Machine learning for selecting crop varieties as climate adaptation measure

George A.K. van Voorn, Bernardo Maestrini, Ponraj Arumugam, Martin Boer, Shota Gugushvili

Objective
This project aims to develop hybrid methodologies based on machine learning, statistics, and (dynamic) process-based modelling as a proof-of-principle for a tool for the selection of optimal crop genotypes for changing climates.

Background
- Climate change affects conditions for crop growth.
- Crop traits like yield result from time-dynamic GxE (genotype-by-environment interactions).
- Selecting new crop genotypes suitable for new conditions requires forecasting.
- Current crop modelling lacks reliable descriptions of essential GxI under heat conditions.
- Increasing availability of time series data of crop phenotypic traits of multiple genotypes in multiple environments (High Throughput Phenotyping, remote and proximal monitoring).
- We aim to combine statistical, Machine Learning (ML), and process-based modelling approaches to obtain GxI describing heat responses for crop models from these time series data.

Key results

- Low-complexity Differential Equation (DE) based crop growth models were fitted to time series data (in silico as well as experimental) of different genotypes in different environments.
- Different ML methodologies were tested for classification of time series data to identify critical growth processes with the inclusion of different types of noise.
- The model Tipstar for potatoes was coupled with Prosail (a canopy reflectance model) for crop disturbance classification with ML.

Main activities

- Logistic model: Emerald 1985 g018 model #2
- Irradiance model

- Water model, Emerald, 2002, g017
- Soil water

- Above. The best-fitting model differs per genotype and per environment. This suggests there are different limitations for the various genotypes in these environments, including around climate-affected attributes such as water and temperature response. These need to be included in future work. (Van Voorn et al., Frontiers in Plant Science 14, 2023)

Next steps

- Research will continue in
 - KB DDHT2 programme, likely resulting in an app on Farmmaps;
 - Follow-up D3-C2 project ‘Hybrid Machine Learning process-based modelling approaches for climate adaptation strategies’ focusing on applications of ML to assess climate adaptation measures in the agri-food value chain;
 - Two PhD projects and several MSc topics on using ML for classification of time series and reconstruction of dynamic systems (such as GxI in crops) from such data.