Publicaties

Spatial variation of environmental impacts of regional biomass chains

Hilst, F. van der; Lesschen, J.P.; Dam, J.M.C. van; Riksen, M.J.P.M.; Verweij, P.A.; Sanders, J.P.M.; Faaij, A.

Samenvatting

In this study, the spatial variation of potential environmental impacts of bioenergy crops is quantitatively assessed. The cultivation of sugar beet and Miscanthus for bioethanol production in the North of the Netherlands is used as a case study. The environmental impacts included are greenhouse gas (GHG) emissions (during lifecycle and related to direct land use change), soil quality, water quantity and quality, and biodiversity. Suitable methods are selected and adapted based on an extensive literature review. The spatial variation in environmental impacts related to the spatial heterogeneity of the physical context is assessed using Geographical Information System (GIS). The case study shows that there are large spatial variations in environmental impacts of the introduction of bioenergy crops. Land use change (LUC) to sugar beet generally causes more negative environmental impacts than LUC to Miscanthus. LUC to Miscanthus could have positive environmental impacts in some areas. The most negative environmental impacts of a shift towards sugar beet and Miscanthus occur in the western wet pasture areas. The spatially combined results of the environmental impacts illustrate that there are several trade offs between environmental impacts: there are no areas were no negative environmental impacts occur. The assessment demonstrates a framework to identify areas with potential negative environmental impacts of bioenergy crop production and areas where bioenergy crop production have little negative or even positive environmental impacts