Designing the bio-polyesters of tomorrow through ring-opening polymerization

Patrick Farquet | Sulzer Chemtech Ltd

10th edition of our Circular Biobased Products Symposium
Bio-polyesters

High carbon and oxygen yields from first and second generations feedstocks

Polyester: The ester linkage

Bio-polyesters are excellent carbon and oxygen storage materials from biomass feedstocks
PLA – “Shining star” of bio-based polyesters

PLA has the best yield from raw materials to polymers compared to other bio-plastics

1^st Generation: Sugar Cane / Beet / Wheat / Corn / Tapioca

<table>
<thead>
<tr>
<th>Raw Material</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugar Cane / Beet</td>
<td>11 / 8 ton*</td>
</tr>
<tr>
<td>Wheat / Corn</td>
<td>3.7 / 2.6* ton</td>
</tr>
</tbody>
</table>

Sugar Platform:
- 1.5 – 1.8 ton Sucrose
- 1.5 – 1.8 ton Glucose

1.3 ton Lactic acid ➔ 1 ton PLA

Advantages

- Renewable raw material
- Potential of localization of supply chain for raw material
- The only viable and scalable bio-based alternative to fossil plastics
- Reduced GHG emission compared to fossil-based plastics

*dry basis
Global bio-polymer demand is surging
Growth mainly driven by bio-polyesters

Why Bio-polyesters

Compared to other bio-polymers, biopolymers:

1. Often a better CO₂ footprint due to their ability to keep carbon and oxygen in the polymer backbone
2. Can have various end-of-life options (i.e. composability, biodegradability), recycling or incineration.

Biopolymer Production Capacities

© European Bioplastics
PLA: Sulzer’s main involvement in bio-polyesters

Market leader for technology licensing from lactide to PLA

- Lactic Acid
- Lactide
- PLA

Crude lactide purification
Ring opening polymerization technology
Sulzer PLA (Poly lactic acid) technology deployment

Our long-standing renewable carbon success story

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>First feasibility test for L-lactide (monomer)</td>
</tr>
<tr>
<td>1995</td>
<td>First installation of a full automated pilot plant for lactide monomer in Asia</td>
</tr>
<tr>
<td>2001</td>
<td>5 kta, Synbra (NL)</td>
</tr>
<tr>
<td>2002</td>
<td>First full-scale demonstration plant for lactide production 1 kta, (Japan)</td>
</tr>
<tr>
<td>2007</td>
<td>First pilot plant in Switzerland 0.2 kta, Sulzer (Switzerland)</td>
</tr>
<tr>
<td>2011</td>
<td>1 kta, Sulzer (Switzerland)</td>
</tr>
<tr>
<td>2012</td>
<td>10 kta, Jiangsu Supla (Asia)</td>
</tr>
<tr>
<td>2015</td>
<td>5 kta, Synbra (NL)</td>
</tr>
<tr>
<td>2018</td>
<td>75 kta, Total Corbion PLA (Asia)</td>
</tr>
<tr>
<td>2020</td>
<td>30 kta, B&F (China)</td>
</tr>
<tr>
<td>Under execution</td>
<td>75 kta Natureworks (Thailand)</td>
</tr>
<tr>
<td></td>
<td>30 kta Yangzhou Huitong Biological New Material (China)</td>
</tr>
<tr>
<td></td>
<td>75 kta Jindan New Biomaterials (China)</td>
</tr>
</tbody>
</table>
Sulzer Chemtech – Division of the Sulzer group
We are committed to sustainable innovation

Sulzer Chemtech
Our technologies
- Mass transfer
- Thermal separation
- Mixing and reaction
- Polymerization and foaming
- Hydrotreating

Sustainable Innovation
Our development areas
- Recycling
- CO₂ capture and utilization
- Biofuels / bio-chemicals
- Bio-polymers and bio-monomers

Bio-polymers/monomers
Focused on bio-polyesters
- Novel technologies for sustainable biopolyester production
- Bioplastic applications development
- Bio-foaming technology
Sulzer’s role in bio-polyesters
Where we contribute to a sustainable plastics economy

Biomass
- Extraction

Bio-precursors, e.g.
- Cellulose, starch, sugars, oils
- Fermentation
- Catalysis

Linear bio-compounds
- Purification
- Standardization

Synthesis grade,
- linear bio-compounds

End-of-life treatments

CO₂, H₂O, Compost

Consumer goods
- Recycling
- Processing

Bioplastics
- Polymerization

Polymer-grade bio-monomers
Sulzer’s role in bio-polyesters
Where we contribute to a sustainable plastics economy

Biomass
- Extraction
- High diversity
- Low standardization

Bio-precursors, e.g.
- Cellulose, starch, sugars, oils
- Strongly dependent on type of biomass

Linear bio-compounds
- Fermentation
- Catalysis
- Wide number of organisms and processes

Synthesis grade,
- Linear bio-compounds
- Purification
- Specific to feedstock and impurities

High quality required
- No commodity goods

Standardization

End-of-life treatments
CO₂, H₂O, Compost

Consumer goods
- Processing
- Recycling
- Broad diversity of applications and requirements

Bioplastics
- Polymerization
- Premium price
- Need for application technology
- No commodity goods

Polymer-grade bio-monomers
Sulzer’s role in bio-polyesters
Where we contribute to a sustainable plastics economy

Biomass
- High diversity
- Low standardization

Bio-precursors, e.g.
Cellulose, starch, sugars, oils
- Strongly dependent on type of biomass

Linear bio-compounds
- Wide number of organisms and processes

Synthesis grade,
linear bio-compounds
- Specific to feedstock and impurities

High quality required
No commodity goods

Extraction
Fermentation
Purification

Carbon capture
CO₂, H₂O, Compost

End-of-life treatments
Processing

Standardization

Biomass

Consumer goods
- Broad diversity of applications and requirements

Bioplastics
- Premium price
- Need for application technology

Polymer-grade bio-monomers

Polymerization

Recycling
Sulzer’s role in bio-polyesters
Where we contribute to a sustainable plastics economy

Biomass
- Extraction
- Strongly dependent on type of biomass
- High diversity
- Low standardization

Bio-precursors, e.g. Cellulose, starch, sugars, oils
- Fermentation
- Catalysis
- Wide number of organisms and processes
- Broad diversity of applications and requirements

Linear bio-compounds
- Purification
- Specific to feedstock and impurities
- High quality required
- No commodity goods

Synthesis grade, linear bio-compounds
- SulCYC™
- High quality required
- No commodity goods

Consumer goods
- Processing
- Recycling

Bioplastics
- Premium price
- Need for application technology

Polymer-grade bio-monomers
- SulROP™
- High quality required
- No commodity goods

Carbon capture
- CO₂, H₂O, Compost
What’s next after PLA?

Developing a portfolio of novel bio-polyesters using our technology platforms

Bio-based linear species → SulCYC™ → Cyclic compounds → SulROP™
Swift scale-up of novel bio-polyesters

We bring technologies from lab scale to industrialization

- Lab research
- Analytical characterization
- Piloting and scale-up
- Technology licensing

Capabilities from lab research to pilot engineering and commercial plant design in Switzerland
Overall summary of bio-(co)polymers properties

MECHANICAL PROPERTIES

- Tensile strength
- Flexural modulus
- Impact resistance
- Young modulus
- Elongation at break

THERMAL PROPERTIES

- Glass transition temperature
- Decomposition temperature
- Melting temperature
- Biodegradability
- Heat deflection temperature

*All values were normalized based on their actual data to a maximum score of 10
Conclusions and Outlook

Following the strong PLA market growth, we will continue to offer tailored and licensing solutions:

- **NOVEL bio-copolyesters** with tailored properties
- **NEXT generation processes** for bio-copolymers
- **NEW applications and formulations**
Thank you!

Patrick Farquet
Head Renewables and Bio-based Applications
Sulzer Chemtech Ltd
Neuwiesenstrasse 15
8401 Winterthur
Switzerland

Reach out
biobased@sulzer.com
Disclaimer

This presentation may contain forward-looking statements, including but not limited to, projections of financial developments, market activities or future performance of products and solutions, containing risks and uncertainties.

These forward-looking statements are subject to change based on known or unknown risks and various other factors, which could cause the actual results or performance to differ materially from the statements made herein.

Copyright © Sulzer Ltd 2022