GP (Gorben) Pijlman GP (Gorben) Pijlman


proefschriften arbovirusgroep

2019 Onderzoek: Junk RNA verklaart de verspreiding van Zika virus door steekmuggen

Mosquito-transmitted flaviviruses such as Zika virus (ZIKV) are responsible for over 400 million human infections each year. Unfortunately, the molecular mechanisms that facilitate flavivirus transmission by mosquitoes remain unclear. Here, we demonstrate that noncoding subgenomic flavivirus RNA (sfRNA), that is produced by all flaviviruses, plays a critical role in ZIKV transmission by Aedes aegypti mosquitoes. ZIKV requires sfRNA to overcome the mosquito midgut barrier and efficiently accumulate in the mosquito saliva. We reveal that the mosquito protein ME31B has antiviral activity and specifically binds to sfRNA. These results establish sfRNA as a determinant of ZIKV transmission by mosquitoes and provide mechanistic insights into the functions of this noncoding RNA.

Arbovirusgroep 2013

Arbovirusgroep Mei 2012

Arbovirus group XL November 2019

Top: Monique van Oers - Marieke Pleiter - Lotte Azink - Sandra Abbo - Marleen Henkens - Jelke Fros - Marie Thölke - Just Vlak - Gorben Pijlman - Hera Saouadogo - Linda Van Oosten - Kirsten Bronsvoort - Gwen Nowee - Bright Amoah - Jeroen Kortekaas

Bottom: Erick Bermundez - Ties Baljet - Tessy Hick - Chikungunya - Haidong Wang - Jerome Comes

Arbovirusgroep Juli 2015

Hoogleraar Arbovirology & Medische Biotechnologie

Gorben Pijlman obtained his MSc in Biotechnology and Bioprocess Engineering at Wageningen University, the Netherlands in 1999. Next, he carried out PhD research in the baculovirus research group of prof. Dr. Just M. Vlak, where he worked on the molecular mechanisms underlying the ‘baculovirus defective interference’ phenomenon. This research resulted in further improvements of the powerful baculovirus expression system. In 2003, he joined the Flavivirus research group of prof. Alex Khromykh at the University of Queensland in Brisbane, Australia, for postdoctoral research on West Nile virus replication and the role of the enigmatic subgenomic flavivirus RNA (sfRNA) in viral pathogenesis and antiviral RNAi. Later on, he became involved in the Australian biotech start-up RepliKUN to develop and improve flavivirus replicon vectors for vaccines and cancer gene therapy applications. In 2007, he returned to Wageningen to take up a permanent position as Assistant Professor Arboviruses.

The current research programme is an interesting mix of fundamental virology focused at arbovirus-host interactions and applied studies on arbovirus vaccine development. In the period 2009-2013, the group developed a successful virus-like particle (VLP) vaccine that protects against chikungunya virus infection. Since early 2013 the arbovirus group conducts arbovirus transmission studies using live mosquitoes (Culex and Aedes spp.) and class pathogenic arboviruses (Chikungunya, West Nile, Usutu and, since 2016, Zika virus), in a purposely-built biosafety level 3 (BSL3) laboratory at Wageningen campus. At present, the group works on a COVID-19 vaccine by expressing SARS-CoV-2 spikes in insect cells (H2020 Prevent-nCoV consortium).

2015 Onderzoek: Steekmug kan Usutu virus overdragen in Nederland

"Usutu virus verspreiding in Nederland heeft voorspellende waarde  voor een eventuele West Nijl virus uitbraak in Noord-West Europa"

Originating from Africa, Usutu virus (USUV) first emerged in Europe in 2001. This mosquito-borne flavivirus caused high mortality rates in its bird reservoirs, which strongly resembled the introduction of West Nile virus (WNV) in 1999 in the United States. Mosquitoes infected with USUV incidentally transmit the virus to other vertebrates, including humans, which can result in neuroinvasive disease. USUV and WNV co-circulate in parts of southern Europe, but the distribution of USUV extends into central and northwestern Europe. In the field, both viruses have been detected in the northern house mosquito Culex pipiens, of which the potential for USUV transmission is unknown. To understand the transmission dynamics and assess the potential spread of USUV, we determined the vector competence of C. pipiens for USUV and compared it with the well characterized WNV. We show for the first time that northwestern European mosquitoes are highly effective vectors for USUV, with infection rates of 11% at 18 °C and 53% at 23 °C, which are comparable with values obtained for WNV. Interestingly, at a high temperature of 28 °C, mosquitoes became more effectively infected with USUV (90%) than with WNV (58%), which could be attributed to barriers in the mosquito midgut. Small RNA deep sequencing of infected mosquitoes showed for both viruses a strong bias for 21-nucleotide small interfering (si)RNAs, which map across the entire viral genome both on the sense and antisense strand. No evidence for viral PIWI-associated RNA (piRNA) was found, suggesting that the siRNA pathway is the major small RNA pathway that targets USUV and WNV infection in C. pipiens mosquitoes.

2016 Research: Viral Non-Coding RNA Determines Flavivirus Transmission by Mosquitoes

Understanding the flavivirus transmission cycle is important to identify novel targets to interfere with disease and to aid development of virus control strategies. Flaviviruses produce an abundant, non-coding viral RNA called sfRNA in both arthropod and mammalian cells. To evaluate the role of sfRNA in flavivirus transmission, we infected mosquitoes with the flavivirus West Nile and an sfRNA-deficient mutant West Nile virus. We demonstrate that sfRNA determines the infection and transmission rates of West Nile virus in Culex pipiens mosquitoes. Comparison of infection via the blood meal versus intrathoracic injection, which bypasses the midgut, revealed that sfRNA is important to overcome the mosquito midgut barrier. We also show that sfRNA is processed by the antiviral RNA interference machinery in mosquitoes. This is the first report to describe a pivotal biological function of sfRNA in arthropods. The results explain why sfRNA production is evolutionary conserved.

Arbo's at IMAV 2019 Glasgow

Julian Bakker - Haidong Wang - Tessy Hick - Jody Hobson-Peters - Gorben Pijlman - Jelke Fros - Sandra Abbo

Arbovirusgroep Juni 2016

Sabbatical Prof. Roy Hall and Dr. Sonja Hall-Mendelin, summer 2018

Arbovirus & Fros groepen 2023

top: Gorben Pijlman - Lisa Nijhof - Monique van Oers - Juul Steeghs - Frederic Josee - Sophie van der Vlugt - Linda de Jong - Corinne Geertsema - Marleen Henkens - Linda van Oosten - Davita Bosveld - Tristan Gommeren - Jelke Fros - Dennis Kenbeek

bottom: Lisa van Sluijs - Joyce van Bree - Tessy Hick - Cathelijne Lamboo - Kristel Doets - Jerome Comes - Bob Liet - Luca Schmidt

BSL3 team 2018

Jelke Fros - Gorben Pijlman - Julian Bakker - Giel Goertz

Corinne Geertsema - Sandra Abbo - Marleen Henkens - Haidong Wang

Chantal Vogels - Tessa Visser - Tim Mohlmann - Sander Koenraadt

Arbovirusgroep November 2018

Top: Corinne Geertsema – Tessy Hick – Nika Zibrat – Giel Göertz – Iris Swart – Chris van Toor – Just Vlak – Ahmad Ibrahim – Gorben Pijlman – Jelke Fros

Bottom: Marleen Henkens – Sandra Abbo – Haidong Wang – Imke Visser – Christina Emmanouilidou – Joyce van Bree

Sabbatical Dr. Jody Hobson-Peters (University of Queensland, Brisbane, Australia), herfst 2019

Sandra Abbo - Jody Hobson-Peters - Gorben Pijlman - Jerome Comes - Tessy Hick

Onderzoek 2022. Wagenings S1-VLP vaccin houdt stand t.o.v. BioNTech/Pfizer en beschermt tegen covid-19. Lees het artikel in Journal of Virology via onderstaande link:

Onderzoek 2021. Ons prototype covid-19 vaccin S1-VLP is klaar en werkt. Lees de publicatie in mBio via onderstaande link.


2017 Onderzoek: Zika- en chikungunyavirus in één muggenbeet

Gelekoortsmuggen kunnen in hun speeksel tegelijkertijd zikavirus én chikungunyavirus hebben. Dat duidt er op dat mensen in één enkele muggenbeet besmet kunnen worden met beide virussen.

Arbovirus group October 2017

Meliawati Poniman - Gwen Nowee - Giel Göertz - Gorben Pijlman - Corinne Geertsema - Sandra Abbo - Jelke Fros

Rik Stuart - Anwar Hiralal - Marleen Henkens - Erich Breukink - Mitchell Neijenhuizen

2018 Onderzoek: Chikungunya virus speelt vals met de aangeboren afweer

Chikungunya virus is an emerging pathogen associated with large outbreaks on the African, Asian, European, and both American continents. In most patients, infection results in high fever, rash, and incapacitating (chronic) arthralgia. CHIKV effectively inhibits the first line of defense, the innate immune response. As a result, stimulation of the innate immune response with interferons (IFNs) is ineffective as a treatment for CHIKV disease. The IFN response requires an intact downstream signaling cascade called the JAK/STAT signaling pathway, which is effectively inhibited by CHIKV nonstructural protein 2 (nsP2) via an unknown mechanism. The research described here specifies where in the JAK/STAT signaling cascade the IFN response is inhibited and which protein domain of nsP2 is responsible for IFN inhibition. The results illuminate new aspects of antiviral defense and CHIKV counterdefense strategies and will direct the search for novel antiviral compounds.


2020 Onderzoek: Aziatische bosmug kan Zika en Usutu virussen overdragen

The Asian bush mosquito Aedes japonicus is invading Europe and was first discovered in Lelystad, the Netherlands in 2013, where it has established a permanent population. Here, we investigate the risk of transmission of ZIKV and USUV by the Asian bush mosquito Aedes japonicus. We found that field-collected Ae. japonicus mosquitoes can experimentally transmit ZIKV and USUV. Of the orally infected mosquitoes, 3% (ZIKV) and 13% (USUV) showed virus-positive saliva after 14 days at 28°C. We also found that ZIKV and USUV activated the antiviral RNA interference immune response of Ae. japonicus. Moreover, a strong barrier in the mosquito midgut restricted virus dissemination, since 96% (ZIKV) and 88% (USUV) of the mosquitoes injected with ZIKV or USUV showed virus-positive saliva. Additionally, we discovered a narnavirus in Ae. japonicus. Given that Ae. japonicus can transmit ZIKV and USUV, we should consider this mosquito as a potential vector for arboviral diseases in Europe.

Arbovirus group 2022

Top: Monique van Oers - Thijmen Zegers - Luzhao Li - Corinne Geertsema - Christiaan Helmes - Sara Ripamonti - Wessel Willemsen - Abbas Freydoonian - Carmen van de Waterbeemd - Taja Zotler - Jelke Fros - Joyce van Bree - Gwen Nowee - Jerome Comes

Bottom: Linda van Oosten - Qiuhong Miao - Tessy Hick - Marleen Henkens - Gorben Pijlman - Sandra Abbo