI to obtain canopy chlorophyll 

measurements. The image WDVI, field WDVI, LAI and 

canopy chlorophyll were averaged to plot level. The 

imagery on the dates June 6, July 2, July 18 and August 2 

were compared to the field data on June 6, July 5, July 17, 

and July 31, assuming that a 3-day interval presented no 



 

 

significant changes to the WDVI. Furthermore, temporal 

WDVI profiles were made for an experimental plot 

receiving no initial fertilization. 

 

3. RESULTS AND DISCUSSION 

 

In the parameter optimization stage for unmixing, a window 

size of 9x9 Formosat-2 pixels and 10 clusters obtained the 

best quality indicators (spatial ERGAS = 2.76; spectral 

ERGAS = 0.98). STARFM produced the best results with a 

search distance of 105 m and 30 spectral slices (r=0.715; 

RMSE = 0.133x10
-5

). However, through all the variations in 

input parameters, the STARFM correlation coefficient only 

varied between 0.710 and 0.715 and the RMSE varied from 

1.335 – 1.345 x10
-5

. This suggests that STARFM is 

relatively insensitive to variations in the input parameters in 

the current application, and future applications could 

dedicate less time to the parameter optimization phase. 

The WDVI calculated from the Formosat-2 imagery has 

a high correlation to crop status indicators (Table 1), which 

indicates that it contains relevant information regarding crop 

status and is a valuable input for data fusion methods. The 

unmixing-based method provides similar correlation 

coefficients to the Formosat-2 imagery. This is expected as 

the spectral information in the unmixing-based data is 

derived from the Formosat-2 imagery, and the correlation 

coefficients presented in Table 1 are averaged at a plot level 

of 15x30 m. The added spatial resolution is thus not taken 

into account in these correlation coefficients, although 

Figure 1 clearly illustrates the added value of the improved 

spatial resolution.   

The STARFM method presented the lowest correlation 

to the field observations, which is likely due to the use of 

only two of the UAV images as high-resolution input for the 

fused time series. As the unmixing-based method can utilize 

all four UAV images as input, spatial variation is captured at 

an earlier stage in the growing season. For the image on July 

8
th

, for example, unmixing-based fusion could utilize the 

input UAV image on July 5th and thus correctly 

differentiates the vegetation status of the different nitrogen 

application rate zones (Figure 1). As there is no 

corresponding Formosat-2 image on July 5th, the STARFM 

method must use the imagery of June 6th as a base date and 

cannot differentiate crop growth variation between fertilizer 

application-rate zones. 

From each image source, temporal profiles can be 

constructed to analyze the crop status during the growing 

season. Figure 2 presents the temporal WDVI profiles of 

one of the experimental plots receiving no initial 

fertilization. The UAV WDVI closely follows the field 

observations, but no UAV imagery is available after July 

17th. The STARFM method once again clearly shows the 

influence of the input base image pair, and does not provide 

consistent results in the current study. However, the relative 

temporal variation of the Formosat-2 and unmixing-based 

imagery follows the temporal pattern of the field data – 

although the WDVI is systematically lower. During the 

growing season, the farmer applied additional fertilization in 

mid-July which causes the increase in WDVI at this time. 

There was no UAV imagery available after this date to 

capture the changes, but the increase in WDVI is correctly 

captured in the unmixing-based WDVI profile. This is an 

    

Reference 

indicator 

Unmixing STARFM UAV F2 

Field WDVI 0.969 0.677 0.935 0.966 

LAI 0.896 0.528 0.927 0.905 

Canopy 

chlorophyll 

(g/m2) 

0.788 0.337 0.902 0.810 

Fig. 1. WDVI on July 8th calculated from the Formosat-2 satellite image (left), the fused product of the unmixing-based algorithm (center), 

and obtained from through STARFM (right). 

Table 1. Pearson's correlation coefficient between the average 

WDVI per plot calculated from imagery and reference data. All 

correlations are significant at p<0.001. 



 

 

example of the added value of the enhanced temporal 

resolution provided by data fusion. 
 

 4. CONCLUSIONS 

The current study demonstrates the utility of applying data 

fusion methods to combine satellite imagery with UAV 

imagery for precision agriculture applications. The 

STARFM method is limited in the current situation by the 

requirement of base imagery from both sources on the same 

date and therefore presents temporally unstable results. This 

could be mitigated by coinciding UAV operations with 

satellite collection dates in future studies. The unmixing-

based method presented a high correlation to the WDVI 

(r=0.969), LAI (r=0.896) and canopy chlorophyll (r=0.788) 

measured at field level. The WDVI obtained from 

unmixing-based data fusion presented a bias to the UAV 

WDVI, which is likely due to differing processing chains of 

the UAV and Formosat-2 data. However, the relative 

phenological variations were more accurately captured by 

the time series created by the unmixing-based method. This 

study indicates how the fused dataset can combine the 

temporal resolution of the Formosat-2 imagery and the 

spatial resolution of the UAV imagery for precision 

agriculture applications.  
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