Global trends and uncertainties in terrestrial denitrification and N2O emissions

Bouwman, A.F.; Beusen, A.H.W.; Griffioen, J.; Groenigen, J.W. van; Hefting, M.M.; Oenema, O.; Puijenbroek, P.J.T.M. van; Seitzinger, S.; Slomp, C.P.; Stehfest, E.


Soil nitrogen (N) budgets are used in a global, distributed flow-path model with 0.5 degrees x 0.5 degrees resolution, representing denitrification and N2O emissions from soils, groundwater and riparian zones for the period 1900-2000 and scenarios for the period 2000-2050 based on the Millennium Ecosystem Assessment. Total agricultural and natural N inputs from N fertilizers, animal manure, biological N-2 fixation and atmospheric N deposition increased from 155 to 345 Tg N yr(-1) (Tg = teragram; 1 Tg = 10(12) g) between 1900 and 2000. Depending on the scenario, inputs are estimated to further increase to 408-510 Tg N yr(-1) by 2050. In the period 1900-2000, the soil N budget surplus (inputs minus withdrawal by plants) increased from 118 to 202 Tg yr(-1), and this may remain stable or further increase to 275 Tg yr(-1) by 2050, depending on the scenario. N-2 production from denitrification increased from 52 to 96 Tg yr(-1) between 1900 and 2000, and N2O-N emissions from 10 to 12 Tg N yr(-1). The scenarios foresee a further increase to 142 Tg N-2-N and 16 Tg N2O-N yr(-1) by 2050. Our results indicate that riparian buffer zones are an important source of N2O contributing an estimated 0.9 Tg N2O-N yr(-1) in 2000. Soils are key sites for denitrification and are much more important than groundwater and riparian zones in controlling the N flow to rivers and the oceans.