Risks of livestock manure application

October 24th, Bjorn Berendsen

Project team

- PSG-WPR: Leo van Overbeek
- ESG-WEnR: Joost Lahr, Jaap van Os, Louise Wipfler
- ASG-WBVR: Dik Mevius, Ales Bossers
- ASG WLR: Paul Hoeksma
- AFSG-Food Micro: Tjakko Abee, Marcel Zwietering
- SSG-WEcR: Nico Bondt, Ron Bergevoet, Tanja de Koeijer
- WFSR: Bjorn Berendsen

Global One Health approach

Dissipation routes via manure

Figure 1. Routes for the spread of manure constituents. The route through animal excreta is highlighted.

Risks of livestock manure application

Goals:

- Selection of the most relevant antibiotics and pathogens
- Optimisation of the analytical methods for antibiotic analysis
- Study the fate of antibiotics and pathogens
- Model manure distribution and antibiotic load
- Study longitudinal effect of antibiotics in manure on resistance
- Study circulation of pathogens and antibiotics in the ecosystem

Risks of livestock manure application

Goals:

- Selection of the most relevant antibiotics and pathogens
- Optimisation of the analytical methods for antibiotic analysis
- Study the fate of antibiotics and pathogens
- Model manure distribution and antibiotic load
- Study longitudinal effect of antibiotics in manure on resistance
- Study circulation of pathogens and antibiotics in the ecosystem

Selection of most relevant antibiotics

10 prioritized antibiotics

Selection of most relevant pathogens

- Expert meeting:
 - Wageningen UR
 - GD
 - RIVM
 - enkele
 - Ministeries
 - Provincies
 - Waterschappen

Pathogens and antibiotics in the chain

Goals:

- Selection of the most relevant antibiotics and pathogens
- Optimisation of the analytical methods for antibiotic analysis
- Study the fate of antibiotics and pathogens
- Model manure distribution and antibiotic load
- Study longitudinal effect of antibiotics in manure on resistance
- Study circulation of pathogens and antibiotics in the ecosystem

The fate of antibiotics

- Soil life

3. Leaching

a. To surface water

b. Uptake by crops

The fate of antibiotics

- Persistence = 'the continued or prolonged existence'
- Mobility = 'the ability to move among reservoirs'

 Diphasic degradation observed for especially tetracyclines and quinolones. Binding to organic particles might contribute to their persistence.

Compound group	Very persistent DT90 > 1 y	Persistent DT90 > 6 m	Moderately persistent DT90 > 3m	Slightly persistent DT90 > 1 m	Non- persistent DT90 ≤ m
Tetracyclines		X			
Sulphonamides			Х	×	X
Quinolones	Х	х			
Macrolides		х	Х		
Lincosamides	Х				
Pleuromutilins	X		х		

- Persistence in manure depends mainly on animal species.
- The tested antibiotics, with exception of the sulphonamides are moderately to very persistent.
- Even after 9 months storage, some antibiotics can persist in manure and can be transferred to agricultural soils.
- Based on the persistence and frequency of use, currently, environmental exposure to oxytetracycline, doxycycline, flumequine, tilmicosin and lincomycin seems most likely.

The fate of antibiotics - mobility

- Soil column experiment
 - Packed with wetted soil
 - 300 µg of the antibiotics applied
 - 50 ml water daily
 - Isolate eluate daily
 - Isolate 2 cm soil layers after 15 days

The fate of antibiotics - mobility

Soil layers

Water fractions

The fate of antibiotics - mobility

Soil layers

Water fractions

The fate of antibiotics

The fate of antibiotics

Pathogens and antibiotics in the chain

Goals:

- Selection of the most relevant antibiotics and pathogens
- Optimisation of the analytical methods for antibiotic analysis
- Study the fate of antibiotics and pathogens
- Model manure distribution and antibiotic load
- Study longitudinal effect of antibiotics in manure on resistance
- Study circulation of pathogens and antibiotics in the ecosystem

Livestock manure NL - excretion, transfer and processing (Mton/year)

Pathogens and antibiotics in the chain

Goals:

- Selection of the most relevant antibiotics and pathogens
- Optimisation of the analytical methods for antibiotic analysis
- Study the fate of antibiotics and pathogens
- Model manure distribution and antibiotic load
- Study longitudinal effect of antibiotics in manure on resistance
- Study circulation of pathogens and antibiotics in the ecosystem

Pathogens and antibiotics in the chain

Sufadiazine (SDZ); mobile antibiotic

SDZ in manured soil:

 $Planting = 366 \mu g/kg$

 $Harvest = 82.2 \mu g/kg$

 $Planting = 273 \mu g/kg$

 $Harvest = 66.6 \mu g/kg$

	Manure treatment						
	Untreated -6 wee		-1 day				
	SDZ (ppb)	SDZ (ppb)	SDZ (ppb)				
Rhizosphere	ND	0.47	0.47				
Root	ND	ND	ND				
Shoot	ND	0.07	0.08				

	Manure treatment							
	Untreated		-6 weeks		-1 day			
	SDZ (ppb)	LogCFU/g soil	SDZ (ppb)	LogCFU/g soil	SDZ (ppb)	LogCFU/g soil		
Rhizosphere	ND	5.79	0.47	6.58*	0.47	6.57*		
Root	ND	4.63	ND	6.04*	ND	5.69*		
Shoot	ND	4.10	0.07	3.78	0.08	3.65		

* CFU values are significantly different (P<0.001) from nonfortified manure

- Sulfadiazine was taken up by lettuce and leek plants in low quantities.
- Higher SDZ-resistant bacterial numbers were found in the rhizosphere and roots of lettuce and leek

• *E. coli* was transmitted from manure to lettuce and leek plants and could persist in the leek rhizosphere during winter time.

Take home message

Take home message

- The risks of pathogens in manure for humans, animals and the environment is currently considerd to be low.
- Antibiotic residues occur in many reservoirs and we can now predict where the risk of occurrence of individual compounds is the highest.
- Antibiotic treatments cause alterations in the manure microbiome which is still observed in soil, rhizosphere and root after manure application.
- Interdisciplinary research involving different science groups yields new perspectives and high impact results.

Thank you!

WPR: Leo van Overbeek

WEnR: Joost Lahr, Louise Wipfler,

Jaap van Os

WLR: Paul Hoeksma

WBVR: Dik Mevius, Alex Bossers

WECR: Nico Bondt, Tanja de Koeijer

WFSR: Milou van de Schans, Mariel

Pikkemaat

