
Thesis subject
MSc thesis topic: Monitoring plant traits to support organic farming experiment using UAV acquired imagery
Phenomics is an area of biology and crop science concerned with the measurement of phenomes — the physical and biochemical traits of organisms — as they change in response to genetic mutation and environmental influences. Next to very advanced laboratory techniques (PET, NMR, MRI) to measure root and shoot traits of vegetation, increasingly very-high resolution techniques optical remote sensing techniques are used to characterize especially shoot traits (e.g., height, specific leaf area, nitrogen, chlorophyll) directly in the field.
Unmanned Aerial Vehicles (UAV) with multi and hyperspectral
camera’s provide good opportunities to map and monitor these field traits.
Based on the spatial-temporal difference in crop traits for different varieties
and knowledge on the variation in environmental factors, understanding of crop
phenomes is developed.
During the growing seasons of 2018-2021, detailed field experiments on different organic grown crops (potato, wheat) have been and will be executed on an experimental field near Wageningen. Next to a large number of field observations of crop traits, also a time-series of remote sensing images was acquired. The images were acquired using the different UAV based camera’s like the Hyperspectral Mapping System (HYMSY). See for details on the image data.
In this research, we want to compare different approaches taking advantage of VHR RGB images and hyperspectral cube using vegetation indices with multivariate regression techniques (e.g., partial least squares regression, support vector regression) and evaluate if these methods can be adopted to retrieve crop traits for the different images over the growing season.
Objectives
- Evaluate the contribution of UAV based multispectral camera’s and imaging spectroscopy to characterize crop trait variation to support the field of phenomics.
- Assess the accuracy of both vegetation index and machine learning techniques for the retrieval of crop traits from imaging spectroscopy data.
Literature
Juha Suomalainen, Niels Anders, Shahzad Iqbal, Gerbert Roerink, Jappe Franke, Philip Wenting, Dirk Hünniger, Harm Bartholomeus, Rolf Becker and Lammert Kooistra (2014): A Lightweight Hyperspectral Mapping System and Photogrammetric Processing Chain for Unmanned Aerial Vehicles, Remote Sensing, Volume 6, Issue 11.
- David Deery, Jose Jimenez-Berni, Hamlyn Jones, Xavier Sirault and Robert Furbank (2014): Proximal Remote Sensing Buggies and Potential Applications for Field-Based Phenotyping, Agronomy, Volume 4, Issue 3.
Requirements
- Fieldwork activities can be part of thesis topic (period May till August 2022)
Theme(s): Sensing & measuring; Integrated Land Monitoring