
Version 6 December 2021, page 1

Authenticating over HTTPS against git.wur.nl with two-factor

authentication enabled

If you want to authenticate over HTTPS, you have to authenticate with a personal access token in place

of your password when two-factor authentication is enabled.

Creating a personal access token
1. Navigate directly to User Settings > Access Tokens or by selecting the option Edit profile below

your avatar

We recommend to access your repository using a SSH key instead of username and password over

https. SSH keys are harder to guess than a password and can easily be revoked if they become

compromised.

If you have stored your personal access token in the remote url in the .git/config on a shared

filesystem, for example on the HPC or OneDrive shares, another user has access to your

repository with your credentials (spoofing).

Solution: Revoke this personal access token in WUR GitLab, remove the personal access token

from the remote url, create a new personal token and use the Git Credential Helper (see below).

https://git.wur.nl/-/profile
https://git.wur.nl/-/profile/personal_access_tokens
https://git.wur.nl/-/profile/personal_access_tokens
https://git.wur.nl/-/profile/personal_access_tokens

Version 6 December 2021, page 2

2. Click Access Tokens at the left side of the screen

Version 6 December 2021, page 3

3. In the form Personal Access Tokens, fill in a token name and tick the boxes read_repository and

write_repository. Press the button Create personal access token.

4. Save your new personal access token at a secure location like a password manager.

Version 6 December 2021, page 4

Using the Personal Access Token and Git Credential Helper at the CLI
By default git credentials are not cached at all. Every connection will prompt you for your username and

password (your personal access token when two-factor authentication is enabled).

Inputting the same credentials over and over again is annoying. This is where Git Credential helper

comes in place. Git credentials helper can cache credentials in memory (default for 15 minutes) or store

credentials in a file.

Store credentials in memory
When you execute the following command, your credentials are stored in memory for 15 minutes:

$ git config --global credential.helper cache

Or for 8 hours

$ git config --global credential.helper 'cache --timeout= 28800'

Store credentials in a file
When you execute the following command, your credentials will be stored unencrypted indefinitely on

disk, protected only by filesystem permissions. By default, the git credentials will be stored in the “.git-

credentials” file in the user’s home directory (~/.git-credentials).

$ git config --global credential.helper store

When you access the remote repository now, your credentials will be asked once:

$ git push http://example.com/repo.git

Username: <type your username>

Password: <type your personal access token>

[several days later]

$ git push http://example.com/repo.git

[your credentials are used automatically]

