Explainable AI for Nature Conservation

Published on
July 8, 2020

Diego Marcos Gonzalez will join the University of Tübingen & Max Planck Institute for Informatics as a ELLIS visiting postdoc.

As Deep Learning gets better at visual tasks, including species identification, the learned reasoning behind its decisions gets increasingly obscure. This is in contrast with the procedures developed by taxonomists, the experts in charge of defining the hierarchy of natural species, for manual species recognition. These procedures lead users to follow an identification key, a structured set of attribute observations, to reach a final conclusion. I will be working towards incorporating this structured reasoning into Deep Learning models for species recognition such that their results become more interpretable, hopefully helping experts to spot mistakes or even yet-to-be-described species, and offering amateur users an expert explanation that can help them become experts themselves.