
HAPLOBLOCK AGGREGATOR
USER MANUAL - VERSION 1.0.12.0 | 06 APRIL 2017

1 INTRODUCTION
Haploblock Aggregator is a software tool that collects segregation configurations of individual genetic
markers and uses this to generate aggregate marker scores for an entire, multi marker haploblock.
These compressed, more information-dense datasets have a considerably reduced proportion of
missing and non-informative data and thereby reduce the computational and conceptual complexity
of creating genetic linkage maps on huge numbers of tightly linked SNP markers. Hereby it improves
the quality of integrated genetic linkage maps as generated by down-stream mapping software. In
addition, Haploblock Aggregator supports an innovative approach for the generation of integrated
linkage maps across multiple families where the classical Cross-Pollination design is replaced by a
pseudo Back Cross design by an automated conversion of the data.

As input, Haploblock Aggregator follows the format of JoinMap® input files. The final result is
exported in JoinMap® format too, due to which the result can be directly used in mapping.

2 AVAILABILITY
Haploblock Aggregator is released under the MIT License and is copyright 2015, Wageningen UR. It
can be downloaded from: http://www.wageningenur.nl/en/show/HaploblockAggregator.htm.

3 CREDITS & REFERENCE
Haploblock Aggregator is developed by: Johannes W. Kruisselbrink (Wageningen UR Biometris), Erica
Adele Di Pierro (Department of Biosciences, University of Milan), Marco C.A.M. Bink (Wageningen UR
Biometris), Luca Gianfranceschi (Department of Biosciences, University of Milan), W. Eric van de Weg
(Wageningen UR Plant Breeding).

http://www.wageningenur.nl/en/show/HaploblockAggregator.htm

When using Haploblock Aggregator, please reference to:

Johannes W. Kruisselbrink, Erica Adele Di Pierro, Luca Gianfranceschi, Marco C.A.M. Bink, and W. Eric
van de Weg, 2016, Haploblock Aggregator: combining segregation patterns of con-secutive SNP
markers into haploblock segregation patterns for generating integrated genetic linkage maps.

4 ACKNOWLEDGEMENTS
This work has been co-funded by the EU seventh Framework Program by the FruitBreedomics project
nr. 265582: Integrated Approach for increasing breeding efficiency in fruit tree crops
(www.FruitBreedomics.com). The views expressed in this work are the sole responsibility of the
authors and do not necessary reflect the views of the European Commission.

5 QUICKSTART
 Place the executable in an appropriate folder on your computer and run it.

 Press “Add files” to select the input files

 Press “Select output folder” to specify the location of the output files

 Press “Go” to generate the output files

 Press “Open output folder” to open the folder containing the generated files:
o CodesMother.csv and CodesFather.csv contain the aggregated mother and father codes,
o CodesBackCrossMother.csv, CodesBackCrossFather.csv, and

CodesBackCrossCombined.csv contain the Back-Cross codes of the mother, father, and
combined mother-father combined,

o CodesCrossPollination.csv contains the Cross-Pollination codes,
o Conflicts.csv shows the conflicts per haploblock / individual are shown, and
o Log.txt contains the log of the aggregation process

5.1 INPUT
Haploblock Aggregator accepts multiple files in .csv format in which the table adheres to the
following format:

Header Remark

LG The identifier of the linkage group

FP The identifier of the haploblock or focal point

Name The identifier of the marker

SeqgrT The segregation type

Phase The phase

Classif. The segregation codes

all remaining All remaining columns are treated as individuals, with the
headers being the identifiers of the individuals

EXAMPLE INPUT DATA

The following table provides a small example of the expected input format.

LG FP Name SegrT Phase Classif. B001 B003 B005 B006

LG1 FP_435 MK_37 <hkxhk> {01} (hh,hk,kk) hh hk hh kk

LG1 FP_435 MK_38 <nnxnp> {-1} (nn,np) nn nn nn --

LG1 FP_670 MK_39 <hkxhk> {10} (hh,hk,kk) kk hk kk hh

LG1 FP_876 MK_40 <lmxll> {0-} (ll,lm) ll lm ll lm

LG1 FP_876 MK_41 <hkxhk> {01} (hh,hk,kk) hh hk hh kk

LG1 FP_876 MK_42 <hkxhk> {10} (hh,hk,kk) kk hk kk hh

LG1 FP_876 MK_43 <hkxhk> {01} (hh,hk,kk) hh hk hh kk

LG1 FP_877 MK_44 <hkxhk> {10} (hh,hk,kk) kk hk kk hh

LG1 FP_880 MK_45 <hkxhk> {10} (hh,hk,kk) kk hh kk kk

http://www.fruitbreedomics.com/

LG1 FP_880 MK_46 <hkxhk> {01} (hh,hk,kk) hh hk hh kk

5.2 OUTPUT
Several output files will be generated when running Haploblock Aggregator:

 Aggregated father and mother codes in terms of llxlm and nnxnp respectively. These codes are
stored in the .csv files CodesFather.csv and CodesMother.csv.

 Back-Cross coded output in terms of axh for the father and mother individualy, and one file in
which the father and mother scores are integrated as separate individuals. These files are stored
in the .csv files CodesBackCrossFather.csv, CodesBackCrossMother.csv, and
BackCrossCombined.csv.

 Output in terms of Cross-Pollination codes (abxcd). This output is stored in the .csv file
CodesCrossPollination.csv.

 The conflicts per haploblock/individuals are stored in the .csv file Conflicts.csv. A conflict of the
mother is denoted by the character ‘l’, a conflict of the father is denoted by the character ‘n’, and
a conflict in both is denoted by the string ln.

 A log file of the aggregation process (including the warnings): Log.txt.

EXAMPLE OUTPUT

For the example input data provided above, the output would be the following.

Maternal data:

LG FP SegrT Phase Classif. B001 B003 B005 B006

LG1 FP_435 <lmxll> {0-} ll lm ll lm

LG1 FP_670 <lmxll> {1-} lm -- lm ll

LG1 FP_876 <lmxll> {0-} ll lm ll lm

LG1 FP_877 <lmxll> {1-} lm -- lm ll

LG1 FP_880 <lmxll> {1-} lm -- lm --

Paternal data:

LG FP SegrT Phase Classif. B001 B003 B005 B006

LG1 FP_435 <nnxnp> {-1} nn nn nn np

LG1 FP_670 <nnxnp> {-0} np -- np nn

LG1 FP_876 <nnxnp> {-1} nn nn nn np

LG1 FP_877 <nnxnp> {-0} np -- np nn

LG1 FP_880 <nnxnp> {-0} np -- np --

Conflicts:

LG FP B001 B003 B005 B006

LG1 FP_435 - - - -

LG1 FP_670 - - - -

LG1 FP_876 - - - -

LG1 FP_877 - - - -

LG1 FP_880 - ln - ln

6 METHOD

6.1 MAIN PROCEDURE

 Per individual, per haploblock, per parent, the genotype codes are stored in a list for each SNP
of this haploblock.

 For each list, all marker codes are converted to the equivalent single parent codes (i.e., codes
hkxhk, efxeg, and abxcd are converted to llxlm for the first parent and nnxnp for the second
parent). Codes that do not contain information for that parent type are marked 'missing' (--).

 Per individual, per haploblock, per segregation type, an aggregate marker is created of which

o the phase is defined by the first informative occurrence of its segregation (i.e., the first
marker in which phase information is available), and

o the code is derived, in three separate passes over the complete dataset, as the
consensus among

a) the primary marker scores (llxlm and nnxnp),

b) the generically derived hhxkk codes

c) the imputed hk codes that could be resolved thanks to data from other
segregation types on the other parent.

o If there is complete agreement on the aggregate marker score, then this marker score
is adopted, otherwise, the marker score is set missing and the conflict is reported.

6.2 CONSENSUS OF THE PRIMARY MARKER CODES
The consensus score of the primary markers of each haploblock is determined using the following
procedure:

 Starting with an aggregate score of 'missing'

 For each marker score of the current haploblock

o It is checked whether the marker score is informative and discriminative for the current
parent type (i.e., hkxhk scores are omitted).

o If the current marker score is informative, then

 The marker score is coded to the phase of the pseudo-marker.

 If the aggregate score is missing, then it is updated with the current marker score.

 Else, if the aggregate score is not equal to the current marker score, then a conflict is
reported and the pseudo-marker score is fixed to missing.

 Else, no action is needed.

6.3 CONVERSION OF THE HH AND KK CODES
For each parent type and each linkage group, a correct translation of h and xkk codes needs to be
found. This is done using the following procedure:

 Take the first individual and the first haploblock of the linkage group in which both an
informative code for the parent type (i.e., llxlm or nnxnp) and a hhxkk value are present.

 Correct these codes according to the phase of the pseudo-marker.

 This code pair, together with the pair of the respective complement codes of the other parent,
determines the mapping rules for hhxkk values.

 For all pseudo-markers

o Translate the hhxkk values of the primary lists of marker scores to the codes of the
respective parent type.

o Re-compute the consensus score using these imputations.

6.4 IMPUTING THE HK CODES
Where feasible, the hk translations are constructed based on the other parent's pseudo-marker,
following the following procedure:

 Take the aggregate score for the other parent type.

 Correct this score according to the phase of the hk value at the side of the other parent.

 Re-code this code to the equivalent in terms of the current parent.

 Re-compute the consensus score using these imputations.

6.5 OUTPUT
The last step is to format the output. Three types of output are generated:

1. output of the aggregated codes per parent (i.e., in terms of <llxlm> or <nnxnp>),
2. output of the Back-Cross codes (i.e., in terms of <ah> for each parent separately), and
3. output of Cross-Pollination codes (i.e., in terms of <abxcd>).

6.6 CONFLICTS
An important side-product of this aggregation procedure is the information obtained from reported
conflicts. Conflicts arise whenever a the marker scores of pseudo-marker are inconsistent. This could
be due to one of the following reasons: 1) incorrect SNP scores, 2) recombinations within
haploblocks. The former can help to clean up the data, the later may be due to uncertain maker
orders or real recombinations within haploblocks. Solving these conflicts beforehand dramatically
decreases the complexity of the creating genetic linkage maps.

7 ELABORATE EXAMPLE
Below is an elaborate example that illustrates the various steps followed by Haploblock Aggregator.

7.1 INPUT
LG FP Name SegrT Phase I1 I2 I3 I4 I5 I6

LG1 FP1 M1 <efxeg> {01} ee ef ee fg ee fg

LG1 FP1 M2 <nnxnp> {-1} nn nn nn np nn np

LG1 FP1 M3 <hkxhk> {10} kk hk kk hh kk hh

LG1 FP2 M4 <nnxnp> {-1} nn nn nn np nn nn

LG1 FP2 M5 <hkxhk> {01} hh hk hh hk hh hk

LG1 FP2 M6 <nnxnp> {-1} nn nn nn np nn nn

LG1 FP3 M7 <nnxnp> {-1} nn nn nn np nn nn

LG1 FP3 M8 <nnxnp> {-1} nn np nn np nn nn

7.2 SPLIT MARKER SCORE FOR BOTH PARENTS
LG FP Name SegrT Phase I1 I2 I3 I4 I5 I6

LG1 FP1 M1 <llxlm> {0-} ll lm ll lm ll lm

LG1 FP1 M1 <nnxnp> {-1} nn nn nn np nn np

LG1 FP1 M2 <llxlm> {--} -- -- -- -- -- --

LG1 FP1 M2 <nnxnp> {-1} nn nn nn np nn np

LG1 FP1 M3 <hkxhk> {10} kk hk kk hh kk hh

LG1 FP1 M3 <hkxhk> {10} kk hk kk hh kk hh

LG1 FP2 M4 <llxlm> {--} -- -- -- -- -- --

LG1 FP2 M4 <nnxnp> {-1} nn nn nn np nn nn

LG1 FP2 M5 <hkxhk> {01} hh hk hh hk hh hk

LG1 FP2 M5 <hkxhk> {01} hh hk hh hk hh hk

LG1 FP2 M6 <llxlm> {--} -- -- -- -- -- --

LG1 FP2 M6 <nnxnp> {-1} nn nn nn np nn nn

LG1 FP3 M7 <nnxnp> {--} -- -- -- -- -- --

LG1 FP3 M7 <nnxnp> {-1} nn nn nn np nn nn

LG1 FP3 M8 <nnxnp> {--} -- -- -- -- -- --

LG1 FP3 M8 <nnxnp> {-1} nn np nn np nn nn

7.3 CREATE AGGREGATE MARKERS AND COMPUTE CONSENSUS SCORE
LG FP SegrT Phase I1 I2 I3 I4 I5 I6

LG1 FP1 <llxlm> {0-} ll lm ll lm ll lm

LG1 FP1 <nnxnp> {-1} nn nn nn np nn np

LG1 FP2 <llxlm> {0-} hh hk hh hk hh hk

LG1 FP2 <nnxnp> {-1} nn nn nn np nn nn

LG1 FP3 <llxlm> {--} -- -- -- -- -- --

LG1 FP3 <nnxnp> {-1} nn -- nn np nn nn

7.4 CREATE AGGREGATE MARKERS AND COMPUTE CONSENSUS SCORE
LG FP SegrT <llxlm> Phase <hkxhk> Phase kk hh

LG1 FP1 <llxlm> ll {0-} kk 1 lm ll

LG1 FP1 <nnxnp> nn {-1} kk 0 np nn

7.5 DERIVED REWRITE RULES HHXKK SCORES
LG FP Name SegrT Phase I1 I2 I3 I4 I5 I6

LG1 FP1 M1 <llxlm> {0-} ll lm ll lm ll lm

LG1 FP1 M1 <nnxnp> {-1} nn nn nn np nn np

LG1 FP1 M2 <llxlm> {--} -- -- -- -- -- --

LG1 FP1 M2 <nnxnp> {-1} nn nn nn np nn np

LG1 FP1 M3 <hkxhk> {10} lm hk lm ll lm ll

LG1 FP1 M3 <hkxhk> {10} np hk np nn np nn

LG1 FP2 M4 <llxlm> {--} -- -- -- -- -- --

LG1 FP2 M4 <nnxnp> {-1} nn nn nn np nn nn

LG1 FP2 M5 <hkxhk> {01} ll hk ll hk ll hk

LG1 FP2 M5 <hkxhk> {01} nn hk nn hk nn hk

LG1 FP2 M6 <llxlm> {--} -- -- -- -- -- --

LG1 FP2 M6 <nnxnp> {-1} nn nn nn np nn nn

LG1 FP3 M7 <nnxnp> {--} -- -- -- -- -- --

LG1 FP3 M7 <nnxnp> {-1} nn nn nn np nn nn

LG1 FP3 M8 <nnxnp> {--} -- -- -- -- -- --

LG1 FP3 M8 <nnxnp> {-1} nn -- nn np nn nn

7.6 DERIVE HHXKK REWRITE RULES AND UPDATE CONSENSUS SCORES
 FP1 {01}

Individual <llxlm> <nnxnp> hk : <llxlm> hk : <nnxnp>

I1 ll nn -- --

I2 lm nn ll np

I3 ll nn -- --

I4 lm np -- --

I5 ll nn -- --

I6 lm np -- --

 FP2 {01}

Individual <llxlm> <nnxnp> hk : <llxlm> hk : <nnxnp>

I1 ll nn -- --

I2 hk nn lm nn

I3 ll nn -- --

I4 hk np ll np

I5 ll nn -- --

I6 hk nn lm nn

 FP3 {01}

Individual <llxlm> <nnxnp> hk : <llxlm> hk : <nnxnp>

I1 -- nn -- --

I2 -- -- -- --

I3 -- nn -- --

I4 -- np -- --

I5 -- nn -- --

I6 -- nn -- --

7.7 IMPUTE HK SCORES
LG FP SegrT Phase I1 I2 I3 I4 I5 I6

LG1 FP1 <llxlm> {0-} ll lm ll lm ll lm

LG1 FP1 <nnxnp> {-1} nn nn nn np nn np

LG1 FP2 <llxlm> {0-} ll lm ll ll ll lm

LG1 FP2 <nnxnp> {-1} nn nn nn np nn nn

LG1 FP3 <llxlm> {--} -- -- -- -- -- --

LG1 FP3 <nnxnp> {-1} nn -- nn np nn nn

7.8 EXTRACT PATERNAL DATA
LG FP SegrT Phase I1 I2 I3 I4 I5 I6

LG1 FP1 <llxlm> {0-} ll lm ll lm ll lm

LG1 FP2 <llxlm> {0-} ll lm ll ll ll lm

LG1 FP3 <llxlm> {--} -- -- -- -- -- --

7.9 EXTRACT MATERNAL DATA
LG FP SegrT Phase I1 I2 I3 I4 I5 I6

LG1 FP1 <nnxnp> {-1} nn nn nn np nn np

LG1 FP2 <nnxnp> {-1} nn nn nn np nn nn

LG1 FP3 <nnxnp> {-1} nn -- nn np nn nn

7.10 INTEGRATION OF BOTH PARENTS IN CP CODES (USEFUL FOR INDIVIDUAL FAMILIES)
ll => a, lm => b, nn => c, np => d

LG FP SegrT Phase I1 I2 I3 I4 I5 I6

LG1 FP1 <abxcd> {01} ac bc ac bd ac bd

LG1 FP2 <abxcd> {01} ac bc ac ad ac bc

LG1 FP3 <abxcd> {-1} -c -- -c -d -c -c

Note: when opening this file in Excel,–d records are read as formula (with message #NAME?).

7.11 CREATE BACK-CROSS CODES (USEFUL FOR MULTIPLE FAMILIES)

7.11.1 BACK-CROSS MATERNAL

ll => a, lm => h, nn => a, np => h, - => -

LG FP I1 I2 I3 I4 I5 I6

LG1 FP1 a h a h a h

LG1 FP2 a h a a a h

LG1 FP3 - - - - - -

7.11.2 BACK-CROSS PATERNAL

ll => a, lm => h, nn => a, np => h, - => -

LG FP I1 I2 I3 I4 I5 I6

LG1 FP1 a a a h a h

LG1 FP2 a a a h a a

LG1 FP3 a - a h a a

7.11.3 BACK-CROSS COMBINED MATERNAL AND PATERNAL

In this table, the number of individuals is doubled, because maternal and paternal back-cross codes
are combined. A prefix M_ is added to identify the maternal codes and the prefix P_ is used for the
paternal codes.

ll => a, lm => h, nn => a, np => h, - => -

LG FP M_I1 P_I1 M_I2 P_I2 M_I3 P_I3 M_I4 P_I4 M_I5 P_I5 M_I6 P_I6

LG1 FP1 a a h a a a h h a a h h

LG1 FP2 a a h a a a a h a a h a

LG1 FP3 - a - - - a - h - a - a

7.12 REPORT CONFLICTS
Conflicts are reported per focal point, per individual using the codes l for maternal conflicts, n for
paternal conflicts, and ln for both.

LG FP I1 I2 I3 I4 I5 I6

LG1 FP1 - - - - - -

LG2 FP2 - - - - - -

LG3 FP3 - n - - - -

