

Garlich v. Essen; GMCC; Amsterdam; 18.11.2015

THE EUROPEAN SEED SECTOR

Diverse
> 7.000 companies
> 90% micro
enterprises & SMEs

Competitive leading innovator leading exporter

+ 3.500 new products/year > 40.000 products > 15% R&D of annual turnover

Contributive
Bioeconomy;
Food, feed, fibre,
fuel, fun;
Growth & jobs in
rural areas

- 10 billion people in 2050
- growing demands for quantity and quality of food produced sustainably
- Limited natural resources and increasing restrictions on many inputs
- ❖ > 80% of productivity gains today are due to improved varieties and quality seed

- 1948-1981:60% of gain due to improved varieties
- 1948-2007:88% of gain due to improved varieties
- Since 1982: almost all gain has been due to varieties

A NEED FOR SPEED

- Working with nature has long biological timescales
- Historical progress is insufficient for the future
- Plant breeding is a foundation of modern agriculture and societies
- Productive agriculture is well aligned with sustainability objectives

We need to do more and better – and faster!

International cooperation in R&D and movement of seed speed up breeding innovation and drive growth worldwide

25% of all commercial seed is traded internationally

EU a leader in R&I

EU a leader in seed exports and imports

THE NEXT FRONTIER: GETTING EVEN SMARTER

RNA-dependent DNA methylation

PLANT agro-inoculation

REVERSE ZINC FINGER NUCLEASE BREEDING double stranded

ODM

cisgenesis

site-directed mutagenesis
INTRAGENESIS
GENE TARGETING

SILENCING oligonucleotide

What is the regulatory status of these New Plant Breeding Techniques?

And is this really an important question?

- 1) Are these techniques covered by the existing EU-legislation (Directive 2001/18) or is there a need to open and amend the Directive?
- 2) If the techniques are covered by the existing Directive: do the resulting products require an authorisation as a GM plant or are they exempted?
- 3) What is the economic relevance and potential of these techniques?

Socio-economic relevance: JRC REPORT ON NPBTs (2010/11)

- Each of NBTs used by two to four of the surveyed plant breeding companies
- All NBTs have been adopted in commercial breeding
- ODM, cisgenesis/intragenesis and agro-infiltration are most used
- Most advanced crops close (2-3 years) to commercialisation (if classified as non GM)
- Main traits and species (a.o.)
 - herbicide tolerance and insect resistance in rapeseed and maize
 - fungal resistance in potatoes
 - drought resistance in maize
 - scab-resistant apples
 - potatoes with reduced amylose content

Socio-economic relevance: JRC REPORT ON NPBTs (2010/11)

Great **technical potential** of techniques

New possibilities of producing **genetic variation**

- targeted mutagenesis (ZFN 1 and 2 technology and ODM),
- targeted introduction of new genes (ZFN 3 technology, cisgenesis and intragenesis)
- or gene silencing (RdDM)
- improvement of selection (agroinfiltration)

Technical advantages

- site specific and targeted changes
- commercialized crop will not contain an inserted transgene

Economic advantages

faster breeding process and lower production costs

Socio-economic relevance: JRC REPORT ON NPBTs (2010/11)

- NPBTs make plant breeding faster and more precise
- NPBTs are of high commercial interest also for SMEs and small crops
- Plants resulting from NPBTs are in most cases genetically indistinguishable from traditionally bred plants
- New or specific legislative requirements for NPBTs may distort the level playing field by discriminating some technologies versus others
- Over-regulation of NPBTs would lead to
 - competitive and technological disadvantage for European breeders and farmers
 - restricted access to genetic diversity for plant breeding
 - brain and technology drain
 - barriers to trade
 - lack of enforceability and potential fraud
 - limitation of consumer choice

Regulatory status: EU Experts WG Opinion (2012/13)

Expert Opinion	non-gm	gm
ZFN 1/2	majority	minority
ODM	majority	minority
RdDM	majority	minority
ZFN3		all
cis-genesis		all
grafting on gm-rootstock		all
reverse breeding	all	
agroinfiltration	all	

Regulatory status: EU Experts WG Opinion (2012/13)

Minimum of information about DNA sequence is required in order to allow identification

Enforcement difficult if resulting genetic modifications cannot be distinguished from those produced by conventional breeding techniques or by natural genetic variation

Identification is currently **not possible**:

- ZFN 1 and 2
- ODM, as
- RdDM,
- grafting on GM rootstock,
- reverse breeding,
- agro-infiltration "sensu stricto"
- and agro-inoculation

Identification possible only for:

- ZFN 3 technology,
- cisgenesis/intragenesis

Since 2012/13...

Scientific advances

Products ready to market

International developments

Increased awareness of importance

Commission Interpretative Document on NPBTs (Jan. 2016?)

SPEAK UP FOR SEEDS!

CONTACT

ESA European Seed Association Rue du Luxembourg 23 B 1000 Brussels

T. +32 (0)2 743 28 60

secretariat@euroseeds.eu

FOLLOW US ON

