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The amount of sunlight reaching the surface of Earth during 
one day is in principle sufficient to support human activities 
for many years1. At the moment solar thermal collectors and 

solar panels use a small fraction of this light to produce heat and 
electricity. A much larger fraction is used by photosynthetic organ-
isms such as plants and algae to produce energy-rich chemical 
bonds that enable the production of biomass, including all the food 
and feed on this planet. However, the contribution of photosynthe-
sis to energy production is limited largely to its past performance 
that has led to our fossil fuels. At the moment large research efforts 
are ongoing with the goal to improve photosynthetic efficiency in 
living organisms and to obtain efficient artificial systems that mimic 
photosynthesis for energy production. In both cases a decisive part 
is played by light harvesting and its regulation, and they form the 
topic of this Perspective.

In all organisms performing oxygenic photosynthesis, the trans-
formation of sunlight into chemical energy occurs in and around the 
thylakoid membranes, in a series of steps collectively called the ‘light 
reactions’ (Fig. 1). The key players, photosystems I and II (PSI and 
PSII), are large protein assemblies (0.6–1.2 kDa in plants) containing 
hundreds of pigments. These pigments (Figs. 2 and 3) are excited 
upon light absorption and transfer excitation energy to the reac-
tion centers of PSI and PSII, where these excitations initiate charge 
separation. This leads to net linear electron flow from PSII to PSI via 
the cytochrome b6f complex (cytb6f), followed by the reduction of 
NADP+ to NADPH. The electrochemical gradient that is concomi-
tantly generated across the thylakoid membrane is used for the syn-
thesis of ATP by the ATP synthase. Together, NADPH and ATP lie at 
the basis of all further chemical reactions of the organisms.

The reaction centers (RCs) where charge separation takes place 
are highly specialized and ‘expensive’ (low pigment density leading 
to little light absorption) pigment-protein complexes that set the 
chemistry in motion. The RC complexes of PSI and PSII contain 
several cofactors, including the pigments that function as primary 
electron donors. The RCs differ from each other2,3 but, together 
with their core antenna system, they are extremely well conserved in 
all oxygen-evolving organisms4. The expensive RCs are surrounded 
by far cheaper (high pigment density) light-harvesting complexes, 
also called antennae, typically containing a few hundred pigments 
per RC5,6. The antennae can absorb solar photons of many different  

colors, substantially increasing the effective absorption cross-
section of the RC. These light-harvesting complexes are crucial for 
the success of photosynthesis because light is dilute and even on a 
sunny day, a chlorophyll (Chl) (Fig. 2a,b) will absorb no more than 
one photon every 0.1 s (ref. 7). This means that without an antenna 
the RC would be inactive most of the time, which in the case of 
multielectron redox processes could also lead to loss of excitation 
energy. The capacity of light harvesting is thus crucial, especially 
in light-limited conditions, when the organism needs to harvest 
every available photon. In addition, as light quantity and quality 
vary substantially in different natural habitats, the antenna system 
represents a modular unit that can be designed ad hoc. Indeed, in 
contrast to the RC complexes, the light-harvesting complexes show 
a remarkable variability in pigment composition, pigment organiza-
tion and antenna size in different natural environments4,5,8. Finally, 
the capture and storage of light is a delicate and hazardous business. 
Changes in light quantity and quality occur daily on timescales as 
short as seconds and can easily lead to overexcitation of the photo-
synthetic machinery, inducing photodamage or even leading to the 
death of the organism. Photosynthetic organisms are able to deal 
with most of these situations. How do they manage?

Here we will illustrate how both chemical variation and varying 
pigment-protein interactions lead to coverage of different parts of 
the solar spectrum, enabling adaptation to different light conditions. 
Despite their diversity, all antennae must perform within the thermo-
dynamic and kinetics constraints dictated by the RCs, and we discuss 
how this is done in an efficient way, elaborating also on the process 
of excitation energy transfer (EET) and on the role of the proteins. 
The need for regulation and adaptation will be addressed together 
with recently discovered examples thereof. From the analysis of light 
harvesting in nature we extract basic design principles for efficient 
light harvesting, which can be used as guidelines for the construction 
of artificial antennae. Finally, we will briefly discuss how organisms 
might be modified in the future for improving light harvesting.

Primary electron donors dictate light-harvesting limits
The arrival of an excitation in the RC, typically within 100 ps after 
initial photon capture by the antenna, leads to very efficient elec-
tron transfer from primary donor to primary acceptor. The pri-
mary donor (P) in PSII is called P680, referring to the absorption 
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Photosynthetic organisms are crucial for life on Earth as they provide food and oxygen and are at the basis of most energy 
resources. They have a large variety of light-harvesting strategies that allow them to live nearly everywhere where sunlight can 
penetrate. They have adapted their pigmentation to the spectral composition of light in their habitat, they acclimate to slowly 
varying light intensities and they rapidly respond to fast changes in light quality and quantity. This is particularly important for 
oxygen-producing organisms because an overdose of light in combination with oxygen can be lethal. Rapid progress is being 
made in understanding how different organisms maximize light harvesting and minimize deleterious effects. Here we summa-
rize the latest findings and explain the main design principles used in nature. The available knowledge can be used for optimiz-
ing light harvesting in both natural and artificial photosynthesis to improve light-driven production processes. 
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maximum (680 nm, 175.9 kJ/mol) of the corresponding Chl a 
molecule. Although primary charge separation is more complex 
than originally thought, involving more pigments than only one 
donor and one acceptor, the primary donor is still considered to 
be a Chl a molecule9. To a first approximation, the excited-state 
energies of the antenna pigments should be the same or higher 
than that of P to energetically allow EET (Box 1, Fig. 7). This 
means that in the case of PSII the absorption maximum of most 
pigments should preferably lie below 680 nm. The energy required 

for charge separation in PSI is somewhat lower, with P700 (also a 
Chl a molecule) being the primary donor (700 nm, 170.9 kJ/mol), 
but with a different pigment-protein environment from that of 
P680. Antenna complexes feed both P680 and P700 with light-
induced excitations created by photosynthetically active radiation 
(PAR) ranging from 400 to 700 nm. EET is often pictured as taking 
place in a funnel, following a downhill energy gradient with the 
RC at the bottom. However, it is important to realize that this pic-
ture is correct for various organisms but not for plants and green 

Figure 1 | A model of the photosynthetic membrane of higher plants with the four major multi-protein complexes that participate in the light reactions. 
Shown are PSII, the water-splitting system (here represented in its PSII-LHCII form); PSI (PSI-LHCI), the electrons of which are used to reduce NADP+ to 
NADPH via ferredoxin (Fd) and ferredoxin- NADP- reductase (FNR); cytb6f, plastoquinole (PQH2)-plastocyanin (PC) oxido-reductase, which functionally 
connects the two photosystems, contributing to the generation of the electrochemical potential across the membrane; and the ATP synthase that uses the 
electrochemical gradient across the membrane to generate ATP. The dashed arrow from Fd to cytb6f indicates the cyclic electron transfer pathway, in which 
the electron cycles between PSI and cytb6f, leading only to the production of ATP. Upon excitation by light P680 in PSII releases an electron, initiating the 
linear electron transfer pathway (solid arrows) and eventually leading to reduction of the primary donor P700 of PSI, which is oxidized after it has donated 
an electron to Fd after light excitation. The electron released from P680 is ultimately replaced by an electron extracted from water. Inset, the absorption 
spectra of PSI and PSII56. Dashed lines indicate the absorption wavelengths of the primary donors of PSII (680 nm, orange) and PSI (700 nm, blue).
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Figure 2 | Photosynthetic pigments: chlorophylls and bacteriochlorophylls. The main pigments used in natural light harvesting are substituted 
tetrapyrroles, including chlorophylls and bacteriochlorophylls. The absorption properties of these pigments vary owing to the extent of the conjugation  
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are from ref. 103. The spectra are normalized to their absorption maxima.
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algae, where most of the pigments are isoenergetic10,11, as will be  
discussed below.

There is also a kinetic restriction for efficient light harvesting. 
After excitation, pigments remain in the excited state for a certain 
amount of time before losing the corresponding energy as heat, 
radiation or in other ways. A typical decay rate (kd) for Chl a in 
solution is 0.2 ns−1, and an average rate of kd = 0.5 ns−1 was recently 
reported for the PSII antenna in plants12. Therefore, EET from the 
antenna to the RC and subsequent charge separation in the RC 
should occur with a much faster rate (rate of trapping or rate of 
photosynthesis, kP) to guarantee a high quantum efficiency or yield 
(Fq) of charge separation. A useful approximation is Fq = kP/(kP + kd). 
Factors determining efficient transfer are discussed below and in 
Box 1. Figure 4 shows the PSII organization in a ‘supercomplex’13, 
which is the form in which PSII is mainly organized in plants. In this 
complex, 300 Chls serve two RCs. The kP value of this supercom-
plex is around 7 ns−1; thus, the quantum efficiency is 0.93 (ref. 14). 
It should be realized that an increase of antenna size corresponds 
to more photons absorbed but also to a smaller trapping rate. This 
leads to an optimal antenna size, which in the case of plant PSII is 
on the order of several hundred isoenergetic pigments per RC in the 
absence of other restricting conditions15.

Antenna building blocks: the pigments
Harvesting visible light. In order to absorb light, nature has cho-
sen chlorophylls, substituted porphyrins containing a large array 
of conjugated double bonds, which assure absorption in the visible 
and near-infrared regions of the solar spectrum16,17 (Fig. 2b). The 
Chl absorption properties are highly tunable, as the saturation of 
chemical bonds and the use of different substituents on the pyr-
role rings strongly influence the energy levels18–20. Chl a seems to 
be present in all RCs in oxygenic photosynthesis and also to con-
stitute a significant part of most antenna complexes. Chl a is well 
suited for light harvesting, having a relatively long excited-state 
lifetime (a low kd value, which corresponds to a large Fq value,  
i.e., high efficiency) and the transition to the lowest excited state 
(S1) is characterized by a strong dipole strength that scales linearly 
with the absorption coefficient and is extremely important for 
efficient EET. EET between two pigments is typically governed by 
dipole-dipole interaction, and the rate of transfer often scales with 
the product of their dipole strengths (Box 1). In addition to Chl a,  
with its lowest energy absorption maximum around 670 nm, a 
series of chlorophylls that harvest light in different regions of the 

solar spectrum (Fig. 2b) exist, providing the flexibility needed for 
adaptation to different natural habitats where light quality can 
differ substantially8 (Fig. 5). In the light-harvesting complexes 
of plants and green algae (LHCs) (Fig. 6a), which constitute a 
widespread LHC family of many homologous proteins21, Chl a is 
complemented by Chl b, whose lowest excited-state energy level 
(650 nm) lies above that of Chl a (Box 1). Chl c can be found in 
the antennae of other organisms, including diatoms and dinofla-
gellates22. It absorbs mainly around 450 nm, which is particularly 
advantageous in underwater conditions (see below). Chls b and c 
transfer their excitation energy typically within 1 ps to Chl a, and 
EET proceeds via Chl a (refs. 22,23). This is the recurring design 
principle in the antenna systems of plants and green algae: pigments 
covering a large part of the solar spectrum rapidly (within 1 ps)  
transfer their excitations to the lowest excited state of a nearby 
Chl a molecule, together forming a local funnel. EET then occurs 
among Chl a molecules, along a network of excitation pathways to 
the RC. These pathways are usually not interrupted by high-energy 
pigments which would substantially slow down EET24. The absorp-
tion bandwidths of the Chl a molecules constituting the excitation 
transfer pathway is typically in the order of kbT (200 cm−1), which 
is required for optimal efficiency and robustness, provided that the 
energetic coupling between the pigments is of a similar size25.

The organism Acaryochloris marina, living in an ecological niche 
depleted in visible light by Chl a–containing organisms living above 
it and thereby relatively enriched in near-infrared light26, mainly con-
tains Chl d (95%) instead of Chl a (ref. 27). The low-energy absorp-
tion band of Chl d is also characterized by a large dipole strength, 
but its maximum is shifted 30 nm toward longer wavelengths (red-
shifted) (Fig. 2b), which would make it virtually impossible to excite 
the primary electron donor P680 efficiently. However, the primary 
donor also absorbs at longer wavelengths, and most Chls in the PSII 
RC are replaced by Chls d, although there might still be one Chl a 
involved in charge separation28. It is apparently possible to split water 
efficiently with the excited-state energy of the primary donor cor-
responding to approximately 725 nm28,29, which may be related to an 
altered midpoint potential of the primary acceptor30. Recently a new 
chlorophyll, Chl f, absorbing up to 750 nm in vivo, was discovered in 
a cyanobacterium hosted by stromatolites31, and thus also living in 
a near-infrared-rich environment. However, the proportion of Chl f  
is only 10–15%27, probably because higher percentages would sig-
nificantly lower the excitation trapping efficiency, in particular for 
PSII with its high-energy primary donor P680. Indeed, EET can also 
occur from a low-energy pigment to a high-energy pigment, but the 
corresponding rate is lower than for the reverse process (Box 1).  
If kP of a system is very high, then it can ‘tolerate’ several low-energy 
pigments to extend the absorption spectrum, although this slows 
down the trapping process, as happens, for instance, in PSI of 
plants32. If kP is already small, the addition of many long-wavelength 
pigments may not be advantageous.

Harvesting near-infrared light. Organisms that perform oxygenic 
photosynthesis are mostly stuck with the limits imposed by P680 and 
P700, but there are very different organisms with different types of 
RCs, which do not split water and utilize light of much longer wave-
lengths. They use different light-harvesting systems, and perhaps the 
most remarkable of all are the chlorosomes of green bacteria, which 
are probably an early invention in biology33 and can live in deep 
water where little light penetrates. They contain up to many hun-
dreds of thousands of BacterioChl (BChl) c, BChl d and/or BChl e  
molecules34 (Fig. 2a), which are self-organized into layered struc-
tures33 and represent a primary source of inspiration for the building 
of artificial antennae35. The BChl c, d and e pigments, individually 
absorbing around 670 nm, are responsible for an intense broad 
absorption band around 740 nm, the red-shift being the result of 
strong pigment-pigment interactions36. However, 740-nm photons 
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cannot penetrate the water very deeply, and the organisms must then 
rely on the strong carotenoid and BChl absorption bands at shorter 
wavelengths. Excitations rapidly end up in the lowest excited states 
of the BChl c, d and e pigments, and although these do not necessar-
ily contribute to light absorption, they are responsible for EET. This 
large pigment pool is not directly connected to the RCs because this 
would create a thermodynamics problem34: simply speaking, an exci-
tation would spend only a very small fraction of its time on a pig-
ment that is close enough to the RC to allow efficient energy transfer. 

Therefore, green bacteria use a pool of BChl a molecules as inter-
mediates in a funnel-like design: these pigments are lower in energy 
(absorption maxima 795–825 nm), and they are present in much 
lower numbers and concentrate the excitations near the RCs. BChl a  
is also the pigment of choice in many purple bacteria and, like Chl a,  
also has very favorable EET properties. The best-studied BChl a– 
containing light-harvesting system is the LH2 complex (Fig. 6b). 
It contains two broad absorption bands in the near infrared, at 
800 and 850 nm. The LH2 complexes transfer excitation energy to 

Box 1 | Excitation energy transfer 

How does excitation energy transfer (EET) take place?
When electrostatic interactions between pigments are relatively weak, i.e., their absorption spectra are unaltered, EET can be 
described by Förster resonance energy transfer (FRET), which is based on electric dipole-dipole interactions between chromophores: 
excitations hop from donor to acceptor pigments with a rate given by the Förster equation94. This Förster rate scales with R−6, where R is  
the center-to-center distance between the interacting chromophores, but it also depends on the relative orientations of the pigments 
and the overlap of energy levels. Particularly important is the product of the dipole strengths of the corresponding electronic transitions 
of donor and acceptor. For practical reasons, the acceptor dipole strength is expressed in terms of the molar extinction coefficient  
for absorption and in terms of its radiative rate for the donor (the fluorescence yield divided by the excited-state lifetime in the  
absence of an acceptor). The average rate of transfer between two isoenergetic Chl a molecules at R = 1.5 nm with random  
orientations is 0.7–0.8 ps−1 in an environment with a refractive index of 1.5 (ref. 6). For transfer from a Chl b molecule with an  
absorption maximum at 650 nm (corresponding energy 3.060 × 10−19 J) to a Chl a molecule with an absorption maximum at 675 nm 
(energy 2.947 × 10−19 J) the rate kba is ~0.2 ps−1 (Fig. 7). The reverse rate kab follows from kba/kab = exp(−ΔE/kBT), where ΔE = 3.060 × 10−19 –  
2.947 × 10−19 J. At room temperature (T = 293 K) the reverse rate kab is then a factor ~16 smaller. So uphill energy transfer is possible but 
can be considerably slower.

However, a large part of EET in photosynthesis proceeds on a 
timescale below 1 ps, where FRET theory is not applicable. Pigment 
interactions are far stronger, and energy levels and absorption 
spectra change. The interactions lead to new excitonic energy 
levels6, shared between the strongly interacting molecules, which 
can even behave as one big super-molecule (Fig. 7b). The dipole 
strengths for the corresponding transitions depend on the relative 
orientations of the pigments. For EET it is in general favorable 
that the low-energy states correspond to high dipole strengths6. 
Well-known examples for such a distribution of dipole strengths 
are the LH1 and LH2 complexes in purple bacteria and the 
chlorosomes in green bacteria, where the main absorption bands 
lie substantially lower in energy than those of the noninteracting 
pigments. Excitations do not simply hop around, but they can 
coherently oscillate for a short amount of time between pigments, 
depending on excitation conditions. Excitation dynamics can be 
described by Redfield theory95, which also takes into account the 
interactions with the environment, particularly its vibrations. 
These interactions are responsible for transitions between exciton 
levels and can be described quantitatively. Such transitions can 
usually lead to net movement of excitations.

Most photosynthetic complexes operate in the regime where 
excitations are only partly delocalized6. In that case the theoretical 
description of EET becomes far more difficult96. Advanced 
femtosecond techniques97,98 have been developed and used, 
particularly during the last decade, to study EET in light-harvesting 
complexes with special interest for the time that excitations remain 
coherent. It appears that coherence can persist for 0.1–1.0 ps in 
various pigment-protein complexes97–99 for temperatures ranging 
from 77 K to room temperature, although several conclusions in 
these studies have also been disputed100,101. Coherence has been 
suggested to be responsible for light-harvesting efficiencies close 
to 100% (see, for example, ref. 97). Remarkably, in chlorosomes 
where the pigment-pigment couplings are very large, rapid loss of 
excitonic coherence was reported together with incoherent diffusion 
on a sub-100-fs timescale102. Still these excitations can travel over 
many thousands of pigments within several tens of picoseconds34, 
suggesting that coherence might not always be required to reach very 
high efficiencies and that strong interactions might be sufficient.
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BChl a–containing LH1 complexes, peaking around 875 nm, which  
surround and feed the RCs with excitations37,38, constituting  
another example of an overall funnel in which excitations are  
concentrated near the RC. It is important to note that the bands 
at 800, 850 and 875 nm originate from BChl a, showing that  
the absorption can be tuned extensively by modulating pigment-
protein and pigment-pigment interactions (see below). Finally, it is 
worth mentioning that some purple bacteria contain BChl b instead 
of BChl a, which can lead to absorption even beyond 1,000 nm39.

Filling the green gap. Chlorophylls (like modified porphyrins)19,20 
show little absorption in the region of 500–600 nm, leading to the 
‘green gap’, which is responsible for the green color of most leaves 
and green algae. In water, at depths of 10 m the amount of transmit-
ted light above 600 nm is almost negligible, meaning that red Chl 
absorption cannot be used and the presence 
of a green gap would allow absorption only 
of photons with wavelengths below 500 nm. 
Organisms that live underwater use special 
carotenoids and phycobilins (Fig. 3a,b) to fill 
the gap7. Diatoms, for instance, contain high 
amounts of fucoxanthin40 (Fig. 3a). But caro-
tenoids have a strong limitation: their excited- 
state lifetime is very short, typically on the 
order of 10 ps, which means that excitations 
are almost immediately lost if left unchecked. 
However, they are nearly always in close con-
tact with Chls, thereby allowing EET to Chl 
within 1 ps41, after which excitations are stabi-
lized for several nanoseconds. An interesting 
example is the peridinin-chlorophyll protein 
(PCP), present in dinoflagellates (Fig. 6c). 
It contains eight peridinin carotenoids sur-
rounding only two Chl molecules42, which is 

an efficient way of buying (excitation) time: whereas the peridinins 
are responsible for most of the light absorption, the Chls subse-
quently transport the excitation energy to the RCs. At the same 
time carotenoids also provide photoprotection: Chl excitations can 
lead to dangerous triplets, causing formation of reactive oxygen 
species (ROS), which can be lethal for the organism. Carotenoids 
are highly efficient quenchers of Chl triplets when they are in direct 
contact with the Chls, and the overlap of their wavefunctions allows 
exchange of electrons and quenching of triplets43. Indeed most Chls a  
in the antenna are in direct contact with a carotenoid.

The other pigments used to cover the green gap are phycobilins, 
open tetrapyrroles that absorb between 550 and 680 nm (Fig. 3). 
They are the chromophores of light-harvesting phycobilisomes in 
cyanobacteria and red algae, which are large hemispherical antenna 
structures containing many hundreds of phycobilins44 (a subunit 
of the phycobilisomes is shown in Fig. 6d). Phycobilisomes form a 
funnel with a decrease in excited-state energy toward their center, 
where several low-energy pigments deliver excitations to the RCs of 
either PSI or PSII44.

Antenna building blocks: the protein
With the major exception of chlorosomes, most light-harvesting 
pigments are associated with proteins in the photosynthetic appara-
tus. The natural variation of the protein scaffold is very large (a gal-
lery of different antenna complexes is presented in Fig. 6). In most 
cases antennae are integrated in the photosynthetic membranes 
(Fig. 6a–c), but there are also water-soluble antennae (Fig. 6d) that 
are associated with the membrane. The protein mass, structure and 
pigment/protein ratio differ substantially for different antenna fam-
ilies. Antennae should, ideally, have a high pigment/protein ratio, 
thus lowering the cost of protein synthesis and improving the rate of 
EET (Box 1). This is particularly well achieved by the LHC family 
of plants and green algae23, where 25 kilodaltons (kDa) of protein 
coordinates 15 kDa of pigment (Fig. 6a).

The role of the protein is to organize the pigments close  
together and in the correct orientation to facilitate EET (Box 1)  
and photoprotection. This means that in general the protein is  
organizing the pigment to form a local funnel, avoiding energy  
gaps and especially avoiding concentration quenching: Chls in  
solution at concentrations similar to those present in pigment- 
protein complexes (up to 0.5 M) are heavily quenched45, which 
would negatively influence the light-harvesting efficiency. In 
most antenna complexes the average center-to-center distance 
between neighboring Chls is 10 Å (see, for example, refs. 2 and 46). 
Proteins also provide vibrations of the right frequency that can help  
bridge energy gaps between excitonic states (Box 1 and Fig. 7b), 
thus facilitating EET25.

a b

5 nm

So

S1

Sn

10

0.03

0.0005
0.0005

5

4

1

2

0.1

10

5

175

275

En
er

gy
 (k

J/
m

ol
)

Figure 4 | Role of the antenna complexes. (a) Schematic representation  
of a PSII supercomplex in plants13; proteins of the core complex are shown 
in light yellow and the LHCs in light pink, green and blue. Chls a are in  
green and Chls b in blue. Carotenoids are omitted. The light harvested  
by the carotenoids and Chl b is rapidly transferred to Chl a molecules  
(local funnel), typically within 1 ps, after which excitation transfer proceeds 
mainly via Chls a (yellow arrow) (Box 1) to the primary donor P680 (red) 
in a more or less random way, where it is used for charge separation. 
On average, charge separation occurs 150 ps after a photon is absorbed 
somewhere in this supercomplex23. (b) Simplified energy-level diagram 
of the pigments in the PSII supercomplex. The color coding is as in a and 
carotenoids are shown in orange. The light blue arrows indicate excitation 
by a photon. The numbers near the arrows are the approximate rate 
constants of the processes (in ps−1). The dashed orange box represents the 
energy range of the carotenoid S1 state, which is not known precisely and 
varies for different carotenoids.

Figure 5 | Examples of adaptation. Absorption spectra of photosynthetic organisms (in color) and 
the available light spectrum in their specific habitats underwater (black) at the indicated depths8. 
(a) Prochlorococcus, which lives at a depth of 120 m in the subtropical Pacific Ocean absorbs the 
available blue light using divinyl-chlorophyll a and b. (b) Synechococcus living at 12 m depth in the 
Baltic Sea absorbs the available green light using phycoerythrin. (c) Green cyanobacteria living 
at 75 cm depth in Lake Groote Moost in The Netherlands absorb the available red light using 
phycocyanin (peak at 635 nm) and Chl a (peak at 680 nm). 
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BChls and Chls are associated with the proteins through the  
coordination of their central magnesium. The ligand is most often a 
histidine, although coordination via glutamine, asparagine, glutamic  
acid and even water molecules has been observed46,47. Efforts are  
ongoing to understand the design principle of the binding sites, also 
comparing the available crystal structures and constructing and study-
ing mutated complexes48,49. The factors determining the association of 
the carotenoids with the protein are not fully understood: hydropho-
bic interactions in the transmembrane region can be responsible for 
their stable association with the protein, although the involvement  
of charged or polar residues close to their end rings has also been  
proposed46. At variance with the other pigments, phycobilins are 
covalently linked to the proteins, via a thioester bond to cysteine.

The protein also changes the absorption properties and can 
influence the excited-state lifetime of the pigments. This effect is 
extremely large in the case of the phycobilins, which are structur-
ally very flexible. The binding to the protein strongly increases the 
extinction coefficient, the excited state lifetimes and the stability 
of the phycobilins, restricting their structural flexibility and thus 
transforming a bad chromophore into an excellent light harvester16.  

In general the protein strongly tunes the absorption wavelengths of 
the pigments and influences the width of their absorption bands. 
This effect can be direct, due to the protein environment surround-
ing the pigment (for example, presence of charged residues in close 
contact with the pigments42 or formation of H-bonds between 
amino acid side chains and pigments49,50), or indirect, via the stabili-
zation of a particular pigment conformation (in the case of phycobi-
lins) or the modulation of pigment-pigment interactions37 (Fig. 6e).  
In Figure 6h the absorption spectrum of Lhca4, a family member 
of LHCII, is described in terms of the contribution of the individual 
Chls. In particular, the Chl a molecules associated with this complex 
absorb between 660 and 705 nm. The large spread in absorption in 
comparison with the spectrum of Chl a in solution (Fig. 6g) is due 
mainly to the different environment of each Chl a in the protein. It 
has been shown that the lowest-energy absorption (represented by a 
broad Gaussian curve peaking at 705 nm) can be shifted to shorter 
and longer wavelengths by changing individual amino acids near 
the three interconnected Chls49,51 (Fig. 6i).

The protein also determines the binding affinity for specific types 
of pigments. In the case of LHCs of plants and green algae, which 
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Figure 6 | Light-harvesting complexes and tuning of the pigment spectra. (a) LHCII of spinach (PDB 1RWT)46; blue, apoprotein; green, Chl a; cyan:  
Chl b; yellow and orange: carotenoids. (b) LH2 of Rps. Acidophila37 (PDB 1NKZ) composed of nine times two subunits (α and β in blue and gray,  
respectively); BChl a-800, orange; BChl a-850, red. (c) Part of PCP42 of Amphidinium carterae showing one Chl (green) in contact with four carotenoids 
(PDB 3IIS). (d) Hexamer (two trimers) of the C-phycocyanin component of the S. elongatus phycobilisome (PDB 4H0M)105; the top trimer is shown in color 
(blue, α-subunit; orange, β-subunit) and the top phycocyanobilins in yellow. (e) Absorption spectrum of BChl a in organic solvent (black) compared  
with that of BChl a in LH2 (red). (f) Organization of a LH2 subunit with three BChl a molecules37. The shift from 780 nm in solution to 800 nm in the 
protein is caused mainly by the protein environment of the orange BChl; the shift to 850 nm is also due largely to strong excitonic interactions (Box 1) 
between the red BChls. (g,h) Spectra of a mixture (black) of Chls a (green) and Chls b (blue) in organic solvent (g) and in the pigment-protein complex 
Lhca4 (h). The ratio of [Chl a] to [Chl b] is the same in both cases. (i) A model (based on the structure of LHCII) showing the three Chls responsible  
for the lowest-energy state of Lhca4 (the red Gaussian in h) and the two residues (represented as spheres with O in red, N in blue and C in gray) that 
strongly affect the absorption of this band49,51.
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coordinate Chl a and b, the selectivity for Chl b is linked to the 
possibility of H-bond formation involving the Chl b CHO group46,47, 
whereas the occupancy of the Chl a sites seems to be determined 
mainly by the availability of the pigments52.

Acclimation or survival in a changing environment
Whereas adaptation to different environmental conditions has led 
to the development of antenna complexes with very different char-
acteristics, acclimation requires fine tuning of the light-harvesting 
properties with different short- and long-term strategies53,54. Long-
term changes in light quantity lead to modulation of the antenna 
size in practically all organisms, through regulation of expression 
and degradation of the antenna system55–57: in low light the num-
ber of excitations per RC can be increased by increasing the size of 
the antenna, and in high light wasteful saturation can be avoided by 
again reducing the size. In some cyanobacteria, long-term acclima-
tion to different colors induces the synthesis of different pigments 
for an optimal match to growth light, a phenomenon called chro-
matic acclimation. The molecular mechanisms of its regulation are 
starting to be revealed58 and might also provide interesting applica-
tions for optimizing light harvesting in other organisms.

Very often, changes in light quality and quantity occur on a time
scale much faster than the one on which protein and pigment syn-
thesis and degradation take place. In high light, surviving becomes 
imperative, and the organisms switch on protective mechanisms, 
dissipating a large part of the harvested light energy as heat to avoid 
ROS formation in a collection of processes called nonphotochemi-
cal quenching (NPQ)59. In general, this quenching relies on changes 
in pigment-pigment interactions, achieved by conformational 
changes of the proteins60 or rapid chemical or structural modifica-
tion of pigments59. In many eukaryotic organisms, members of the 
LHC family (PsbS61 and LhcSR62–64) act as stress sensors, becoming 
protonated as a result of the low lumenal pH occurring during high 
light. They then undergo and/or induce in other LHCs a conforma-
tional change that leads to effective quenching of the excited-state 
energy65–67 owing to Chl-carotenoid and/or Chl-Chl interactions68–72.  
At the same time, the low pH induces the conversion of the xan-
thophyll violaxanthin into zeaxanthin, which contributes to the 
quenching73. Cyanobacteria use a different mechanism: quenching 
is not regulated by the pH but through blue-green light absorp-
tion by a carotenoid in the orange carotenoid protein (OCP)74,75. 
Every time OCP absorbs a photon there is a finite possibility that 
it changes color and conformation and switches into an active red 
form that binds to the phycobilisome core, transforming 80% of the 
phycobilisome excitations into heat before they can reach the RCs76. 
This is a statistical process that happens with low probability, but in 
high-light conditions it occurs more frequently. In solution the pro-
tein can stay in the active form for more than 10 min74, but in vivo 
the fluorescence recovery protein (FRP) is responsible for switching 
off the quenching75.

Responses to changes in light quality are also necessary for opti-
mal light harvesting. Because PSI and PSII work in series, their exci-
tation should be balanced to optimize linear electron transport from 
water to NADPH while minimizing photodamage. The difference 
in absorption properties of the two photosystems (with PSI domi-
nating above 690 nm and PSII around 475 nm and 650 nm; Fig. 1)  
makes it challenging to maintain this balance. A process known 
as state transitions, in which LHCII is thought to move from one 
photosystem to the other upon phosphorylation or dephosphoryla-
tion, furnishes an elegant solution to the problem77. It was recently 
shown that LHCII functions as an antenna for both photosystems, 
allowing the simultaneous regulation of their antenna size by chang-
ing the amount of two gene products upon long-term acclimation56, 
and that phosphorylation is responsible for fine tuning, thereby 
evenly distributing the excitations between the two photosystems or 
inducing antenna detachment and concomitant quenching of part of 

it78,79. Although in the past, state transitions and NPQ were regarded 
as independent processes activated in different light regimes, recent 
results indicate that they may be strongly interconnected79–81 and 
may even exploit the same mechanisms. The different mechanisms 
of light-harvesting regulation should then be considered as a set of 
highly integrated processes that have been optimized in concert.

The design of an antenna
Although the basic requirements for an efficient antenna may differ 
for natural, biohybrid and entirely artificial systems82,83, in general, 
good coverage of the available light spectrum is needed in combina-
tion with fast EET that leads to efficient charge separation.

The coverage of a wide region of the solar spectrum can be 
achieved with many different pigments, but for efficient light har-
vesting the presence of uphill intermediates should be avoided, and 
EET pathways should be optimized. For this purpose, nature uses a 
limited number of pigments and a polymeric scaffold that acts as a 
smart matrix, allowing the control of the assembly in terms of affin-
ity of the binding sites for different pigments, geometrical arrange-
ment (correct orientation and high density without self-quenching) 
and tuning of the pigments’ spectroscopic properties. In addition, 
the scaffold permits the switching on and off of light harvesting to 
respond to light fluctuations. For the design of optimal antennae, 
it is thus essential to achieve complete control of the smart matrix. 
Efforts in this direction are ongoing48,49,84, but a full understanding 
is still required.

What is the best overall organization for efficient EET? Nature 
uses two basic designs to deliver excitations efficiently to the RCs. 
The first one makes use of the overall funnel principle: many, 
more or less isoenergetic, pigments exchange excitations in a 
high-energy pool, from which they cascade down in energy via one or 
more lower-energy pools to the RC. A concomitant decrease in the 
number of pigments per pool focuses the excitations near the RC. 
Without such focusing capacity, chlorosomes, for instance, would 
become very inefficient. This design works because the pigments 
involved have relatively long excited-state lifetimes, and the dipole 
strengths of the low-energy transitions are large, which is needed 
for fast EET.

The second strategy makes use of small local funnels, where exci-
tations of high-energy pigments are rapidly transferred to nearby 
low-energy pigments (Chls a in plants and green algae), which sub-
sequently transfer excitations to the RC with little energetic and spa-
tial directionality. With this design, use can be made of pigments, 
such as carotenoids, that cover an important part of the solar spec-
trum but have short lifetimes and/or small dipole strengths for the 
absorption to the S1 state. This design requires very short distances 
between the pigments involved in the local funnel to assure fast 
EET. The local-funnel concept has recently been applied for con-
structing biohybrid antennae85. Chromophores with largely varying 
absorption characteristics were covalently linked to newly intro-
duced cysteine residues in a truncated polypeptide from a purple 
bacterium antenna. EET from these chromophores to BChl a bound 
to a histidine residue of the same polypeptide is followed by EET 
between the BChl a molecules in larger assemblies.

The implementation of both the overall and local funnel design 
in nature correspond to high quantum efficiencies, but a lot of 
energy is lost, as absorption occurs over a broad spectral region but 
only a (relatively small) part of the energy of the absorbed photons 
is ultimately used for charge separation. In artificial designs it would 
therefore be far more efficient to collect different spectral regions 
separately in different layers and use as much of the energy as possi-
ble (as in multi-junction solar cells), using the principles of efficient 
EET and focusing the excitations if needed.

How large should the antenna be? Although an increase in antenna 
size leads to more excitations, it decreases the quantum efficiency. 
If excitations migrate infinitely fast, the rate of photosynthesis kP 
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is equal to the intrinsic rate of charge separation (kCS) in the RC 
multiplied by the probability that the excitation is on the primary 
donor and not in the antenna. This probability decreases when the 
antenna size increases, although to a lesser extent for a deep funnel 
than a shallow one. The optimal antenna size thus is determined  
by kCS. When EET is relatively slow, the optimal size is smaller (as 
for PSII in plants)15.

How can the light-harvesting system respond to environmental 
fluctuations? Natural light harvesting is finely regulated at the mem-
brane level. The capacity of switching light-harvesting complexes 
on and off requires the presence of a ‘stress sensor’ (severable pro-
tonable residues in plants and green algae and a ‘photon counter’ in 
cyanobacteria), integrated in a smart matrix. The stress leads to con-
formational changes that alter the organization of the light-harvesting 
system, enhancing particular pigment-pigment interactions that 
lead to quenching. A similar mechanism has been implemented in 
an artificial system, in which a photochromic control moiety is able, 
after photoisomerization, to quench porphyrin excited states in an 
artificial photosynthetic unit86. As in cyanobacteria, a certain frac-
tion of the excitations induce NPQ. The level of NPQ depends also 
on the rate for back-switching to the unquenched state.

Improving light harvesting in living cells
It was recently discussed87 that extending the PAR region of  
Chl a–containing organisms to 750 nm using Chl d and Chl f could 
increase the quantum yield of oxygenic photosynthesis by ~20%. 
This requires reduction of the number of Chls per photosystem to 
avoid saturation87. Antenna size reduction has been proposed for 
green algae, to allow a better light distribution in the mass culture88, 
through reduction of the amount of wasted energy owing to NPQ 
in the top layers and increasing light penetration. Recently, antenna 
size regulation and/or reduction has also been proposed for plants, 
where it can be advantageous in the canopy89. Attempts to validate 
this concept are in progress, and the results are at present partially 
contradictory90,91. However, the effects of antenna truncation on 
EET and photoprotection still need to be evaluated because these 
factors can also strongly influence photosynthetic efficiency.

How could the spectral composition of organisms be changed 
to catch more photons? The addition of Chl d to organisms that 
use Chl a might require only one additional, but yet unidentified, 
enzyme87. However, the full replacement of Chl a by Chl d would 
increase the green gap, and additional pigments might be needed 
to refill the gap. The absorption spectrum can be further broadened 
by Chl f, but regulation of its amount, and probably also specific 
binding in the right sites, is needed, otherwise the efficiency, espe-
cially of PSII, might become too low. Regulation of Chl f synthesis 
can be inspired by the known regulation of Chl b synthesis52,92. All 
these changes require Chl d or f to replace Chl a in the photosyn-
thetic complexes, which seems feasible, as the binding sites of LHCs 
are not completely selective for one type of Chl52,93. An interesting 
alternative is to broaden the spectrum by tuning the protein envi-
ronment of Chls that are naturally present in the organisms49,50, an 
approach that only requires small modifications of the photosyn-
thetic apparatus. A combination of these methods might lead to a 
substantial increase of light-harvesting capacity in natural systems.

The future of light harvesting
Harvesting sunlight is vital for life on Earth and needs to be fully 
exploited to assure future food and energy supplies. To achieve 
this goal, full light-harvesting power must be used, meaning that 
both living organisms and artificial systems need to be improved. 
The study of photosynthetic organisms teaches us that the perfect 
light-harvesting system does not exist because light-harvesting 
performance is highly dependent on the environment, and the 
system is often balancing between maximizing photon capture  
and minimizing photodamage. Evolution has led to many different 

solutions in very diverse environments but have done so by combin-
ing a relative small number of building principles. These principles 
are summarized here, and although there is still a long way to go to 
fully understand all the molecular details, the way to improve light-
harvesting system is definitively open. 
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