News

Climate seasonality limits carbon assimilation and storage in tropical forests

article_published_on_label
January 29, 2016

Benjamin Brede and Jan Verbesselt co-authored in a paper: Wagner, F. H., Hérault, B., Bonal, D., Stahl, C., Anderson, L.O., Baker, T. R., et al. (2016). Climate seasonality limits carbon assimilation and storage in tropical forests. Biogeosciences Discussions, 2016, 1–50.

doi:10.5194/bg-2015-619

Abstract

The seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measurements and 35 litter productivity measurements), their associate canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonality in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positively to precipitation when rainfall is < 2000 mm.yr−1 (water-limited forests) and to radiation otherwise (light-limited forests); on the other hand, independent of climate limitations, wood productivity and litterfall are driven by seasonal variation in precipitation and evapotranspiration respectively. Consequently, light-limited forests present an asynchronism between canopy photosynthetic capacity and wood productivity. Precipitation first-order control indicates an overall decrease in tropical forest productivity in a drier climate.