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ABSTRACT
Epidemiologic studies have convincingly associated consumption of
black tea with reduced cardiovascular risk. Research on the bioactive
molecules has traditionally been focused on polyphenols, such as cat-
echins. Black tea polyphenols (BTPs), however, mainly consist of
high-molecular-weight species that predominantly persist in the co-
lon. There, they can undergo a wide range of bioconversions by the
resident colonic microbiota but can in turn also modulate gut micro-
bial diversity. The impact of BTPs on colon microbial composition
can now be assessed by microbiomics technologies. Novel metabo-
lomics platforms coupled to de novo identification are currently
available to cover the large diversity of BTP bioconversions by
the gut microbiota. Nutrikinetic modeling has been proven to be crit-
ical for defining nutritional phenotypes related to gut microbial bio-
conversion capacity. The bioactivity of circulating metabolites has
only been studied to a certain extent. Bioassays dedicated to specific
aspects of gut and cardiovascular health have been used, although
often at physiologically irrelevant concentrations and with limited
coverage of relevant metabolite classes and their conjugated forms.
Evidence for cardiovascular benefits of BTPs points toward antiin-
flammatory and blood pressure–lowering properties and improve-
ment in platelet and endothelial function for specific microbial
bioconversion products. Clearly, more work is needed to fill in
existing knowledge gaps and to assess the in vitro and in vivo bio-
activity of known and newly identified BTP metabolites. It is also of
interest to assess how phenotypic variation in gut microbial BTP
bioconversion capacity relates to gut and cardiovascular health pre-
disposition. Am J Clin Nutr doi: 10.3945/ajcn.113.058263.

INTRODUCTION

Black tea is one of the most consumed beverages and accounts
for a significant part of polyphenol intake in the world population
(1–3). Black tea differs from green tea by a fermentation process
during which the catechins in tea leaves (Camellia sinensis) un-
dergo extensive oxidation and oligomerization. In the past years
a body of epidemiologic evidence has been built for the reduction
in risk of stroke (4, 5) and cardiovascular diseases (6–8) with
sustained green and black tea intake. For black tea, there is now
convincing evidence from intervention studies for effects on
surrogate cardiovascular endpoints. Black tea consumption may
lower systolic and diastolic blood pressure (BP)5 in subjects with
mildly elevated BP (9, 10). Perhaps even more convincing are the
acute and chronic effects of black tea on endothelium-dependent
vasodilation, which may contribute to a healthy blood flow (11).

There are data (although inconclusive) suggesting that consump-
tion of black and green tea may positively affect platelet function,
inflammatory tone, and weight management (12, 13); the evi-
dence for the latter, however, is stronger for green tea (14). There
is no evidence for systemic antiinflammatory or antioxidant ef-
fects of black tea (15, 16); hence, more local mechanisms at
a vascular level are being pursued. The compounds in tea most
likely responsible for the vascular benefits are the polyphenols,
which may exert vascular relaxation via multiple pathways (17).
The responsible polyphenols in black tea for mediating these
effects have still not been identified. Whereas in unfermented
green tea the catechins represent 80–90% of total flavonoids, in
black tea they only represent 20–30%. Nevertheless, the plasma
concentration of different types of catechins increases after black
tea consumption (15), but metabolites of larger tea polyphenols
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may potentially also contribute to the vascular benefits. Black tea
polyphenol (BTP) composition is dominated by theaflavins and
thearubigens (60–70%) (18). Theaflavins consist of concatenated
catechin rings with molecular weights up to 700 Da, which ex-
plains their low direct bioavailability (19). Thearubigens are
larger polymeric structures with molecular weights of not more
than 2 kDa (20), which is too high for direct bioavailability.
Hence, a major portion of BTPs predominantly persist in the
colon where they undergo extensive bioconversion by colonic
microbiota (21) to metabolites that can be further absorbed by the
human body. The BTPs in their turn can also modulate gut mi-
crobial diversity. We currently discern 2 hypothetical mechanisms
by which BTPs may exert their health benefits:

1) Microbial bioconversion of BTPs in the colon (22): This
process brings high amounts of bioconverted BTP metab-
olites into the circulation, although these are still too few
to support direct antioxidant mechanisms (23). Instead,
multiple specific biological effects and mechanisms have
been proposed (21). In this review we focus on those
effects related to gut and cardiovascular health.

2) Modulation of the colonic microbiota: BTPs are well
known for their antimicrobial activity. Because some
bacterial groups are more resistant than others toward
BTPs, these resistant bacteria could take advantage of
available niches left open by susceptible microbes (eg,
Bifidobacterium). This can beneficially affect the indig-
enous microbial composition and activity (24–26).

The symbiotic interactions between the gut microbiota, its
metabolites, and the host have led to the recognition of humans as
superorganisms (22). The unraveling of the interactions of BTPs
with the human superorganism has been hampered by the sheer
complexity of gut microbial interactions. Currently, there are
knowledge gaps in the following areas: 1) the bioavailability of gut
microbial BTP metabolites, 2) their bioactivity in the human host,
and 3) the role of the gut microbiota. We first discuss recent
progress in enabling omics technologies to assess events at the
level of both the metabolome and the microbiome in the human
superorganism. Next, we describe how in vitro colon microbial
fermentation models can complement human intervention studies.
We also discuss in vitro assays for the assessment of the bio-
activity of circulating BTP metabolites. The in vitro and in vivo
work performed so far on the interaction of BTPs with gut mi-
crobiota is reviewed, and implications for the impact on gut and
cardiovascular health are discussed in a critical manner.

EMERGING ENABLING TECHNOLOGIES

Metabolic profiling

Until recently, polyphenol bioavailability studies typically
focused on a few predefined metabolites. Such approaches have
inherent limitations when the massive gut microbial biocon-
versions of polyphenols and their subsequent metabolic fate in
the human host need to be covered (27, 28). Analytic profiling
approaches have become the method of choice for simultaneous
assessment of the large range of polyphenol metabolites in urine,
plasma, or in vitro models (29). In a so-called targeted profiling
approach, a large range of preidentified, conjugated, polyphenol-

derived metabolites could be detected simultaneously in
a semiquantitative manner (30–32). These methods relied on
extraction and fractionation by means of solid phase extraction
of the complex biofluid matrix. Further sensitivity was gained by
using targeted detection in multiple reaction monitoring mode
on liquid chromatography tandem mass spectroscopy systems.
With the use of these mass spectrometry methods, absolute
quantification is hampered because authentic standards, in par-
ticular for conjugated polyphenol metabolites, are mostly not
available. The use of compounds that are structurally related to
the preidentified analytes as a standard can at best only result in
semiquantification. As an alternative to liquid chromatography
tandem mass spectroscopy–based approaches, untargeted gas
chromatography profiling, focused on phenolic compounds, can
be used. Such a platform has successfully been used for cap-
turing microbial bioconversion products in in vitro models, fe-
ces, urine, and plasma (33). A disadvantage of this approach is
the rather laborious sample pretreatment, which also involves
a deconjugation step, discarding all information on host con-
jugative mechanisms. An advantage is that preidentified (de-
conjugated) phenolic compounds can readily be quantified by
making use of commonly available standards (26). For global
untargeted metabolite profiling of urine, so far only nuclear
magnetic resonance (NMR) spectroscopy has been able to meet
the requirements of nonselective detection and quantification in
an unbiased manner (34). Although NMR is often presented as
a relatively insensitive technique, it has successfully been used
to identify BTP metabolites in in vitro (35, 36) and in vivo (37–
39) studies. Now that most BTP gut microbial bioconversion
products appear to be known (35, 36, 40), the next step is to
identify their fate in the human host where they can undergo
extensive conjugation. With the advent of sensitive high-resolution
mass spectrometers such as quadrupole time-of-flight mass
spectrometry and Orbitrap fourier transform mass spectrometry
instruments, we can now witness a significant improvement in
the untargeted coverage of conjugated phenolic metabolites in
plasma and urine (41). However, for absolute structural eluci-
dation, NMR also needs to be involved. By on-line coupling
(hyphenation) of liquid chromatography to solid phase ex-
traction, mass spectrometry, and NMR, a large range of urinary
conjugated valerolactones and phenolic acids have recently
been successfully identified and quantified at micromolar con-
centrations (41).

Nutrikinetic modeling

A number of complicating factors hamper assessment of BTP
bioavailability as follows: 1) the diversity and concentration
ranges of metabolites that are produced by phase I and II me-
tabolism; 2) large interindividual variation in produced metab-
olites due to the interaction between BTPs, the food matrix, the
gut microbiota, and the host; and 3) the background diet, which
continuously provides baseline amounts of polyphenol metab-
olites. Hence, we introduced nutrikinetics, which is an extension
of the classical pharmacokinetic concept with explicit model
adaptations (42). The concept relies on integrated deployment of
metabolic profiling, multilevel data analysis, and population-
based single-compartment modeling. It has already been suc-
cessfully used to recognize nutritional phenotypes with different
gut microbial bioconversion capacity for BTPs (38). Nutrikinetic
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modeling also allowed for making in vivo associations between
valerolactone production and the involved microbial species
(22, 43).

Microbiomics

In the past decade, advances in sequencing technology and the
development of metagenomic and bioinformatic methods have
revolutionized studies of composition and activity of the gut
microbiota (44). Microbial compositions can be assessed in a
high-throughput manner on the basis of amplification and next-
generation sequencing of 16S ribosomal RNA genes for bacteria
and can determine bacterial groups both quantitatively (in relative
abundance) and qualitatively (targeting all detectable microbial
groups) (45, 46). Some techniques are purely quantitative (ie,
quantitative polymerase chain reaction) and only provide in-
formation on targeted groups. The use of shotgun sequencing of
whole genomes has also advanced in particular to study the
functionality of complex communities (47), and a gene catalog
was established for the gut microbiota (48). The development of
such techniques affords the opportunity to better understand how
food compounds affect the gut microbiota (49, 50).

IN VITROMODELS FOR INTERACTIONS OF BTPs WITH
GUT MICROBIOTA

In vivo intervention trials of dietary polyphenols hold in-
evitable practical and ethical limitations for elucidating mech-
anistic interactions between BTPs and the gut microbiota. Hence,
in vitro models have been developed that mimic conditions in
the gastrointestinal tract. These models allow for elucidation of
microbial polyphenol bioconversion processes and vice versa,
modulation of microbial composition by polyphenols. Most
model work has focused on the colon; there has only been one
model study of ileum microbial bioconversion of catechins (51).
Because simulating physiologic complexity has budgetary and
operational repercussions, acceptable trade-offs need to be made.
Simple, static gut models are relatively easy to operate, are cost-
effective, have a fair throughput, and allow for parallel screening.
Hence, they have been widely applied to assess interindividual
variation in polyphenol bioconversion (36, 40, 52–54) or to
compare the effects of different food sources (40, 55). However,
these static gut models are only adequate for simulating short-
term conditions in the gut; for assessment of long-term adap-
tations of the gut microbial community, more complex dynamic
models are needed. By using the Reading model (56), the
Simulator of Human Intestinal Microbial Ecosystem (SHIME)
(57), or the TNO in vitro model (57), gut microbiota can be
cultured for long periods (days to weeks) in multiple connected
vessels that represent different compartments of the human co-
lon. The SHIME model has been used to monitor bioconversion
of BTPs on a single bolus dosage (35) as well as effects of
multiple BTP dosing on microbial composition (25).

IMPACT OF BTPs ON THE GUT MICROBIOTA

So far, there is a paucity of in vivo studies on the modulation of
gut microbiota by black tea. One intervention in healthy humans,
a randomized, double-blind crossover trial, indicated that shifts in
the fecal microbiota had occurred; however, the community
profiling and quantification methods were insufficient in sensi-

tivity and depth to effectively identify the changes (58). The
dosage of tea was also not described, and low dosage could
account for the subtle changes. Most studies collecting data on
the effect of black tea extracts on the intestinal microbiota have
been performed with the use of in vitro experiments. A review
summarizing in vitro data on the effects of BTPs clearly showed
their strong antimicrobial, antitoxin, and antiviral effects (59).
Black tea extract can also affect the virulence traits of the food-
borne pathogen Shigella and enteropathogenic Escherichia coli
strains (60). A synergistic action between theaflavin and epi-
catechin was even discovered when tested on nosocomial path-
ogens such as Acinetobacter baumannii and Stenotrophomonas
maltophilia (61). Moreover, microbial metabolites of black tea,
such as benzoic, phenylacetic, and phenylpropionic acids (62)
and urolithins (63), showed mainly antimicrobial properties
against several bacterial species. Overall, numerous in vitro tests
show the potency of BTPs and their end-products on a diversity
of human commensals and pathogens. A few mechanisms of
actions have been proposed and have been previously reviewed
(25). The most common one is believed to be related to mem-
brane disruption. Polyphenols can bind to membrane proteins
and form a complex that might act in a bacteriocidal or bacte-
riostatic manner. Other hypotheses, such as inhibiting glucose
inward transport or complexing free iron, have also been con-
sidered (64).

With the use of a physiologically relevant dosage, a bifidogenic
effect of black tea and specifically black tea extracts enriched in
thearubigins and flavonol glycosides has been observed (24). Pure
catechins (devoid of polysaccharide content) have previously been
linked to bifidogenic effects in vitro (65). The mode of action for
this effect of thearubigin-rich fractions requires further research.
Producing thearubigin-rich fractions is, however, a major chal-
lenge, and their characterization is part of ongoing studies (20).
Alternatively, the possibility that both plant fibers and polyphenols
act in synergy to provide a prebiotic bifidogenic effect has been
proposed for a cocoa extract (66). Further studies using advanced
technologies, as well as mechanistic studies, are needed to de-
termine the in vivo impact of black tea on the human microbiota
and potential links to human health.

IMPACT OF THE GUT MICROBIOTA ON BTPs

In the past few years a number of studies have appeared that
proposed colon microbial degradation pathways for different
flavonoids (21, 41, 67). These pathways have been summarized in
Figure 1 and pertain to monomeric catechins. No clarity exists
on the first degradation step of thearubigins into smaller frag-
ments. For oligomeric procyanidins, a direct colon microbial
conversion to valerolactones has been proposed (68). In vitro
experiments assessing the colon microbial bioconversion of
BTPs have also shown the direct appearance of valerolactones,
yet no intermediate forms were observed (35, 36). In vitro model
fermentations in the 3-stage SHIME model showed that BTP
bioconversions were colon-region dependent (35) for both
a single bolus dosage as well as for sustained dosing. Several in
vitro studies (25, 67) associated polyphenol bioconversion ca-
pacity with members of the Clostridia class, especially Eubac-
terium ramulus and Clostridium orbiscindens (reclassified as
Flavonifractor plautii), and Actinobacteria (28, 69). Only re-
cently have adequate in vivo nutrikinetic modeling approaches
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been introduced to associate circulating BTP metabolites with
specific gut microbial phylotypes (22, 43).

HEALTH IMPLICATIONS OF BTP-MICROBIOTA
INTERACTIONS

Gut microbial bioconversion products: from systemic
exposure to cardiovascular effect

Thanks to powerful targeted and untargeted profiling platforms
we are now able to get a fair overview of BTPmetabolites and the
concentrations at which they appear in systemic circulation
(Table 1). The evidence of in vivo activity of these circulating
species mostly originates from animal intervention studies.

These studies have shown in vivo beneficial effects of 3,4-
dihydroxy-benzoic acid and 4-hydroxy-cinnamic acid on mono-
cyte infiltration (97) and platelet aggregation (87), respectively.
For 3,4-dihydroxy-cinnamic acid (caffeic acid), antiinflam-
matory, anticoagulant, platelet activation inhibition and BP-
lowering effects have been described in mice and rats (98–100).
Most bioactivity studies, however, have been carried out in in
vitro assays. These assays have focused on different aspects of
cardiovascular health as follows: 1) oxidative stress and LDL
oxidation, which contributes to accumulation of lipid material in
the vessel wall; 2) impaired endothelial function, an early marker
for atherosclerosis; 3) macrophage activity and other inflam-
matory processes that may accelerate plaque formation; 4)

FIGURE 1. Schematic presentation of colon microbial degradation pathways of (epi-)catechins. Note that these metabolites are depicted as they are formed
in the colon; within systemic circulation they will primarily appear in conjugated forms. Reprinted with permission from reference 41.
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smooth muscle cell proliferation, which is relevant for vascular
remodeling and BP-regulating processes; and 5) platelet activity
and aggregation (platelet function). Studies with in vitro bio-
assays and occasionally in vivo interventions indicate that BTP
metabolites may 1) reduce LDL oxidation, 2) improve endo-
thelial function by increasing nitric oxide bioavailability and
vasorelaxation, 3) reduce the production or expression of in-
flammatory mediators [eg, intracellular adhesion molecule 1
(ICAM-1), IL-1b] and inhibit monocyte adhesion and macro-
phage activation, 4) inhibit the activity of enzymes and expression
of receptors involved in hypertension (angiotensin-converting
enzyme, angiotensin-1 receptor), and 5) inhibit (collagen-induced)
platelet aggregation and activation (P-selectin expression) (Table
1). Here we need to consider that the human host is capable of
extensive phase 2 conjugation reactions of gut microbial prod-
ucts, such as glucuronidation, sulfonation, methylation, and
glycination. Despite early recommendations to assess polyphenol
in vitro bioactivity only with relevant circulating, ie, biocon-
verted and conjugated, species at relevant physiologic concen-
trations (101), these conditions have not become a common
standard. As shown in Table 1, most of the known gut microbial
bioconversion products have been tested in relevant in vitro
models for cardiovascular effects, but unfortunately often at
physiologically irrelevant concentrations. Exceptions are phe-
nylpropionic and phenylacetic acids for which well-designed in
vitro studies show antiinflammatory effects at relevant physio-
logic concentrations. The need for efficacy data on compounds at
physiologically relevant concentrations is shown by experiments
performed with pyrogallol, which can act as a vasodilator and
vasoconstrictor, depending on concentration. For compounds
such as valerolactones and valeric acids, data on in vitro bio-
activity is scarce, although these compounds appear early in
circulation at high plasma concentrations and their complex
molecular structures suggest specific mechanisms of action. The
lack of in vitro bioactivity data on valerolactones and valeric
acids is most likely because of the practical and financial diffi-
culties of obtaining these compounds in their pure form (102).
The same consideration also pertains to the almost complete lack
of in vitro activity data on conjugated forms of gut microbial
bioconversion products. It has been argued that circulating con-
jugated phenolic species may undergo deconjugation at the site
of action (103), but this mechanism has not been proven as a
general mechanism.

Available data on the in vivo effect of black tea on flow-mediated
dilation (FMD) (9) showboth an acute (less than a few hours) aswell
as a chronic effect. The time scale of the acute effect of FMD does
not match with the appearance of gut microbial bioconversion
products of BTPs in systemic circulation. For procyanidins, a similar
observation has been made (104), and it was argued that the gut
microbial metabolites are not responsible for the acute effect, but
theymay explain the chronic FMD effects. The same reasoningmay
apply for the chronic effects of black tea on FMD (11, 105) for
which gut microbial BTP bioconversion products could be the
responsible bioactive species.

Gut microbial bioconversion products: from colonic
exposure to local effect

Sustained dosing experiments in the SHIME model indicate
that BPT bioconversion products reach high steady state con-

centrations in the colon (35). A range of these compounds (Table
1) can exert in vitro antiinflammatory protection to colon fi-
broblasts and have been implicated in gut health maintenance
(82, 85, 106). Moreover, for 2 gut microbial BTP metabolites
(hydrocaffeic and 3,4-dihydroxyphenylacetic acid), antiinflam-
matory protection was confirmed in vivo in a mouse model of
colitis (82). The steady state concentrations of acetate and pro-
pionate observed on sustained dosage of BTPs in the SHIME
model (35) may be linked to protective effects against Enter-
obacteriaceae infection in mouse models (107).

Modulation of the gut microbiota: health implications

It has been hypothesized that the antimicrobial activities of tea
could contribute toward an antidiarrheal activity. For centuries,
tea has been linked to digestive health, and there is growing
evidence from animal studies that suggest that compounds of
black tea can play a role in either the prevention of or recovery
from diarrhea (108, 109). The potential bifidogenic effect of
BTPs may play a role in this. Whereas the production of poly-
phenol metabolites can be attributed to microbial fermentation,
changes in specific bacterial composition and levels linked to
specific health benefits are still to be proven. Alterations in in-
testinal microbiota composition are being increasingly associated
with health or chronic conditions (110). It is, however, too soon to
conclude whether BTPs can affect the profile and level of the
intestinal microbiota and whether the produced metabolites
might affect gut health status. Deeper insights using the latest
analytic tools described abovewill allow for further hypotheses to
be generated and tested.

PERSPECTIVES

We envisage 2 system biology routes for establishing links
between BTP bioavailability and bioactivity. In bottom-up ap-
proaches, the point of departure is the exometabolome of BTPs in
systemic circulation. In top-down approaches, the departure point
is a holistic assessment of molecular/cellular processes in the
human superorganism by metabolomics and microbiomics tools
(111).

Bottom up

In vitro bioconversion experiments and in vivo human in-
tervention trials are now showing an increasing number of BTP
metabolites that appear at high concentrations in the colon and in
systemic circulation. One in vitro model study has shown that
microbes from the ileum can bioconvert catechins (51), but
whether they are also capable to do so with BTPs remains to be
investigated. Most of the known conjugated BTP metabolites
have been identified in urine (Table 1), and there is now an urgent
need to assess their quantitative concentrations and nutrikinetic
signatures in plasma. Bioactivity studies for cardiovascular ef-
fects of BTP metabolites differ widely in testing conditions
(Table 1), which makes it difficult to compare bioactivities of the
different circulating species. There is a clear need for well-
designed studies that compare bioactivities of the different cir-
culating species in standardized bioassays. Moreover, when
taking the next steps of establishing the bioactivity of BTP
metabolites, physiologic concentrations and the circulating con-
jugated forms need to be considered (101). This recommendation
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appears to be addressed by recent studies on protective effects of
BTP metabolites on the colon wall (Table 1). Given the wide
range of chemical structures of BTP metabolites in systemic
circulation, synergistic effects also need to be considered.

Top down

The joint deployment of nutrigenomics tools [metabolomics,
microbiomics, transcriptomics, and proteomics (112)] provides
a powerful strategy to unravel the role played by BTPs in main-
taining gut and cardiovascular health. Comprehensive nutrige-
nomics assessment of critical homeostatic processes in the
human host needs to be linked with the nutrikinetic signatures of
microbiota-mediated BTP metabolites (42). In this respect, the
use of metabolic challenge tests has been proposed to obtain
sensitive read-outs of the long-term modulation of homeostatic
resilience by dietary ingredients (42, 113). We further envisage
that the identification of nutrikinetic phenotypes (114) will allow
for stronger associations between nutritional phenotypes and
the bioactivity of polyphenols. The comprehensive human gut
microbiome projects that are currently underway around the
world (44) will enable assessment of the contribution of colonic
microbiota to the nutritional phenotype and ultimately gut and
cardiovascular health and disease predisposition.
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