Publications

A review of successful climate change mitigation policies in major emitting economies and the potential of global replication

Fekete, Hanna; Kuramochi, Takeshi; Roelfsema, Mark; Elzen, Michel den; Forsell, Nicklas; Höhne, Niklas; Luna, Lisa; Hans, Frederic; Sterl, Sebastian; Olivier, Jos; Soest, Heleen van; Frank, Stefan; Gusti, Mykola

Summary

This article reviews climate change mitigation policies implemented in five major emitting economies: China, the European Union, India, Japan and the United States. It analyses their historical performance in terms of energy system and greenhouse gas emissions indicators. In cases where policies aim to reduce future emissions, their target performance levels are assessed. The review centres on the sectors of electricity generation, passenger vehicles, freight transport, forestry, industry, buildings, agriculture, and oil and gas production. Most focus countries have implemented successful policies for renewable energy, fuel efficiency, electrification of passenger vehicles, and forestry. For other sectors, information is limited or very heterogeneous (e.g. buildings, appliances, agriculture) or there are few comprehensive policies in place (e.g. industry). The article further presents an explorative emissions scenario developed under the assumption that all countries will replicate both the observed trends in sector-level indicators and the trends that policies for future emissions reductions aspire to achieve. It shows that the global replication of sector progress would reduce greenhouse gas emissions by 2030 by about 20% compared to a current policies scenario. All countries analysed would overachieve the emissions reduction targets in their post-2020 climate targets. However, the resulting reduction in global emissions by 2030 would still not be sufficient to keep the world on track for a global cost-effective pathway that keeps temperature increase below 2°C. The findings of this study emphasise the need for transformative policies to keep the Paris Agreement temperature limit within reach.