Publications

Feature Selection as a Time and Cost-Saving Approach for Land Suitability Classification (Case Study of Shavur Plain, Iran)

Hamzeh, Saeid; Mokarram, Marzieh; Haratian, Azadeh; Bartholomeus, Harm; Ligtenberg, Arend; Bregt, Arnold

Summary

Land suitability classification is important in planning and managing sustainable land use. Most approaches to land suitability analysis combine a large number of land and soil parameters, and are time-consuming and costly. In this study, a potentially useful technique (combined feature selection and fuzzy-AHP method) to increase the efficiency of land suitability analysis was presented. To this end, three different feature selection algorithms—random search, best search and genetic methods—were used to determine the most effective parameters for land suitability classification for the cultivation of barely in the Shavur Plain, southwest Iran. Next, land suitability classes were calculated for all methods by using the fuzzy-AHP approach. Salinity (electrical conductivity (EC)), alkalinity (exchangeable sodium percentage (ESP)), wetness and soil texture were selected using the random search method. Gypsum, EC, ESP, and soil texture were selected using both the best search and genetic methods. The result shows a strong agreement between the standard fuzzy-AHP methods and methods presented in this study. The values of Kappa coefficients were 0.82, 0.79 and 0.79 for the random search, best search and genetic methods, respectively, compared with the standard fuzzy-AHP method. Our results indicate that EC, ESP, soil texture and wetness are the most effective features for evaluating land suitability classification for the cultivation of barely in the study area, and uses of these parameters, together with their appropriate weights as obtained from fuzzy-AHP, can perform good results for land suitability classification. So, the combined feature selection presented and the fuzzy-AHP approach has the potential to save time and money for land suitability classification.