Modulation of NF-YB genes in Ricinus communis L. in response to different temperatures and developmental stages and functional characterization of RcNF-YB8 as an important regulator of flowering time in Arabidopsis thaliana

Neto, Valdir G.; Castro, Renato D. de; Lima, Bianca L.S.; Vieira, Camilo J.B.; Rosário, Neucastle L.; Fernandez, Luzimar G.; Goudsmit, Eva; Ligterink, Wilco; Hilhorst, Henk W.M.; Ribeiro, Paulo R.


We have characterized the NF-YB gene family in R. communis using bioinformatics, ecotopic expression, and transcriptomics. A total of 14 RcNF-YB genes were identified in R. communis genome using the conserved NF-YB region. This number is similar to what is found in A. thaliana (13 genes) and O. sativa (11 genes), whereas it is considerably lower to what is found in P. trichocarpa (21 genes) and S. lycopersycum (29 genes). Several regulatory cis-elements were identified in the promoter region, including low temperature, defense and stress, MIC, MYB, and abscisic acid. RcNF-YB is strongly modulated by temperature and it is dependent on the stage of germination. In general, RcNF-YB genes showed higher expression levels in dry seeds and early imbibition (EI) samples as compared to later stages of seedling development. Ectopic expression of RcNF-YB8 reduced flowering time in Arabidopsis reducing the time required for the formation of the first visible bud, the time required to open the first flower, and the time required for the formation of the first visible silique. At the end of the life cycle, ectopic expression of RcNF-YB8 affected plant height (PH), silique length (SL), the total number of silique per plant, 1000-seed weight, and seed size. Our data demonstrated the role of RcNF-YB8 in flowering time, plant height and seed production, and it shows that it may constitute a key target gene for breeding superior R. communis genotypes.