Effects of increasing air temperature on skin and respiration heat loss from dairy cows at different relative humidity and air velocity levels

Zhou, M.; Huynh, T.T.T.; Groot Koerkamp, P.W.G.; Dixhoorn, I.D.E. van; Amon, T.; Aarnink, A.J.A.


The focus of this study was to identify the effects of increasing ambient temperature (T) at different relative humidity (RH) and air velocity (AV) levels on heat loss from the skin surface and through respiration of dairy cows. Twenty Holstein dairy cows with an average parity of 2.0 ± 0.7 and body weight of 687 ± 46 kg participated in the study. Two climate-controlled respiration chambers were used. The experimental indoor climate was programmed to follow a diurnal pattern with ambient T at night being 9°C lower than during the day. Night ambient T was gradually increased from 7 to 21°C and day ambient T was increased from 16 to 30°C within an 8-d period, both with an incremental change of 2°C per day. A diurnal pattern for RH was created as well, with low values during the day and high values during the night (low: RH_l = 30–50%; medium: RH_m = 45–70%; and high: RH_h = 60–90%). The effects of AV were studied during daytime at 3 levels (no fan: AV_l = 0.1 m/s; fan at medium speed: AV_m = 1.0 m/s; and fan at high speed: AV_h = 1.5 m/s). The AV_m and AV_h were combined only with RH_m. In total, there were 5 treatments with 4 replicates (cows) for each. Effects of short and long exposure time to warm condition were evaluated by collecting data 2 times a day, in the morning (short: 1-h exposure time) and afternoon (long: 8-h exposure time). The cows were allowed to adapt to the experimental conditions during 3 d before the main 8-d experimental period. The cows had free access to feed and water. Sensible heat loss (SHL) and latent heat loss (LHL) from the skin surface were measured using a ventilated skin box placed on the belly of the cow. These heat losses from respiration were measured with a face mask covering the cow's nose and mouth. The results showed that skin SHL decreased with increasing ambient T and the decreasing rate was not affected by RH or AV. The average skin SHL, however, was higher under medium and high AV levels, whereas it was similar under different RH levels. The skin LHL increased with increasing ambient T. There was no effect of RH on the increasing rate of LHL with ambient T. A larger increasing rate of skin LHL with ambient T was observed at high AV level compared with the other levels. Both RH and AV had no significant effects on respiration SHL or LHL. The cows lost more skin sensible heat and total respiration heat under long exposure than short exposure. When ambient T was below 20°C the total LHL (skin + respiration) represented approx. 50% of total heat loss, whereas above 28°C the LHL accounted for more than 70% of the total heat loss. Respiration heat loss increased by 34 and 24% under short and long exposures when ambient T rose from 16 to 32°C.