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A B S T R A C T   

National and international food and feed safety authorities are shifting from routine-to risk-based monitoring. 
Risk-based monitoring requires flexibility in the scope of analytes, matrices, and sampling. Also, risk-based 
monitoring implies a desire for retrospective analysis using different scope(s) to follow trends, identify new 
food safety threats, and monitor the effectiveness of policy interventions. The current availability of sensitive and 
accurate high-resolution mass spectrometry (HRMS) fits within this approach. This writing reviews the appli-
cability of HRMS techniques for food control laboratories in the analysis of veterinary medicinal products and 
hormones in food, using HRMS and legislative background. Different HRMS measurement and data evaluation 
strategies are identified and discussed. Among them, routine screening and confirmation, suspect screening, 
semi-untargeted analysis (common mass pattern search), metabolite and degradation product identification, 
profiling for deviating samples, physiological markers or treatments, and identification of unknowns can be 
found. The food safety competent authorities could shift from methods with predefined scope to real risk-based 
monitoring by implementing HRMS for routine food and feed analysis.   

1. Introduction 

Nowadays, food safety laboratories perform most of the routine 
analysis of veterinary drugs and hormones in food products by triple 
quadrupole mass analysers. Triple quadrupole mass analysers working 
in multiple reaction monitoring (MRM) mode are usually very sensitive 
and specific and fits current legislation (“general food law” EC No. 178/ 
2002) (European Commission, 2002b). However, due to the specific 
MRM measurement, only a pre-defined number of compounds can be 
detected. Also, low-resolution mass spectrometry cannot differentiate or 
avoid isobaric interferences (substances with the same nominal m/z 
ratio but different elemental compositions) or separate coeluting 
isobaric compounds, which are especially frequent when analysing food 
samples with complex matrices (van der Heeft et al., 2009). Under these 
circumstances, mass analysers such as time of flight (TOF) and Orbitrap 
allow the acquisition of high-resolution full scan mass spectra providing 
high accurate mass measurements (<1–3 ppm) in combination with 
resolutions greater than 20 000 and, in most cases, with sensitivity and 

selectivity comparable to triple quadrupoles in MRM mode (Geib, Sleno, 
Hall, Stokes, & Volmer, 2016; Kaufmann & Butcher, 2006; Malato, 
Lozano, Mezcua, Agüera, & Fernandez-Alba, 2011). Thereby, the mass 
accuracy and the separation of overlapped isotope cluster ions allow the 
tentative assignment of the molecular formula to each ion signal, mak-
ing the separation of most isobaric compounds possible. 

The high sensitivity and selectivity provided by current high- 
resolution mass analysers in full-scan mode enable an untargeted and 
retrospective analysis to identify multiple families of suspected con-
taminants in the food safety field (Capriotti et al., 2021; Domínguez, 
Garrido Frenich, & Romero-González, 2020; Gavage, Delahaut, & Gil-
lard, 2021; Rocchetti, Ghilardelli, Masoero, & Gallo, 2021; Yan, Zhang, 
Zhou, Li, & Feng, 2022). Additionally, high-resolution hybrid mass 
analysers such as quadrupole-(Q-)Orbitrap, Ion trap-Orbitrap, and 
Q-TOF can perform tandem mass spectrometry (MS/MS) whereby the 
product ions are measured by the HRMS. These HRMS product ion 
spectra can be used to identify and narrow down the list of potential 
candidates which were already defined by the obtained elemental 
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composition of the precursor ion. Due to its capability to identify and 
perform untargeted measurements, HRMS would fit in a future 
risk-based measuring approach with a flexible scope of matrices and 
analytes (Fig. 1). 

An overview of identified new risks in the past years showed that 
new risks are most often first discovered by the reporting of adverse 
health effects (intoxications) in humans or animals (Gerssen, Bovee, van 
Ginkel, van Iersel, & Hoogenboom, 2019). The authors of this overview 
conclude that the untargeted collection of HRMS data plays a crucial 
role in identifying risk compounds, thus preventing intoxications in the 
future. The first HRMS methods published for veterinary drugs and 
hormones showed the potential of this technique for residue analysis 
(Kaufmann, 2012; Peters et al., 2010; Stolker et al., 2008). Nowadays, 
HRMS is already used by some routine laboratories in Europe, mainly for 
multi-residue screening methods. These methods demonstrate that 
HRMS can be applied for the screening of these compounds at relevant 
levels. 

Despite the high potential of HRMS to detect these compounds, the 
possibilities of HRMS are not fully explored for food safety analysis. This 
is partly due to the lack of advanced data-processing software at the time 
these methods were developed (Sturm, Jones, Mulvana, & Lowes, 2016) 
and also because current HRMS instruments can combine more scan 
events in one run due to increased scan speed. Also, the dynamic range 
has increased over the years (Steiner, Malachova, Sulyok, & Krska, 
2021). Nowadays, HRMS equipment can cover 3–5 orders of magnitude 
and are therefore capable of quantitative analysis as well. 

However, the underexploiting of HRMS in the area of veterinary drug 
residue analysis might also be explained significantly by a lack of daily 
routine and/or awareness of its added value in the relevant control 
laboratories. Therefore, this position paper serves to researchers and 
control laboratories that might extend the application of HRMS in their 
monitoring activities in the near future. This paper presents the main 
applications of HRMS in the veterinary drug residue field. It describes 
the different HRMS approaches available in food safety laboratories, 
focusing on the application of HRMS for small molecules in the field of 
veterinary drugs and growth promoters (hormones). Besides, the results 
are presented of an inquiry among the European Union Reference Lab-
oratories (EURL), National Reference Laboratories (NRL), and routine 
laboratories about the current situation and future perspective of HRMS 
use for multi-residue screening. Additionally, the possibilities to fit 
HRMS in current and future legislation for veterinary drug residues are 
discussed. An overview of available methods and workflows that were 
published in the last 5 years is presented (2017–2022). From these in-
sights, we identified scenarios for control laboratories for which it could 
be relevant to apply HRMS using different strategies. 

2. Survey HRMS in EURL and NRL network 

A survey was carried out among European Union and National 
Reference Laboratories (EURL and NRL) for certain substances of vet-
erinary drugs and growth promoters. A total of 35 laboratories from 30 
countries participated in this survey. In the context of official labora-
tories, this can be considered representative. The survey determined the 
general use of the analytical systems and the type of application, and the 
use of HRMS for different substance groups. 

From the survey respondents 58% of the laboratories use HRMS 
systems for various purposes and reasons. The users of HRMS systems 
see the greatest benefits in the possibility of retrospective analysis 
(25%), the high selectivity or mass resolution (25%), and the possibility 
of examining many substances simultaneously (35%). Regarding the 
selection of systems, TOF/QTOF and Orbitrap are preferred compared to 
magnetic sector instruments. They are used in 65% and 50% of the 
laboratories, respectively, while magnetic sector instruments are only 
used in 20% of the laboratories. The experience level varies greatly: 25% 
of the users have been working with high resolution for 1–2 years, 30% 
for 2–5 years, 25% for 5–10 years, and 20% have been working with 
HRMS systems for 10–20 years. 

The use in routine laboratory work covers a wide range of screening 
approaches (Fig. 2A). 75% of the laboratories use HRMS for confirma-
tory analysis, although all laboratories also use their systems for target 
screening. The application of the non-target screening is divided into 
“unknown screening” and “known unknown screening”, which are 
applied in 65% and 50% of the laboratories, respectively. Whereas in an 
“unknown screening”, no data nor information are previously available, 
in a “known unknown screening”, information on the substance is 
available in existing libraries or databases, even if the substance itself is 
unknown in the laboratory’s field of application. 

Among EURL and NRLs, HRMS has been applied for the analysis of a 
wide range of substance classes (Fig. 2B). Most of the covered substances 
belong to the group of veterinary drugs, e.g. coccidiostats, non-steroidal 
anti-inflammatory drugs (NSAIDs) or anthelmintics. This is not sur-
prising since, as mentioned before, the participants of the survey mainly 
work in this field. However, further compounds such as polycyclic ar-
omatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and pes-
ticides are also included in the analysis of known and unknown 
substances. 

Additionally, the answer to the question why almost half of the 
participants currently do not use HRMS techniques, can be partly 
deduced from the replies in Fig. 2C. The majority of the respondents who 
do not use HRMS, state that the main challenge of HRMS compared to 
triple quadrupole MS is the lack of expertise required to exploit the full 
potential of this technology. They also mention the diminished 

Fig. 1. Paradigm shift towards risk-based monitoring. A) current legislation system, B) risk-based monitoring.  
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sensitivity, the complex evaluation tools and the very time-consuming 
data processing as major challenges. For experienced users, however, 
the challenges shift. With the increasing experience of the users, the lack 
of expertise as a challenge decreases significantly. Nevertheless, 
although reduced, the experience seems to remain a consistent problem 
even among current users. In addition, performance problems such as 
sensitivity and dynamic range come to the fore for current users. 
Moreover, the IT infrastructure is increasingly cited as a challenge. This 
refers to the size of the resulting data, which quickly takes up the size of 
several gigabytes of data storage. Therefore, the storage capacities must 
be taken into account from the beginning in order to be able to handle 
this data, especially if data are acquired on a regular basis. 

Irrespective of these challenges, the fact that 75% of the laboratories 
already have validated methods on HRMS systems, shows that the HRMS 
technology is applied for analyzing a wide variety of substances. 
Although some of these methods are established on both triple quad-
rupole MS and HRMS, the majority (63%) are purely based on HRMS. 
This underlines that there is already a high level of confidence in the 
technology, which is also supported by the fact that 60% of the re-
spondents already use the systems in their routine analysis. Together 
with the generally high acceptance and the broad areas of application, it 
gives rise to hopes that this selective technology will find even wider 

acceptance among users and laboratories in the years to come. More-
over, the fact that powerful tools in the form of methods can be gener-
ated with HRMS, even with little previous knowledge, should help to 
motivate current non-users. 

3. Fitting HRMS in legislation 

Current EU legislation on laying down procedures for food safety is 
documented in regulation EC No. 178/2002, the “general food law” 
(European Commission, 2002b). It uses a fixed scope of allowed and 
prohibited substances, defined in Annex I of Council Directive 96/23/EC 
(European Commission, 1996b), specified for individual substances by 
Commission Regulation (EU) No 37/2010 (European Commission, 
2009). This regulation contains two tables, “Table 1” with allowed 
substances (group B), for which a maximum residue limit (MRL) is 
established based on toxicology. These are, for example, several regis-
tered veterinary medicines, antibiotics and anthelminthics (worming 
agents). The other table in this regulation, “Table 2” (group A) lists 
selected prohibited substances for which there are no MRL, e.g. chlor-
amphenicol, single nitroimidazoles and nitrofurans. In addition a gen-
eral ban of substances having a hormonal or thyrostatic action and of 
beta-agonists in livestock farming is fixed in Council Directive 
96/22/EC (European Commission, 1996a). Next to this the Commission 
regulation (EU) 2019/1871 describes the prohibited substances with an 
Reference Point for Action (RPA) (European Commission, 2019) and a 
Guidance document on Minimum Method Performance Requirements 
(MMPR) describes the recommended concentration at which official 
laboratories need to be able to analyze prohibited substances (Verdon, 
Polzer, & Sterk, 2020). Based on the substances listed in these tables, EU 
countries develop annually their monitoring program with a fixed ana-
lyte scope. The basis of this legislation originates still from the nineties 
and is not any more effectual for current wishes of risk-based moni-
toring. This legislation is presently being revised and shall take into 
account a more risk based approach (Table 1). 

Besides a scope for substances, food control legislation gives di-
rectives for the performance of analytical methods used to analyze the 
substances. Until June 2021 the specifications for analytical methods 
and their validation were given by Commission Decision (CD) 2002/ 
657/EC (European Commission, 2002a). This decision has since been 
superseded by Commission Implementing Regulation (EU) 2021/808 
(European Commission, 2021). This regulation specifies the re-
quirements for the performance of analytical methods and the inter-
pretation of results. In the previous decision for HRMS there was only a 
definition for resolution given. It was defined that the resolution shall 
typically be greater than 10 000 for the entire mass range at 10% valley 
and was referring mainly to magnetic sector field instruments. With 
Commission Implementing Regulation (EU) 2021/808, the definition 
was amended by the full width at half peak maximum (FWHM) 
approach, which is meanwhile the preferred calculation approach (also 
adopted in the pesticide field). In addition, a requirement for mass ac-
curacy was specified. Here it is required that for successful confirmation, 
the mass deviation of all diagnostic ions shall be below 5 ppm (or in case 
of m/z < 200 below 1 mDa). 

Furthermore, different scan modes for mass spectrometric detection 
are listed, as well as detailed/general requirements/considerations. 
Linked with the respective operation mode of the MS, as full scan 
recording, precursor ion selection, fragment und product ions, mass 
resolution are given. These specifications are the basis for successful 
identification of a substance by the identification point system as 
described in Commission Implementing Regulation (EU) 2021/ 
8081.2.4.2 in Annex I. Five identification points are needed for a suc-
cessful confirmation of an unauthorised substance, 4 identification 
points for a MRL substance. Usually, 1 point origins from the application 
of a chromatographic separation technique before the detection. 
Depending on the kind of the ion (LR-MS/HR-MS ion and precursor/ 
product ion) a different number of identification points (1.0–2.5) can be 

Fig. 2. Results from the survey about HRMS in EURL and NRL network. A) 
Overview of the approach areas, B) Overview of the compound groups analyzed 
with HRMS; “other compounds” includes individual substances such as dioxins 
and mycotoxins, but also proteomics, metabolomics and others, C) Challenges 
of HMRS from the laboratories’ perspective; the results reflect the number of 
laboratories in each case. 
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gained, with 1.0 points for a LR-MS ion to a maximum of 2.5 points for a 
HRMS product ion. Together with additionally listed specifications 
(relative intensities for ion ratios, signal-to-noise ratios, retention time 
deviations in chromatographic systems), this concept can be applied in 
general to different kinds of systems and combinations of systems while 
maintaining uniform criteria for successful substance identification 
(Table 1). Even though Commission Implementing Regulation (EU) 
2021/808 gives examples of how a successful identification can be 
achieved, especially in the area of modern HRMS instruments not all 
possible operation modes (e.g. HRMS scan modes, such as ddMS2, vDIA, 
AIF, data independent acquisition and SWATH) are explicitly mentioned 
and leaves some space for interpretation. Also, criteria for the applica-
tion of computer-aided library search of spectra (which were present in 
CD 2002/657/EC) have not been adopted to the new regulation. In case 
of recording full scan spectra, only the selection of diagnostic ions is 
addressed: diagnostic ions with a relative intensity of more than 10% in 
the reference spectrum (which can derive from the calibration standard, 
matrix-matched standard or matrix-fortified standards) are suitable. 
Diagnostic ions shall include the molecular ion (if present at ≥ 10% 
intensity of the base peak) and characteristic fragment or product ions. I. 
e. this listing refers more to a single ion evaluation rather than a com-
plete spectrum evaluation, including the determination of a critical 
match factor for library search during validation (Table 1). 

Also, additional techniques which might contribute to a unique 
identification of substances (e.g. ion mobility, NMR) are not mentioned. 
Currently, also the co-measuring of a calibration standard (standard 
solution/matrix standard) is always required. 

The regulation only states that GC-MS using electron impact ioni-
zation is regarded as being a different technique to GC-MS using 
chemical ionization. Additionally, it does not state anything about the 
nature or orthogonality of the techniques combined. 

In the field of official control of pesticides in food and feed, a guid-
ance document, SANTE 11312/2021 (EURL Pesticides, 2021), also lays 
down provisions for the identification of analytes. These identification 
provisions, although not identical, are quite similar to the ones laid 
down in (EU) 2021/808. 

A trend is to use HRMS to identify new emerging risks (see ‘Strategies 
of using HRMS in the field of veterinary drugs and hormones residue 
analysis’ section). Especially for food fraud analysis untargeted analysis 
is sometimes the only way to go, as the distinguishing compound(s) are 
not always known. Cavanna et al. proposed a harmonized validation 
protocol for untargeted analysis of food fraud, including marker vali-
dation, that can be used for specific predetermined types of fraud 
(Cavanna, Righetti, Elliott, & Suman, 2018). 

Monitoring according to (EU) 2017/625 states “Competent author-
ities shall perform official controls on all operators regularly, on a risk 
basis and with appropriate frequency” (European Commission, 2017). A 
risk could be decomposed in a certain severity with a certain prevalence. 
For new ways of analysis, such as retrospective analysis of datasets, or 
profiling analysis, HRMS can be of large contribution in determining 
prevalence of known and new compounds. 

4. Strategies of using HRMS in the field of veterinary drugs and 
hormones residue analysis 

Risk-based monitoring asks to determine the prevalence of known 
and new compounds (EU) 2017/625) (European Commission, 2017). 
Key steps of a risk-based workflow (Fig. 1) are to analyze food matrices 
in a targeted and untargeted way and identify deviating materials in 
every sense of the word. HRMS could play a key role in realizing a 
risk-based workflow. Indeed, the application of HRMS in the field of 
veterinary drugs and growth promoters is exponentially increased. This 
is mainly for screening purposes, but also for other strategies of appli-
cation. An overview of available methods and workflows that were 
published in the past five years is presented in Table 2. Table 2 is 
structured by highlighting the applied HRMS strategy in those writings, Ta
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Table 2 
Available HRMS methods and workflows in the field of food safety for the analysis of small molecules veterinary drugs and growth promoters, published 2017–2022.  

Compounds (number of analytesa) Matrix Sample preprocessing method Chromatographic 
separation 

Mass Spectrometry Validation Reference 

Screening 
Steroids (46) Urine Deconjugation, LLE, 

derivatization 
GC Comparing Q-Orbitrap and Q-TOFb, 

EIc 
– Abushareeda et al. (2018) 

Veterinary drugs (87) Milk, veal muscle, egg, 
honey 

(SA)LLEd, QuEChERSe nano-LC Q-Orbitrap, ESIf+, Full Scan, AIFg – Alcantara-Duran et al. (2018) 

Pharmaceuticals/personal care 
products (6) 

Fresh water invertebrates QuEChERS LC Q-Orbitrap, ESI+/− , Full Scan – Althakafy et al. (2018) 

Veterinary drugs (182), pesticides 
(524), pollutants (32), marine 
toxins (18) 

Aquaculture products LE, (d)SPEh LC Q-TOF, ESI+, Full Scan, target mode SANTE/12682/2019 Bai et al. (2022) 

Quinolones (7) Honey Diluting LC Q-TOF, ESI+, Full Scan CD 2002/657/EC Bandini and Spisso (2021) 
Veterinary drugs (100) Liver, muscle, urine Variable LC Variable Inter-laboratory study Berendsen et al. (2017) 
Steroids (40) Urine SPE, deconjugation, 

derivatization 
GCxGC TOF, EI – Bileck et al. (2018) 

Sulphonamides, β-agonists and 
(steroid) hormones (53) 

Urine Deconjugation, SPE LCxLC TOF, ESI+, Full Scan – Blokland et al. (2018) 

Veterinary drugs, pesticides, natural 
toxins (15) 

– – – MAIi, DAPSIj, TM-DARTk, CBSl, 
Orbitrap, Full Scan 

– Blokland et al. (2019) 

Progestagens (22) Milk (SA)LLE, SPE LC Q-Orbitrap, ESI+, PRMm NY/T 1896, CD 2002/657/EC Decheng et al. (2021) 
Veterinary drugs (29), pesticides 

(25), mycotoxins (23) 
Eadible insects SLE, SPE LC Q-Orbitrap, ESI+/− , Full Scan CD 2002/657/EC, SANCO De Paepe et al. (2019) 

Sulfonamides (8) Milk LLE, Magnetic SPE LC Q-Orbitrap, ESI+, Full Scan Partly Di et al. (2020) 
Prohibited substances (111) Urine Deconjugation, SPE LC Q-Orbitrap, ESI+, Full Scan and 

vDIAn 
Partly Han et al. (2019) 

Veterinary drugs (63), pesticides (13) Egg QuEChERS LC Q-TOF, ESI+ Partly Hou et al. (2020) 
Antibiotics (36) Milk, fresh cheese, whey QuEChERS, SPE LC Q-Orbitrap, ESI+/− , Full Scan CD 2022/657/EC Igualada et al. (2022) 
Veterinary drugs, mycotoxins, 

pesticides (382) 
Infant formula (SA)LLE, QuEChERS LC Q-Orbitrap, ESI+/− , Full Scan, DIA CD 2002/657/EC (45 

substances) 
Izzo et al. (2022) 

Veterinary drugs (137) Tilapia (SA)LLE, pipette tip SPE LC Q-Orbitrap, ESI+/− , Full Scan, vDIA CD 2002/657/EC, SANCO Jia et al. (2017) 
Veterinary drugs (114) Feed, feather meal LLE LC Q-Orbitrap, ESI+, comparing vDIA 

with AIF/ddMS2o 
– Jansen et al. (2022) 

Corticosteroids (44) Plasma LLE LC Q-Orbitrap, ESI+, Full Scan, DIA Partly Karakka Kal et al. (2021) 
Steroids, stilbenes, resorcylic acid 

lactones (42) 
Urine, muscle, liver, 
serum, blood 

Thermal denaturation, 
deconjugation, LLE, defatting 

LC Q-Orbitrap and Q-TOF, ESI+/− , Full 
Scan, MS/MS 

CD 2002/657/EC, with minor 
deviations 

Kaufmann et al. (2019) 

β-agonists (20) Muscle, liver, plasma, 
milk, urine 

Deconjugation, LLE LC Q-Orbitrap and Q-TOF, ESI+, Full 
Scan, MS/MS, AIF, PRM (depending 
on analyte) 

CD 2002/657/EC Kaufmann et al. (2021) 

Antibiotics (18) Water Online SPE LC Q-Orbitrap, ESI+, Full Scan Partly Kim et al. (2018) 
Pharmaceuticals (>200) Carp, shrimp, crab, eel, 

mussel 
LLE LC Q-Orbitrap, Full Scan, ddMS2 Partly Kong et al. (2018) 

Veterinary drugs (141) Pork meat LE, SPE LC Q-TOF, ESI+/− , Full Scan, MS/MS CD 2002/657/EC, SANTE/ 
11813/2017, GB/T 27404 

Li et al. (2020) 

Antibiotics (66) Meat, milk, eggs HTpSPEp LC Q-Orbitrap, ESI+, Full Scan, vDIA Partly, CD 2022/657/EC Mehl et al. (2021) 
Veterinary drugs (81) Meat, milk, eggs, honey HTpSPE LC Q-Orbitrap, ESI+, Full Scan, vDIA (EU) 2021/808 Mehl et al. (2022) 
Veterinary drugs (173), mycotoxins 

(9), pesticides (122) 
Meat, wheat flower LE LC Q-Orbitrap, ESI+/− , Full Scan, 

ddMS2 
CD 2002/657/EC Moretti et al. (2020) 

Anticoccidials (17) Poultry, egg LE LC Q-Orbitrap, ESI+/− , Full Scan, 
ddMS2 

CD 2002/657/EC Rusko et al. (2019) 

Veterinary drugs (155) Milk Protein precipitation, SPE LC Q-Orbitrap, ESI+, Full Scan, ddMS2 – Tan et al. (2022) 
Veterinary drugs (>300) Fish LE, SPE LC Q-Orbitrap, ESI+/− , Full Scan, AIF, 

ddMS2 
FDA Turnipseed et al. (2017) 

Antibiotics (91) Meat, fish LE, QuEChERS LC Q-TOF, ESI+/− , DIA (All ions MS/ 
MS) 

CD 2002/657/EC Varenina et al. (2022) 

Antibiotics, steroids (156) Feces (SA)LLE, QuEChERS LC Q-TOF, Full Scan AOAC (K. Wang, Li, et al., 2020) 

(continued on next page) 
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Table 2 (continued ) 

Compounds (number of analytesa) Matrix Sample preprocessing method Chromatographic 
separation 

Mass Spectrometry Validation Reference 

Veterinary drugs (52) Fish blood microsample micro-LLE DART Q-Orbitrap, Full Scan, ddMS2 Partly Wang et al. (2021) 
Veterinary drugs (124) Urine SLEq LC Q-Orbitrap, ESI+/− , Full Scan, DIA Partly Wong et al. (2020) 
Glucocorticoids (39) Meat, milk, egg (SA)LLE, online SPE LC Q-Orbitrap, ESI+, Full Scan, ddMS2 Partly Yan et al. (2021) 
Veterinary drugs, pesticides (49) Infant formula LE, (d)SPE LC Q-Orbitrap, ESI+, PRM Partly Zhang et al. (2020) 

Confirmation & follow-up 

Pharmaceuticals/personal care 
products (6) 

Fresh water invertebrates QuEChERS LC Q-Orbitrap, ESI+/− , PRM – Althakafy et al. (2018) 

Steroids, stilbenes, resorcylic acid 
lactones (42) 

Urine, muscle, liver, 
serum, blood 

Thermal denaturation, 
deconjugation, LLE, defatting 

LC Q-Orbitrap and Q-TOF, ESI+/− , Full 
Scan, MS/MS 

CD 2002/657/EC, with minor 
deviations 

Kaufmann et al. (2019) 

Veterinary drugs (112) Liver LE, SPE LC, IMS Q-TOF, ESI+ – Kaufmann, Butcher, Maden, 
Walker, and Widmer (2020) 

Veterinary drugs and growth 
promoters (14) 

Liver Thermal denaturation, 
deconjugation, LLE, defatting or 
LE, SPE 

LC Q-TOF, ESI+, comparing AIF, PRM, 
SWATHr 

– Kaufmann, Maden, and 
Walker (2020) 

Antibiotics (18) Water Online SPE LC Q-Orbitrap, ESI+, Full Scan, MS/MS Partly Kim et al. (2018) 
Anticoccidials (17) Poultry, egg LE LC Q-Orbitrap, ESI+/− , Full Scan, 

ddMS2 
CD 2002/657/EC Rusko et al. (2019) 

Antibiotics (91) Meat, fish LE, QuEChERS LC Q-TOF, ESI+/− , DIA (All ions MS/ 
MS) 

CD 2002/657/EC Varenina et al. (2022) 

Common patterns 

Sulfonamides Salmon (SA)LLE, pipette tip SPE LC Q-Orbitrap, ESI+, Full Scan, vDIA CD 2002/657/EC (27 
confirmed analytes) 

Jia et al. (2018) 

Sulfonamides Goat milk LLE, Magnetic SPE LC Q-Orbitrap, ESI+/− , Full Scan, vDIA CD 2002/657/EC (35 
confirmed analytes) 

Jia et al. (2021) 

Sulfonamides Meat, plasma, liver, urine QuEChERS LC Q-Orbitrap, different scan modes 
compared 

– Jia et al. (2022) 

Sulfonamides Dietary supplements LLE LC Q-TOF, ESI-, Full Scan, MS/MS IHC (35 confirmed analytes) Ki et al. (2019) 
Steroids (12 newly identified) Urine SPE, deconjugation, 

derivatization 
GCxGC, learning 
algorithm 

TOF 63 steroids Randazzo et al. (2020) 

Metabolism, degradation, transformation studies 

Eprinomectin shelf life degradation – – LC Q-TOF, ESI+, Full Scan, MS/MS – Adhikari and Rustum (2022) 
Sulfonamides Meat, plasma, liver, urine QuEChERS LC Q-Orbitrap, different scan modes 

compared 
– Jia et al. (2022) 

Salinomycin electrochemical and 
liver microsome transformation 

– – LC Q-TOF, ESI+, Full Scan, MS2 – Knoche et al. (2022) 

Moxidectin electro- and 
photochemical transformation 

– – LC Q-TOF, ESI+, Full Scan, IDAs – Kotthoff et al. (2020) 

Altrenogest metabolism Urine Hydrolysis (with/without), SPE LC Q-Orbitrap, ESI+/− , Full Scan, 
ddMS2 

Partly Liesenfeld et al. (2022) 

7-keto-DHEA metabolism Urine Deconjugation, LLE, 
derivatization 

GC Q-TOF, EI – Martinez-Brito et al. (2019) 

Gamithromycin metabolism Sheep edible tissues LE, defatting, SPE LC Q-Orbitrap, ESI+, Full Scan, ddMS2 – Tong et al. (2022) 

Physiological marker profiles 

– Muscle, kidney, non- 
complient for veterinary 
drugs 

LE, SPE LC Q-Orbitrap, Q-TOF, ESI+, Full Scan, 
ddMS2 

– Liesenfeld et al. (2020) 

Altrenogest treatment Urine Deconjugation (with/without), 
SPE 

LC Q-Orbitrap, ESI+/− , Full Scan, 
ddMS2 

Partly Liesenfeld et al. (2022) 

(continued on next page) 
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Table 2 (continued ) 

Compounds (number of analytesa) Matrix Sample preprocessing method Chromatographic 
separation 

Mass Spectrometry Validation Reference 

Deviating sample 

– Serum LLE LC Q-TOF, ESI-, Full Scan, dd mode, 
targeted mode 

– Schiffman et al. (2019) 

Unknowns analysis 

(2 unexpected identified) Feed LE LC fractionation, LC Q-Orbitrap – Wegh et al. (2017) 
(1 unexpected identified) Tilapia (SA)LLE, pipette tip SPE LC Q-Orbitrap, ESI+/− , Full Scan, vDIA CD 2002/657/EC, SANCO (137 

veterinary drugs) 
Jia et al. (2017) 

Pharmaceutically active substances 
(1068 suspect screened) 

Pak choi LE, SPE LC Q-TOF, ESI+/− , DIA (All ions MS/ 
MS) 

– Chen et al. (2021) 

Veterinary drugs (3 unexpected 
identified) 

Feed, feather meal LLE LC Q-Orbitrap, ESI+, Full Scan, AIF/ 
ddMS2 

False positive/false negative 
rate veterinary drugs evaluated 
(114) 

Jansen et al. (2022) 

Veterinary drugs Milk Protein precipitation, SPE LC Q-Orbitrap, ESI+, Full Scan, ddMS2, 
DIA 

Test identification of 180 
veterinary drugs 

Sun et al. (2021) 

Veterinary drugs Eel LE, SPE LC Q-Orbitrap, ESI+, Full Scan, AIF/ 
DIA 

Test identification of 68 
veterinary drugs 

Wu et al. (2020) 

Veterinary drugs Pork meat LE, SPE LC Q-Orbitrap, ESI+, Full Scan, BE- 
DDAt 

Test identification of 48 
veterinary drugs 

Zhu et al. (2022)  

a Where applicable, number of analytes is given between brackets. 
b Time of flight. 
c Electron ionization. 
d (Salting-out supported) liquid extraction. 
e Quick, easy, cheap, effective, rugged, and safe. 
f Electron spray ionization. 
g All ion fragmentation. 
h (Dispersive) solid-phase extraction. 
i Matrix assisted inlet ionization. 
j Desorption atmospheric pressure chemical ionization. 
k Transmission-mode direct analysis in real time. 
l Coated blade spray. 
m Parallel reaction monitoring. 
n Variable data-independent acquisition. 
o Data-dependent MS2. 
p High-throughput planar solid phase extraction. 
q Solid-supported liquid extraction. 
r Sequential window acquisition of all theoretical mass spectra. 
s Information dependent acquisition. 
t Background exclusion data-dependent acquisition. 

E. Jongedijk et al.                                                                                                                                                                                                                               



Food Control 145 (2023) 109488

8

which distinguishes screening, confirmation and follow-up, common 
patterns, metabolites identification, physiological marker profiles, 
deviating sample and unknowns analysis. The literature research 
methods (used databases, search terms, and filters) are described in 
Supplemental Information A. 

Based on the different scenarios needed by relevant control labora-
tories, one or more of these described strategies for using HRMS might 
be applied. Following the information from the survey, the legislative 
requirements and the available literature that has been presented in 
Table 2, Fig. 3 shows how those necessities and strategies are 
interrelated. 

As listed in Table 2, the applied HRMS strategies are categorized, 
ranging from completely targeted to full untargeted. Each scenario listed 
in Table 2 is discussed in the following paragraphs: targeted screening 
(4.1) followed by confirmation and follow-up of samples that were 
screened in other ways (4.2) and semi-untargeted application by 
searching common patterns of compounds (e.g. fragmentation patterns 
or isotopic patterns) (4.3). Then, the identification of new metabolites 
(4.4), untargeted physiological marker profiling (4.5), the identification 
of a deviating sample (4.6), and unknowns analysis, that describes both 
suspect screening and so-called ‘truly unknown’ workflows (4.7). All 
described strategies can be applied straight-away directly after analysis, 
or, if the method was designed appropriately, also in retrospective, 
which is discussed in section 4.8. 

4.1. Screening 

The most common way of HRMS use is multi-residue or as a multi- 
class, targeted screening method (Table 2, Fig. 3A). The current trend 
is to measure more and more analytes per run, resulting in so-called 
mega methods (Mol et al., 2008; Monteiro, Lehotay, Sapozhnikova, 
Ninga, & Lightfield, 2021). Screening methods with a large scope of 

analytes using HRMS have been published for several food and animal 
matrices for veterinary drugs (Alcantara-Duran, Moreno-Gonzalez, Gil-
bert-Lopez, Molina-Diaz, & Garcia-Reyes, 2018; Althakafy, Kulsing, 
Grace, & Marriott, 2018; Bandini & Spisso, 2021; Berendsen, Meijer, 
Mol, van Ginkel, & Nielen, 2017; Chitescu, Kaklamanos, Nicolau, & 
Stolker, 2015; Di, Yu, Chen, Zhu, & Zhu, 2020; Igualada, Giraldo, Font, 
& Yusà, 2022; Jansen et al., 2022; Jia et al., 2017; Kaufmann, Butcher, 
Maden, Walker, & Widmer, 2015a; Kim, Ryu, Chung, & Kim, 2018; 
Kong, Wang, Huang, & Yu, 2018; Li et al., 2020; Mehl, Schmidt, 
Schmidt, & Morlock, 2021; Mehl, Hudel, Bücker, & Morlock, 2022; 
Romero-Gonzalez, Aguilera-Luiz, Plaza-Bolanos, Frenich, & Vidal, 2011; 
Rusko, Jansons, Pugajeva, Zacs, & Bartkevics, 2019; Solliec, 
Roy-Lachapelle, & Sauve, 2015; Tan et al., 2022; Turnipseed et al., 
2017; Turnipseed et al., 2018; Varenina, Bilandžić, Luburić, Kolanović, 
& Varga, 2022; Wang et al., 2021; C. Wang, Li, et al., 2020; Wong et al., 
2020; Zhang et al., 2016), hormones and growth promoters (Abushar-
eeda et al., 2018; Bileck, Verouti, Escher, Vogt, & Groessl, 2018; 
Decheng et al., 2021; Han, Min, Jeon, Kang, & Son, 2019; Karakka Kal 
et al., 2021; Kaufmann et al., 2019, 2021; Yan et al., 2021), the com-
bination thereof (Blokland et al., 2018; K. Wang, Wang, et al., 2020) and 
also in combination with other residue analysis fields, such as pesticides 
(Bai et al., 2022; Cotton et al., 2016; Gomez-Perez et al., 2014; Hou, Xu, 
Xu, Han, & Qiu, 2020; Jia, Chu, Ling, Huang, & Chang, 2014; Zhang 
et al., 2020), mycotoxins (Kellmann, Muenster, Zomer, & Mol, 2009; 
Moretti et al., 2020), up to three or more multi-class combinations 
(Blokland, Gerssen, Zoontjes, Pawliszyn, & Nielen, 2019; De Paepe et al., 
2019; Izzo et al., 2022; Moretti et al., 2020). For this kind of multi-class 
screening methods, simple generic sample pre-treatment is applied (Mol 
et al., 2008), aiming for an as broad as possible screening scope that can 
analyze hundreds of analytes at the same time. Multiclass methods and 
the used mass spectrometry techniques have been reviewed (Domínguez 
et al., 2020; Turnipseed & Jayasuriya, 2020). Possibly the broad scope 

Fig. 3. Applications of HRMS technique for veterinary drug residue analysis in food. A) Screening, B) Confirmation and follow-up, C) Common patterns, D) Me-
tabolites identification, E) Physiological marker profiles, F) Deviating sample, G) Unknown analysis. (Photos by Rob Kregting). 
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has a smaller or larger trade off in recovery and/or sensitivity. In the 
case of molecules that exhibit poor fragmentation, such as some aver-
mectins (anti-worming agents) and steroids (growth promoters), HRMS 
screening showed enhanced precision and/or sensitivity (Kaufmann, 
2020) compared to low resolution MS/MS methods. Generic screening is 
performed using full scan mode, which is the most distinctive and gives 
lowest numbers of false positives and false negatives (Kaufmann, 
Butcher, Maden, Walker, & Widmer, 2015b), possibly in combination 
with data dependent MS2 or data independent MS2 for further confir-
mation of identity. The advantages of performing routine screening by 
HRMS is that the scope of the methods can easily be expanded with new 
molecules, due to the possibility of applying universal pre-processing 
methods and the untargeted nature of the data acquisition. This scope 
expansion could even be performed retrospectively. Of course the 
method needs to be set-up in a way that facilitates these advantages as 
much as possible (e.g. by independent data acquisition settings, good 
balance between mass resolution and number of datapoints per peak, 
good balance between sample clean-up to lower matrix effect but still 
universal enough to allow detection of a broad scope, etc.). 

4.2. Confirmation and follow-up 

Despite the growing number of HRMS screening methods that are 
available in literature, only a limited number of multi-residue methods 
have fully been validated according to CD 2002/657/EC as a quantita-
tive confirmation method (European Commission, 2002a; Jia et al., 
2014; Kaufmann et al., 2015a, 2019; Kim et al., 2018; Romero-Gonzalez 
et al., 2011; Rusko et al., 2019; Varenina et al., 2022) (Table 2, Fig. 3B). 
This might be because of the elaborate amount of work necessary to fully 
validate such a method according to current criteria (see section 3. 
Fitting HRMS in legislation). These validated confirmatory methods 
make use of, mostly data-dependent, MS/MS scan, in order to have 
enough identification points and sensitivity (Table 2). Generally, this is 
done in addition to, or alternating with, a full scan acquisition. Other 
options are to make use of PRM (Althakafy et al., 2018) or SWATH 
(Kaufmann, Maden, & Walker, 2020) modes, or combine LC separation 
with ion mobility (Kaufmann, Butcher, Maden, Walker, & Widmer, 
2020) to increase sensitivity or separation power respectively. Next to 
screening and confirmation in a targeted multi-residue, routine way, 
HRMS is also suitable as a way to confirm or reject findings as a 
follow-up from other screening methods, such as anti-microbial activity 
screening on plates or LC-MS/MS, in case the nature of the method limits 
conclusive judgment. A common case is when two analytes in 
LC-MS/MS, or an analyte/background signal combination, share the 
same retention time (RT) and nominal mass, but have a different exact 
mass in HRMS. An example is the growth promoter 17β-trenbolone, a 
compound that has difficulties in confirmatory analysis by LC-MS/MS, 
due to co-eluting interferences with similar, relatively non-selective, 
neutral losses (Berendsen, Stolker, & Nielen, 2013). However, an 
alternative strategy was proposed for trenbolone using accurate mass 
measurement with LC-TOF, where it could be readily distinguished as 
the only match from bovine urine matrix, using a mass accuracy better 
than 3 ppm of the quasi-molecular ion and a fragment (Berendsen et al., 
2013; Blokland et al., 2008). 

4.3. Common patterns 

As the data acquisition in HRMS is generally untargeted, e.g. by full 
scan acquisition mode alternated with data independent MS2, the results 
could be mined in an intelligently designed ‘semi-untargeted’ way by 
common pattern analysis at isotope patterns or fragmentation patterns 
that are related with known illegal contaminants (Table 2, Fig. 3C). 
Sulfonamides, which are antibiotics that may be administered in live-
stock are the most well-known example of this type of analysis. Sul-
fonamides are compounds that share very similar fragmentation 
patterns in MS2 within their compound class (Xia et al., 2013). 

Therefore, new sulfonamide structures could be tracked down and pu-
tatively identified by searching HRMS data using the expected m/z 
patterns (Borras, Kaufmann, & Companyo, 2013; Jia et al., 2021, 2022; 
Ki et al., 2019; Majewsky, Glauner, & Horn, 2015). With this strategy, 
suspect samples have been identified in real samples of salmon (Jia, Shi, 
& Chu, 2018). Besides sulfonamides, Borras et al. describe an applica-
tion of common patterns for the molecular group of penicillins (Borras 
et al., 2013). Besides, steroids share similar structures and fragmenta-
tion patterns. Randazzo et al. newly identified 12 steroids based on 
HRMS data, by making use of a learning algorithm exploiting data of 
known steroids that were acquired on GCxGC-TOF (Randazzo, Bileck, 
Danani, Vogt, & Groessl, 2020). The idea of common patterns could be 
exploited as well using isotopic patterns. E.g. chlorine is an element that 
has a characteristic isotope pattern and might occur mainly in ectopi-
cally administered compounds and not in animal matrices. 

4.4. Metabolites identification 

The idea of linking masses to each other through data processing 
after untargeted data acquisition can be applied as well for metabolism 
and degradation studies (Table 2, Fig. 3D). Finding metabolites of 
administered compounds is important for health risk assessment and the 
design of proper abuse detection methods. Plenty of examples of such 
studies are available from human drugs studies. For example, by using 
HRMS, metabolites (e.g. dehydration, methylation, acetylation, reduc-
tion, conjugation) were identified after treatments with human medic-
inal prescriptions in mice and rats (Jiang et al., 2020; Karkoula et al., 
2020). Additionally, resolved isotope patterns of certain ectopic ele-
ments (e.g. chlorine, bromine) can track down metabolites in an 
untargeted way (Sanchez-Ponce & Guengerich, 2007). In the field of 
food safety research, the strategy is relatively new, and analytical 
methods for monitoring are still mainly focused on the administered 
form of molecules, so metabolites are still under-attended. Nevertheless, 
HRMS has been exploited for metabolite studies, of for example, sul-
fonamide (Jia et al., 2022; Pfeifer, Tuerk, & Fuchs, 2005), altrenogest 
(Liesenfeld, Steliopoulos, Wenig, Gottstein, & Hamscher, 2022), 
7-keto-DHEA (Martinez-Brito, de la Torre, Colamonici, Curcio, & Botre, 
2019) and gamithromycin (Tong et al., 2022) administration, measuring 
urine, manure and/or eadible tissues. Also, shelf life and physiochemical 
transformation products have been studied, e.g. of the anti-worming 
agents eprinomycin (Adhikari & Rustum, 2022), moxidectin (Kotthoff, 
O’Callaghan, Lisec, Schwerdtle, & Koch, 2020) and the anti-
biotic/coccidiostat salinomycin (Knoche, Lisec, Schwerdtle, & Koch, 
2022). By finding all relevant metabolites related to a certain treatment, 
HRMS could improve risk based food monitoring strategies. 

4.5. Physiological marker profiles 

HRMS data consisting of mass spectra and RT of food matrices can 
also be used for an untargeted physiological profiling analysis (Table 2, 
Fig. 3E). This is nowadays a quite common practice in the area of food 
fraud, for example to determine adulteration of olive oil or juices 
(Cavanna et al., 2018; Esteki, Regueiro, & Simal-Gándara, 2019). In this 
approach, groups are made of ‘conform’ and ‘non-conform’ sample data, 
which allows statistical determination of distinguishing markers by for 
example Principal Component Analysis (PCA) (Fu, Zhao, Lu, & Xu, 
2017). The approach has been shown to be useful in the area of veter-
inary treatment and food safety, when residues are also naturally 
occurring (e.g. steroids) (Dervilly-Pinel et al., 2012). A targeted way of 
profiling has been done previously by steroid profiling using LC-MS/MS 
analysis of known hormones (Blokland, van Tricht, van Ginkel, & Sterk, 
2017; Narduzzi et al., 2021; Thevis, Kuuranne, Geyer, & Schanzer, 
2017). The advantage of profiling by HRMS might be that the dis-
tinguishing markers or marker combinations do not have to be previ-
ously known, or not even have to be identified, to be able to classify 
samples to a group reliably. This becomes clear for profiling of 
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treatments with growth promoters. Dervilly et al. could discriminate 
between β-agonist treated and untreated cows by directly analyzing 
urine samples without sample cleanup, using an untargeted metab-
olomics approach (Dervilly-Pinel, Chereau, Cesbron, Monteau, & Le 
Bizec, 2014). Such treatment could not be directly tracked down by 
analyzing β-agonists themselves, as these concentrations would be 
below the detection limit. Similarly, discrimination could be made for 
altrenogest, clenbuterol, DHEA, prednisolone and pregnenolone treat-
ment by HRMS profiles and metabolomics approaches (Courant et al., 
2009; De Clercq et al., 2015; Liesenfeld et al., 2022; Rijk et al., 2009). 
The strategy of profiling can also be useful for pointing out treated vs. 
untreated samples, independent of the specific veterinary drug that has 
been applied (Liesenfeld, Steliopoulos, & Hamscher, 2020). It has to be 
stated that for a statistically sound profiling analysis, sufficient amounts 
of samples need to be available for all ‘profiles’ to be investigated (e.g. 
treated vs. untreated, pure vs. adulterated, etc) and only that specific 
same type of treatment or fraud can be identified statistically (Cavanna 
et al., 2018). 

4.6. Deviating sample 

HRMS profiling could also give rise to deviating samples from the 
‘normal’ m/z and RT profiles, untargeted, without a prior dataset 
available from a certain type of abuse (Table 2, Fig. 3F). These samples 
could still be identified, provided that a large enough group of proper 
blank samples are available as a control group. They could be identified 
from HRMS data differential analysis, or on any property in the sample 
taking, processing and analyzing work, such as physical appearance of 
the animal, color of the extract, cleanness of the chromatogram, etc 
(Schiffman et al., 2019). Documenting spectral relative standard de-
viations (RSDs) could assist as a practical benchmark (Parsons, Ekman, 
Collette, & Viant, 2009). To the best of our knowledge, such a ‘metab-
olomics-like’ quality check approach has not yet been applied for food 
safety analysis. The samples containing such a ‘deviating’ profile could 
be of interest to track down possible distinctive markers, putative 
identification of their HRMS mass spectra and software tools, and 
further analysis with other principles, like anti-microbial activity frac-
tionation, NMR, or for unknown analysis (see below). 

4.7. Unknowns analysis 

HRMS is an emerging tool as a basis for the so-called ‘unknowns 
analysis’ (Table 2, Fig. 3G). The full dataset of untargeted full scan 
acquisition mass spectra, and maybe in combination with MS2 data, can 
be mined for unknowns. By matching the MS-spectra of broad on-line 
databases, such as PubChem, and, when working with electron ioniza-
tion, NIST, unknown peaks can be tentatively identified. Systematic 
workflows e.g. (Fu et al., 2017), acquisition modes e.g. (Fenaille, Barbier 
Saint-Hilaire, Rousseau, & Junot, 2017) and data processing tools e.g. 
(Kind et al., 2018) for untargeted analysis have been reviewed. The 
workflows usually consist of data pretreatment such as peak picking, 
deconvolution, alignment, data reduction and filtering of masses based 
on differential analysis and/or chemical principles. Afterwards, hits will 
be putatively identified based on database search (Kind et al., 2018), 
possibly assisted by in-silico simulation of retention time and fragmen-
tation (Hu et al., 2018; Kaufmann, Butcher, Maden, Walker, & Widmer, 
2017), or truly identified by further analysis. Unexpected knowns could 
be confirmed by means of an analytical standard, or completely un-
known masses could be further identified by NMR analysis. Some ex-
amples of successful identifications of unexpected veterinary drugs 
residues present in food matrices have been published using untargeted 
approaches. Jia et al. found an unexpected residue (robenidine) in 
tilapia. Jansen et al. found three unexpected residues in feed an feather 
meals (gatifloxacin, levofloxacin and azithromycin). Solliec et al. were 
able to identify one hormone (medroxyprogesterone), one analgesic 
(acetaminophen), seven antibiotics and some of their isomeric 

metabolites in swine manure samples using an untargeted workflow 
(Solliec et al., 2015). Fu et al. found an unexpected residue in untargeted 
acquired fish data, and could identify it as difloxacin (Fu et al., 2016). A 
good practice is, before application on real samples, to validate un-
known workflows and accessory LC and MS settings on a test set of 
model veterinary drugs, evaluating the identification of structures and 
false positive/negative findings (Table 2) (Jansen et al., 2022; Jia et al., 
2017; Sun et al., 2021; Wu, Turnipseed, Storey, Andersen, & Madson, 
2020; Zhu et al., 2022). Such so-called ‘suspect screening’ workflows 
can deal with a large number of compounds at the same time without 
elaborate one-by-one validation procedures, as hits are based on 
library-matching. Chen et al. evaluated 1068 pharmaceutically active 
substances in the vegetable pak choi by suspect screening using library 
matching (Chen, Lin, Huang, Peng, & Ling, 2021). In the upcoming field 
of non-targeted and suspect screening approaches, the harmonization, 
reproducibility, and quality control of used methods are under devel-
opment (Pourchet et al., 2020). Standardization and documentation of 
methods have also been reported (Knolhof, Premo, & Fisher, 2021; Peter 
et al., 2021; Pourchet et al., 2020). Proposals for risk assessment based 
on unknown analysis, with an essential role for HRMS, have been pub-
lished (Gerssen et al., 2019; Wegh et al., 2017). Important for estimating 
relevance of hits is the coupling between HRMS spectra and other 
properties of the molecules, such as anti-microbial or hormonal activity, 
by e.g. screening and fractionation approaches. Wegh et al. used such 
workflow consisting of untargeted HRMS in combination with frac-
tionation and anti-microbial activity test, and were able to identify the 
new anti-microbial didecyldimethylammonium chloride in animal feed, 
as well as finding back spiked components (roxithromycin and crypto-
tanshinone) in two similarly designed test cases (Wegh et al., 2017). The 
high-resolution m/z data play an essential role in putative identification 
after separation in order to prioritize hits and decide on the subsequent 
steps. 

4.8. Retrospective analysis 

All strategies described here to apply HRMS for risk-based food 
monitoring (Table 2, Fig. 3), contribute in their specific way to improve 
food safety. Due to the untargeted nature of the HRMS data acquisition, 
the strategies as shown in Fig. 3 could be applied retrospectively on data 
sets that were acquired for another purpose. Such was done by Li et al., 
who could include in their ‘traditional’ screening of veterinary drugs in 
pork meat, immediately a metabolite study of a positive finding (a sul-
fonamide), due to the untargeted nature of the data acquisition on LC-Q- 
TOF (Li et al., 2020). Good practice would be to have in mind applica-
tion for multiple purposes when developing HRMS methods, and design 
sample preprocessing (e.g. generic simple cleanup) and instrument 
settings (e.g. including full scan and possibly data-independent MS2 in 
the acquisition) in a way that the data will be suitable for retrospective 
analysis (Jansen et al., 2022). In practice, this could typically mean that 
when applying screening by HRMS in a routine way for national 
monitoring programs, the so built-up datasets will be analyzed annually 
retrospectively by one or more of the other strategies (profiling, meta-
bolism studies, unknown analysis) and trend analysis will be performed, 
to set actual risk-based monitoring strategies for the coming year(s). For 
this purpose HRMS as a versatile technique is an essential link to 
progress in real risk-based analysis. 

5. Conclusions 

In the field of veterinary drug and hormone residue analysis the use 
of HRMS technique has been increased significantly in the last few years, 
mainly for multi-residue screening purposes. Multi-residue screening of 
veterinary drugs and hormones by HRMS is the way to go to increase the 
number of analytes per run with satisfactory distinguishing power. Be-
sides screening and confirmation of currently legislated compounds, 
HRMS can be deployed for (semi)-untargeted food residue analysis, 
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which is mainly of interest to identify unexpected or unknown molecules 
or metabolites. HRMS can be applied retrospectively for risk-based 
monitoring and a combination of analysis strategies. Recent advances 
in scan speed, data-processing software and dynamic range enable 
intelligent data acquisition and quantitative analysis. However, HRMS 
still needs to become more sensitive to detect residues at the lowest 
relevant concentrations, mainly for forbidden compounds and complex 
matrices. Future legislation could consider to include suggested updates, 
thus facilitating the use of the broad potential of strategies for HRMS 
use. Currently 58% of the European official control laboratories in the 
residue field are using HRMS. Next to exploiting instrument advances, in 
order to have this technique become the dominant one in residue 
analysis, guidance on workflows and validation are needed. When these 
improvements are made and implemented, HRMS will be the technique 
of choice in the near future. The authors believe that HRMS is an 
essential link to progress in real risk-based monitoring programs. 
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