Enzymes and Surfaces (dr. M.C.R. Franssen)

The Enzymes and Surfaces Research Group, led by dr. Maurice C.R. Franssen, focuses on enzymatic modification of surfaces, the use of immobilised enzymes for detection purposes and the application of enzymes for the synthesis of biorenewables. Maurice also contributes from time to time to studies on biosynthesis routes of terpenes.

Enzymatic modification of surfaces

Poly(ethersulfone) [PES] is a very popular material for the construction of membranes because of its sturdiness and chemical inertness. It is also a hydrophobic material and therefore prone to fouling by biopolymers like proteins, polysaccharides and polyphenols. Modification to make PES antifouling is difficult because of its inertness. We have found a very mild method to covalently modify PES, thereby strongly reducing its tendency to attract biopolymers. Our method involves oxidation of phenolic acids to radicals by the fungal enzyme laccase; the radicals subsequently couple to the PES and form brushes or layers. See the scheme and figure below. Further details can be found in the references.

Scheme 1. Laccase-mediated modification of poly(ethersulfone) with 4-hydroxybenzoic acid.

Figure 1. SEM pictures of blank (left picture) and modified PES membranes, using various reaction conditions for the enzymatic modification.

References:

  • F.A.M.G. van Geenen, M.C.R. Franssen, H. Zuilhof and M.W.F. Nielen. Ambient characterization of synthetic fibers by laser ablation electrospray ionization mass spectrometry. Anal. Chem. 2017, 89, 4031−4037.
  • S. Slagman, J. Escorihuela, H. Zuilhof and M.C.R. Franssen. Characterization of the laccase-mediated oligomerization of 4-hydroxybenzoic acid. RSC Adv. 2016, 6, 99367-99375.
  • S. van der Veen, N. Nady, M.C.R. Franssen, H. Zuilhof, R.M. Boom, T. Abee and K. Schroën. Listeria monocytogenes repellence by enzyme-catalyzed modified PES surfaces. J. Appl. Polym. Sci. 2015, 132, 41576.

  • N. Nady, M.C.R. Franssen, H. Zuilhof, R.M. Boom and K. Schroën. Enzymatic modification of polyethersulfone membranes.Water 2012, 4, 932-943.

  • N. Nady, K. Schroën, M.C.R. Franssen, R. Fokkink, M.S. Mohy Eldin, H. Zuilhof and R.M. Boom. Enzyme-catalyzed modification of PES surfaces: reduction in adsorption of BSA, dextrin and tannin. J. Colloid Interface Sci. 2012, 378, 191–200.

  • N. Nady, K. Schroën, M.C.R. Franssen, B. van Lagen, S. Murali, R.M. Boom, M.S. Mohyeldin and H. Zuilhof. Mild and highly flexible enzyme-catalyzed modification of poly(ethersulfone) membranes. ACS Appl. Mater. Interfaces 2011, 3, 801-810.

  • N. Nady, M.C.R. Franssen, H. Zuilhof, M.S. Mohy Eldin, R. Boom and K. Schroën. Modification methods for poly(arylsulfone) membranes: a mini-review focusing on surface modification. Desalination 2011, 275, 1-9

Enzymes for detection

We also use enzymes for detection purposes, e.g. of masked mycotoxins and lactate (see Figure below and Alonso et al., 2016).

Figure_1.jpg

  • J.M. Alonso, A.A.M. Bielen, W. Olthuis, S.W.M. Kengen, H. Zuilhof and M.C.R. Franssen. Self-assembled monolayers of 1-alkenes on oxidized platinum surfaces as platforms for immobilized enzymes for biosensing. Appl. Surface Sci. 2016, 383, 283-293.
  • J.M. Alonso, B. Fabre, A.K. Trilling, L. Scheres, M.C.R. Franssen and H. Zuilhof. Covalent attachment of 1-alkenes to oxidized platinum surfaces. Langmuir 2015, 31, 2714-2721.

  • S.A. van den Berg, J.M. Alonso, K. Wadhwa, M.C.R. Franssen, T. Wennekes and H. Zuilhof. Microwave-assisted formation of organic monolayers from 1-alkenes on silicon carbide. Langmuir 2014, 30, 10562–10565.

  • M.W.F. Nielen, C.A.G.M. Weijers, J. Peters, L. Weignerova, H. Zuilhof and M.C.R. Franssen. Rapid enzymatic hydrolysis of masked deoxynivalenol and zearalenone prior to liquid chromatography mass spectrometry or biosensor immunoassay analysis. World Mycotoxin J. 2014, 7, 107-113.

  • D. Dorokhin, W. Haasnoot, M.C.R. Franssen, H. Zuilhof and Michel W.F. Nielen. Imaging surface plasmon resonance for multiplex microassay sensing of mycotoxins. Anal. Bioanal. Chem. 2011, 400, 3005-3011.

Enzymatic preparation of biorenewables

  • A. But, A. van Noord, F. Poletto, J.P.M. Sanders, M.C.R. Franssen, E.L. Scott. Enzymatic halogenation and oxidation using an alcohol oxidase-vanadium chloroperoxidase cascade. Mol. Catal. 2017, 443, 92–100.
  • M. Schurink, S. Wolterink-van Loo, J. van der Oost and M.C.R. Franssen. Substrate specificity and stereoselectivity of two Sulfolobus KDG aldolases towards azido substituted aldehydes. ChemCatChem, 2014, 6, 1073-1081.

  • P. Falcicchio, S. Wolterink-van Loo, M.C.R. Franssen and J. van der Oost. DHAP-dependent aldolases from (hyper)thermophiles: biochemistry and applications. Extremophiles 2014, 18, 1-13.

  • M.C.R. Franssen, P. Steunenberg, E.L. Scott, H. Zuilhof and J.P.M. Sanders. Immobilised enzymes in biorenewables production. Chem. Soc. Rev., 2013, 42, 6491 - 6533.

  • P. Steunenberg, M. Sijm, H. Zuilhof, J.P.M. Sanders, E.L. Scott and M.C.R. Franssen. Lipase-catalyzed aza-Michael reaction on acrylate derivatives. J. Org. Chem. 2013, 78, 3802-3813.

  • P. Steunenberg, M. Uiterweerd, M. Sijm, E.L. Scott, H. Zuilhof, J.P.M. Sanders andM.C.R. Franssen. Enzyme catalysed polymerization of β-alanine esters, a sustainable route towards the formation of poly-β-alanine. Curr. Org. Chem. 2013, 17, 682-690.

  • R. Renirie, A. Pukin, B. van Lagen and M.C.R. Franssen. Regio- and stereoselective glucosylation of diols by sucrose phosphorylase with sucrose or glucose-1-phosphate as glucosyl donor. J. Mol. Catal. B: Enzym. 2010, 67, 219-224.

  • P.M. Könst, P.M.C.C.D. Turras, M.C.R. Franssen, E.L. Scott and J.P.M. Sanders. Stabilized and immobilized Bacillus subtilis arginase for the biobased production of nitrogen containing chemicals. Adv. Synth. Catal. 2010, 352, 1493-1502.

  • A.V. Pukin, C.G. Boeriu, E.L. Scott, J.P.M. Sanders and M.C.R. Franssen. An efficient synthesis of 5-aminovaleric acid. J. Mol. Catal. B: Enzym. 2010, 65, 58-62.

  • P.M. Könst, M.C.R. Franssen, E.L. Scott and J.P.M. Sanders. A study on the applicability of L-aspartate a-decarboxylase in the biobased production of nitrogen containing chemicals. Green Chem., 2009, 11, 1646-1652.

  • T.M. Lammens, D. de Biase, M.C.R. Franssen, E.L. Scott and J.P.M. Sanders. The application of glutamic acid a-decarboxylase for the valorization of glutamic acid. Green Chem. 2009, 11, 1562-1567.

Biosynthetic routes

  • M. Henquet, N. Prota, J.J.J. van der Hooft, M. Varbanova-Herde, R.J.M. Hulzink, M. de Vos, M. Prins, M.T.J. de Both, M.C.R. Franssen, H. Bouwmeester and M. Jongsma. Identification of a drimenol synthase and drimenol oxidase from Persicaria hydropiper, involved in the biosynthesis of insect deterrent drimanes. Plant J. 2017, 90, 1052-1063.
  • P.M. Becker, P.G. van Wikselaar, M.C.R. Franssen, R.C.H. de Vos, R.D. Hall, J. Beekwilder. Evidence for a hydrogen-sink mechanism of (+)catechin-mediated emission reduction of the ruminant greenhouse gas methane. Metabolomics 2014, 10, 179-189.

  • A.M. Ramirez, N. Saillard, T. Yang, M.C.R. Franssen, H.J. Bouwmeester and M.A. Jongsma. Biosynthesis of sesquiterpene lactones in Pyrethrum (Tanacetum cinerariifolium). PLoS One 2013, 8, e65030,