Earthworm species composition affects the soil bacterial community and net nitrogen mineralization

Postma-Blaauw, M.B.; Bloem, J.; Faber, J.H.; Groenigen, J.W. van; Goede, R.G.M. de; Brussaard, L.


Knowledge of the effects of species diversity within taxonomic groups on nutrient cycling is important for understanding the role of soil biota in sustainable agriculture. We hypothesized that earthworm species specifically affect nitrogen mineralization, characteristically for their ecological group classifications, and that earthworm species interactions would affect mineralization through competition and facilitation effects. A mesocosm experiment was conducted to investigate the effect of three earthworm species, representative of different ecological groups (epigeic: Lumbricus rubellus; endogeic: Aporrectodea caliginosa tuberculata; and anecic: Lumbricus terrestris), and their interactions on the bacterial community, and on nitrogen mineralization from 15N-labelled crop residue and from soil organic matter. Our results indicate that L. rubellus and L. terrestris enhanced mineralization of the applied crop residue whereas A. caliginosa had no effect. On the other hand, L. rubellus and A. caliginosa enhanced mineralization of the soil organic matter, whereas L. terrestris had no effect. The interactions between different earthworm species affected the bacterial community and the net mineralization of soil organic matter. The two-species interactions between L. rubellus and A. caliginosa, and L. rubellus and L. terrestris, resulted in reduced mineral N concentrations derived from soil organic matter, probably through increased immobilization in the bacterial biomass. In contrast, the interaction between A. caliginosa and L. terrestris resulted in increased bacterial growth rate and reduced total soil C. When all three species were combined, the interaction between A. caliginosa and L. terrestris was dominant. We conclude that the effects of earthworms on nitrogen mineralization depend on the ecological traits of the earthworm species present, and can be modified by species interactions. Knowledge of these effects can be made useful in the prevention of nutrient losses and increased soil fertility in agricultural systems, that typically have a low earthworm diversity.