Gene Technology

Protocols for genetic modification of numerous crops have been developed based on the knowledge of processes involved such as regeneration, gene transfer, and DNA integration.

Research is aimed at constantly updating that knowledge and improving the efficiency with which genetically modified plants can be generated. As the potential for GM crops to be commercialized is limited within the EU, the technique of genetic modification is primarily used for gene function analysis or for testing functionality. However, we also explore the application of several "New Plant Breeding techniques' (NPBTs), in particular cisgenesis and genome editing in a number of crops. These NPBTs reduce the time and effort needed to create new crop varieties. CRISPR/Cas9 or CRISPR/Cpf1 are preferred intruments for genome editing aimed at inducing targeted mutations. Possibilities for using the same techniques for true genome editing by allele replacement are being explored. Developing transient expression systems, e.g. involving protoplasts or using recombinant DNA-free delivery systems to plant cells, is aimed at producing improved plant varieties, that are not regarded as GMOs. Field trials with cisgenic plants, e.g. apples, are carried out to monitor performance in the field of this category of products of NPBTs.