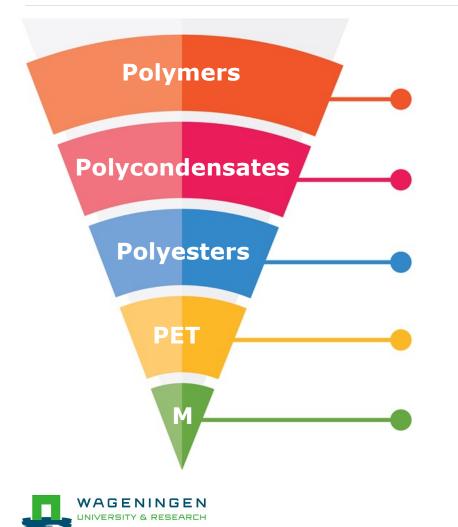

(Bio)Chemical Recycling of Polycondensation Polymers

Depolymerization of polymer back to monomers: opportunities for chemicals & enzymes

Dr. Shanmugam Thiyagarajan, 14th October 2021 Wageningen Food & Biobased Research, The Netherlands

Wageningen University & Research

WU: 12,973 BSc/MSc-students; 2,196 PhD; 3,544 faculty and staff WR: 3,316 staff; Revenue in 2020: € 355 million


www.wur.nl

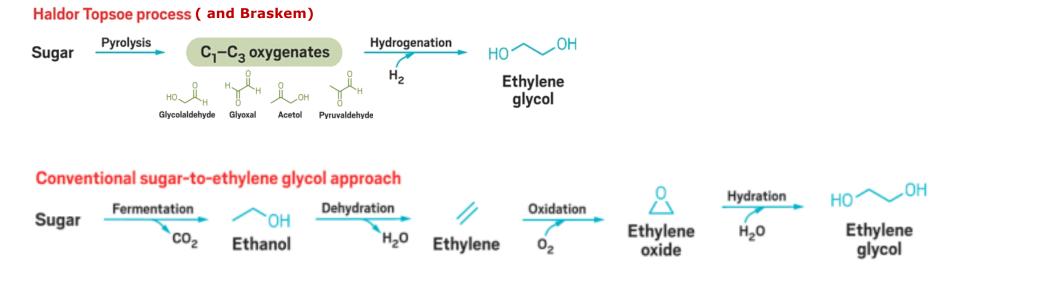
Depolymerization potential of polymers

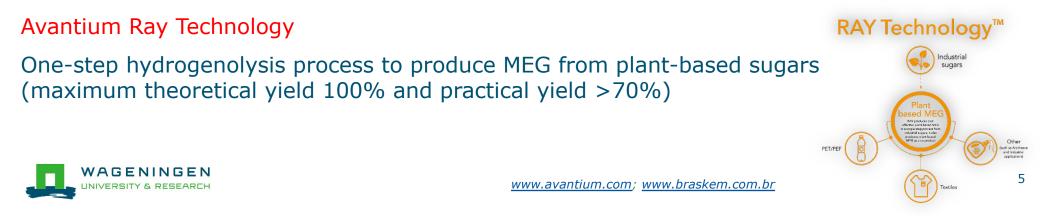
- Polyolefins
 - Polyethylene (PE), Polypropylene (PP)...
 - carbon-carbon (-C-C-) bonds are strong, harsh condition required to breakdown these polymers
 - monomer recovery: difficult, often in lower percentages
- Polycondensates
 - Polyesters, Polyamides...
 - ester (-COO-)/amide (-CONH-) bonds are labile, can breakdown at moderate conditions (comparatively)
 - monomer recovery >90%, relatively in high selectivity

Choice of polycondensation polymers

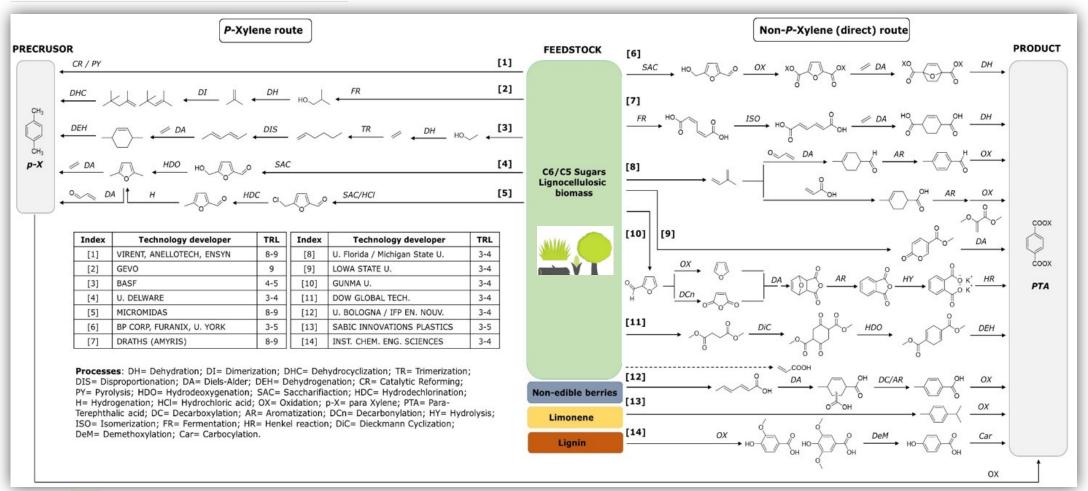
Production volume will continue to raise (in demand) because of expanding property and application range

Polycondensation polymers can more effectively depolymerized/recycled than other polymers

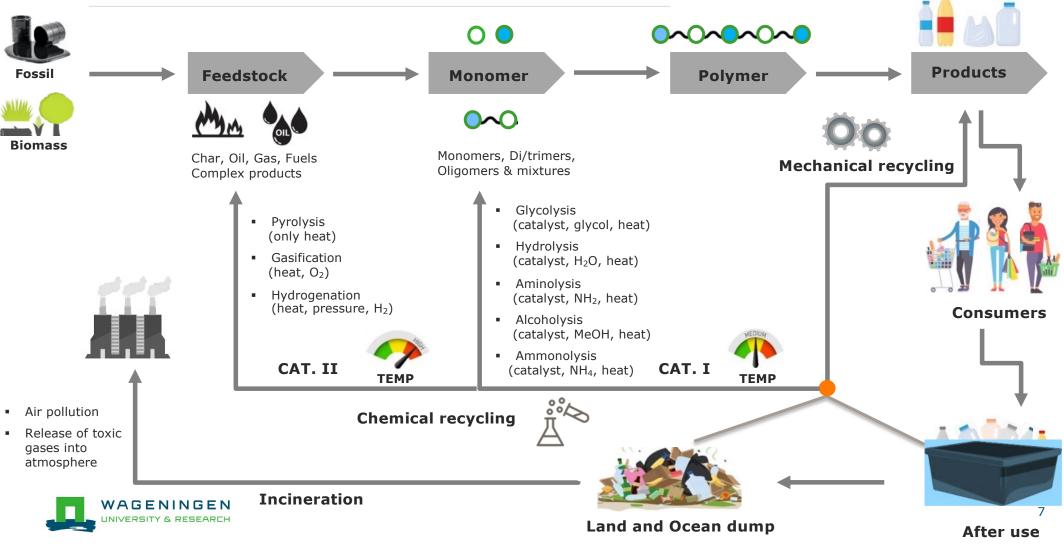

Renewable polyesters can be produced more efficiently from biomass (or CO₂)


Potential to replace other functional polymers (properties and performance yet to be tuned)

p-Terephthalic acid (p-TA) & ethylene glycol (EG)

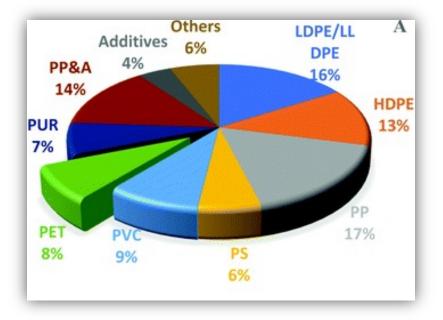

4

EG (MEG) from biomass


PTA from biomass

S. Thiyagarajan, WFBR, internal report, 2021. 6

Life-cycle of a polymer (e.g. PET)


Contents

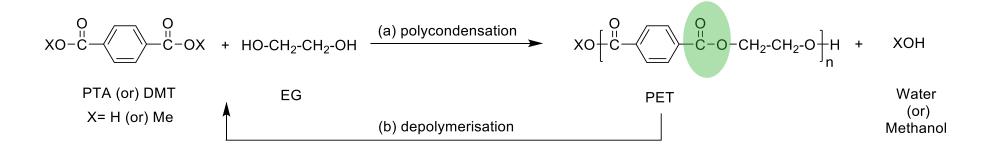
- Bio)-Chemical recycling of:
 - Polyesters >>> PET
- Processes includes:
 - Hydrolysis
 - Alcoholysis
 - Glycolysis
 - Aminolysis and Ammonolysis
 - Enzymatic hydrolysis
- Commercial status of chemical and enzymatic recycling technology

Polyethylene terephthalate (PET)

- Global polymeric material production was 388 MTon in 2019
- Polyethylene terephthalate (PET) produced via polycondensation reaction
 - PET production volumes accounted for 8% (32 Mtons)

plasticsinsight.com.

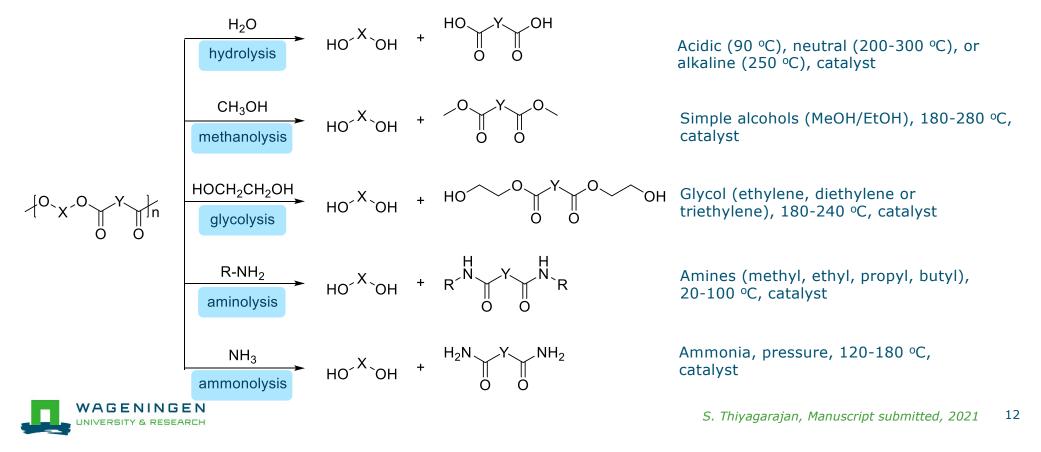
9


Polyethylene terephthalate (PET)

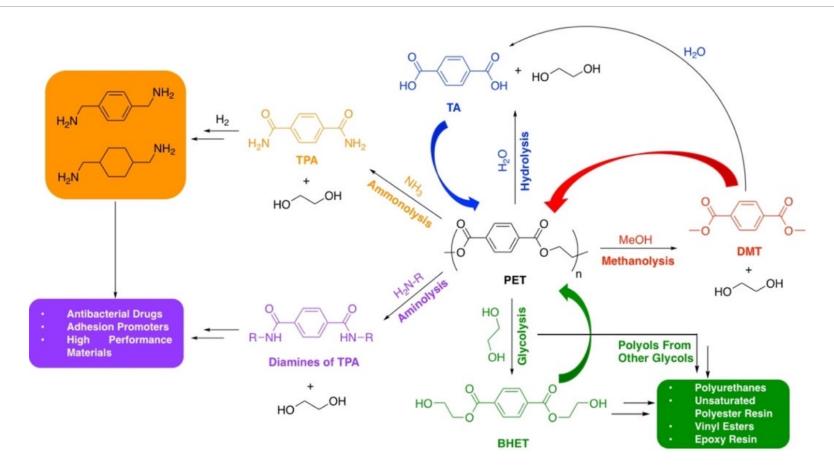
- Polyethylene terephthalate (PET) received significant attention among various commercially available polyesters
 - Production: raw material available in larger volumes and inexpensive
 - Properties: high strength to weight ratio, transparency, durable
 - End of life: Potential for recycling
- Application areas includes (but not limited to) bottle, (food) packaging, and fabrics etc...

Synthesis of Polyethylene terephthalate (PET)

 Dimethyl terephthalate (DMT) (or) terephthalic acid (PTA) and ethylene glycol (EG) are the key monomers for PET production

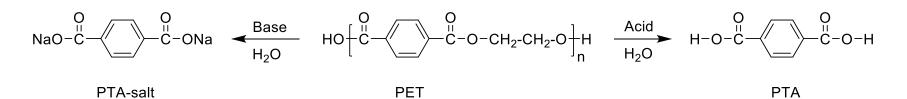


- (a) Condensation reaction between monomers in the presence of transesterification catalyst yields polymer
- (b) Ester bond in polyester offers opportunity to breakdown (suitable condition) resulting in starting monomers (and/or oligomers)



Depolymerisation using solvolysis processes

 Solvolysis of PET demonstrated successfully using different solvents either presence/absence of catalyst


Applications of products recycled from PET

Jack Payne et al., ChemSusChem, 2021, doi.org/10.1002/cssc.202100400 13

Hydrolysis (Acid, Base & Neutral) of PET

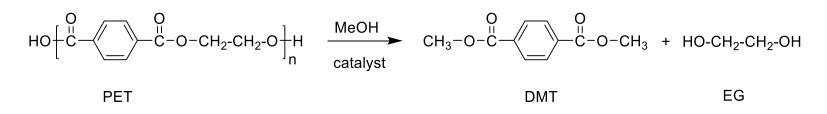
Туре	Reagents	Catalyst
Acid	Sulfuric acid, Nitric acid, Phosphoric acid	None
Base	Sodium hydroxide, Potassium hydroxide	Trioctyl methylammonium bromide, Tetrabutyl ammonium bromide, Tetrabutyl ammonium iodide
Neutral	Water	Zinc/Sodium acetate, Hydrotalcite, Potassium hydroxide, Organophosphotungstic catalyst, zeolites

Each process have their own merits and demerits depending on the operating conditions

Hydrolysis (Acid, Base & Neutral) of PET

 Overview of selected conditions developed for efficient depolymerization of PET back to monomers

					Conditior	าร				Recov	ered		Criteria ³		
Technology developer	Starting material	Technology	Solvent	Reagent	Catalyst	Time (h)	Temp. (°C)	Pressure (bar)	No. of steps ¹	Monomer 4	Yield (%)	TRL ²	C₂	Pe	R7
Tohoku University - Japan	c-PET ⁸	Acid Hydrolysis	H ₂ O	Sulfuric acid	-	1-6	150	ATM ⁹	1	PTA ¹⁰	100	3-4	+/-	+	+/-
Aristotle University - Greece	c-PET ⁸	Base Hydrolysis	H ₂ O	Sodium Hydroxide	-	1-2	200	ATM ⁹	2	PTA ¹⁰	98	3-4	+/-	+	+/-
Al- Mustansiriyah University - Iraq	c-PET ⁸	Base Hydrolysis	H ₂ O	Sodium Hydroxide	Tetrabutyl ammonium bromide	1-2	200	ATM ⁹	2	PTA ¹⁰	98	3-4	+/-	+	+/-
NIAIST-Japan	PET ¹¹	Neutral Hydrolysis	H ₂ O	H₂O	-	0.5-1	420	480	1	PTA ¹⁰	90	3-4	+	+	+
Zhejiang University of Technology - China	c-PET ⁸	Netural Hydrolysis	H ₂ O	H₂O	Zn(OAc)₂	0.5-1	220-300	32	1	PTA ¹⁰	91	3-4	+	+	+/-


Number of steps to obtain final monomer back; 2. TRL: Technology readiness levels according to EU definitions, estimated by the authors based on publicly available information;
 The symbols in the criteria section (estimated by the authors based on publicly available information) are defined as; +: high (or) attractive; -: low (or) less attractive; +/-: average (or) not convincing; 4. Type of monomer obtained from the process; 5. Reaction conditions and possible scale-up options; 6. Purity of monomer(s) obtained in the process;
 Recycling/reusing possibilities of solvents/reagents/catalysts used in the process; 8. Commercial PET sample (Mn 30 Kda or higher); 9. Atmospheric pressure; 10. P-Terephthalic acid; 11. Post-consumer PET waste fraction (mixed PET fraction), pre-treated by extrusion to obtain amorphous PET.

Hydrolysis (Acid, Base & Neutral) of PET

- Though near quantitative yields achieved, some drawbacks that hampers large scale processes
- Acid hydrolysis
 - Severe corrosion of the reactors
 - Loss of recovered monomers (e.g. over oxd. of EG to Oxalic acid)
 - High costs for down-stream processing (DSP)
- Base hydrolysis
 - Often operated at higher T, Inorganic salts formation
 - High costs for down-stream processing (DSP)
- Neutral hydrolysis

Alcoholysis of PET

- Directly yields monomers (DMT and EG), easily recovered by distillation, recrystallization/sublimation
- Organometallic catalysts (or) metal catalyst typically used¹
 - Zn(OAc)₂, Mg(OAc)₂, Co(OAc)₂, Al(O-i-Pr)₃, PbO₂, ZnO (NPs)
- Ionic liquids ([Bmim]Cl) and DES (ChCl·ZnAc) were also demonstrated using supercritical ethanol and methanol
 - DMT yields achieved up to 97.7% at higher temperatures (>200 °C)

Sinha, V., et al., J. Polym. Environ. 2010, 18 (1), 8-25; Wang, H. et al., Green Chemistry 2009, 11 (10), 1568-1575; L. Bartolome, M. I., et al., Recent developments in the chemical recycling of PET," in Material Recycling—Trends and Perspectives. 2012.; Kim, B.-K. et al., J. Appl. Polym. Sci. 2001, 81 (9), 2102-2108

Alcoholysis of PET

 Overview of selected conditions developed for efficient depolymerization of PET back to DMT and EG

					Conditior	าร				Recov	ered		(Criteria	3
Technology developer	Starting material	Technology	Solvent	Reagent	Catalyst	Time (h)	Temp. (°C)	Pressure (bar)	No. of steps ¹	Monomer 4	Yield (%)	TRL ²	C₅	P6	R7
Imam Khomeini Int. University - Iran	c-PET ⁸	Alcoholysis	Butanol	Butanol	КОН	N.D. ¹²	100	ATM ⁹	2	PTA ¹⁰	96	3-4	+/-	+	+/-
lmam Khomeini Int. University - Iran	c-PET ⁸	Alcoholysis	Pentanol	Pentanol	КОН	N.D. ¹²	100	ATM9	2	PTA ¹⁰	96	3-4	+/-	+	+/-
Kumamoto University - Japan	c-PET ⁸	Methanolysis	Methanol	Methanol	-	0-1.5	300	147	1	DMT ¹³	98	3-4	+	+	+
Chinese Academy of Sciences- China	c-PET ^e	Methanolysis	Methanol	Methanol	Zn(OAc) ₂	0.5-1	250-270	110	1	DMT ¹³	95	3-4	+	+	+/-

1. Number of steps to obtain final monomer back; 2. TRL: Technology readiness levels according to EU definitions, estimated by the authors based on publicly available information; 3. The symbols in the criteria section (estimated by the authors based on publicly available information) are defined as; +: high (or) attractive; -: low (or) less attractive; +/-: average (or) not convincing; 4. Type of monomer obtained from the process; 5. Reaction conditions and possible scale-up options; 6. Purity of monomer(s) obtained in the process; 7. Recycling/reusing possibilities of solvents/reagents/catalysts used in the process; 8. Commercial PET sample (Mn 30 Kda or higher); 9. Atmospheric pressure; 10. P-Terephthalic acid; 12. Not described; 13. Dimethyl terephthalate.

Glycolysis of PET

Process of depolymerizing PET chains using glycols at temperature between 180-240 °C

- BHET (a,ω-dihydroxy molecule) and glycolates obtained as end-product
 - BHET used as monomer for PET synthesis
 - Glycolates in unsaturated polyester resins, vinyl esters, plasticizers, polyurethanes and epoxy resin etc...

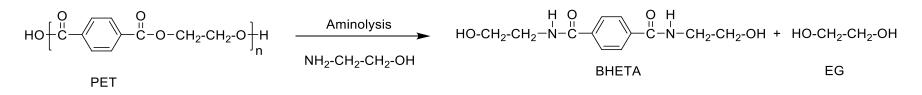
Glycolysis of PET

- Glycols investigated
 - Ethylene glycol (EG), diethylene glycol (DEG), propylene glycol (PG), dipropylene glycol (DPG), 1,4-butanediol (BD)
 - Triethylene glycol (TEG), poly(ethylene glycol) neopentyl glycol (NPG)
- Catalysts explored: transesterification catalyst, metal salts, metal oxides, ionic liquids (acid, base and neutral), hydrotalcites, deep eutectic solvents (DES), zeolites, organic base, Polyoxometalates (POMs), Urea/metal salt mixtures, popular examples includes:
 - Zn(OAc)₂, Mn(OAc)₂, Co(OAc)₂
 - NaHCO₃, Na₂SO₄, K₂SO₄,

Tetrabutoxy titanium, Titanium isopropoxide

Glycolysis of PET

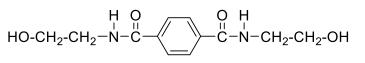
 Overview of selected conditions developed for efficient depolymerization of PET back to BHET monomer


				_	Conditions	-	_			Recovered				Criteria	3
Technology developer	Starting material	Technology	Solvent	Reagent	Catalyst	Time (h)	Temp. (°C)	Pressure (bar)	No. of steps ¹	Monomer 4	Yield (%)	TRL ²	C₂	P6	R7
UFRGS- Brazil	C-PET [₿]	Glycolysis	Ethylene glycol	Ethylene glycol	Zn(OAc) ₂	2	196	ATM ⁹	1	BHET ¹⁴	83	3-4	+	+	+/-
Henan Normal University - China	c-PET ⁸	Glycolysis	Ethylene glycol	Ethylene glycol	Zn(OAc) ₂	1-5	196	ATM ⁹	1	BHET ¹⁴	86	3-4	+	+	+/-
Institute of Process Engineerin g -China	c-PET ⁸	Glycolysis	Ethylene glycol	Ethylene glycol	Bmim₂(CoCl₄)	1.5	175	ATM ⁹	1	BHET ¹⁴	96	3-4	+	+	+/-

1. Number of steps to obtain final monomer back; 2. TRL: Technology readiness levels according to EU definitions, estimated by the authors based on publicly available information; 3. The symbols in the criteria section (estimated by the authors based on publicly available information) are defined as; +: high (or) attractive; -: low (or) less attractive; +/-: average (or) not convincing; 4. Type of monomer obtained from the process; 5. Reaction conditions and possible scale-up options; 6. Purity of monomer(s) obtained in the process; 7. Recycling/reusing possibilities of solvents/reagents/catalysts used in the process; 8. Commercial PET sample (Mn 30 Kda or higher); 9. Atmospheric pressure; 10. P-Terephthalic acid; 12. Not described; 13. Dimethyl terephthalate; 14. Bis(2-hydroxyethyl) terephthalate.

Aminolysis of PET

 Depolymerization of PET using amine solvent results in thermodynamically stable terephthalic acid amide



- Catalyst investigated
 - Cetyl ammonium bromide (CAMBr), DBTO, Zn(OAc)₂, Na(OAc)₂, K₂SO₄
- Solvents/Reagent
 - Ethanol amine, methyl amine, diethanol amine, triethanol amine, ethylene diamine, triethylene tetra-amine, triethylene penta-amine

Aminolysis of PET

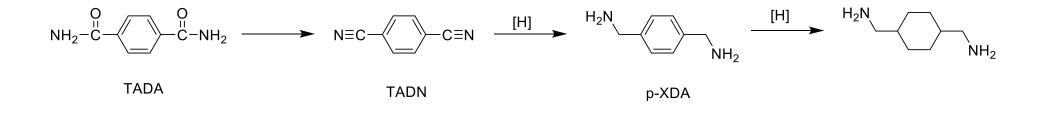
- Potential application explored for BHETA includes:
 - novel polyurethanes, unsaturated polyester resins, bisoxazoline synthesis, and non-ionic polymeric surfactants
 - additives in concrete mixture
 - antibacterial chemicals

					Conditior	าร				Recov	ered		(Criteria	3
Technology developer	Starting material	Technology	Solvent	Reagent	Catalyst	Time (h)	Temp. (°C)		No. of steps ¹	Monomer 4	Yield (%)	TRL ²	C₅	Pe	R7
Institute of Chemical Technology -India	c-PET ^e	Aminolysis	Acetic acid	Ethanol amine	Sodium acetate	0-0.5	172	ATM ⁹	1	BHETA ¹⁷	91	3-4	+/-	+	-

Ammonolysis of PET

 PET depolymerization in the presence of ammonia at (higher) temperature is called ammonolysis

					Condition	S				Recovered			(Criteria	3
Technology developer	Starting material	Technology	Solvent	Reagent	Catalyst	Time (h)	Temp. (°C)	Pressure (bar)	No. of steps ¹	Monomer 4	Yield (%)	TRL ²	C₂	Pe	R7
Charan Singh University- India	C-PET ⁸	Ammonolysis	-	NH_4	Zn(OAc)₂	360	RT ¹⁸	ATM ⁹	1	PTA diamide19	>90	3-4	+/-	+/-	-

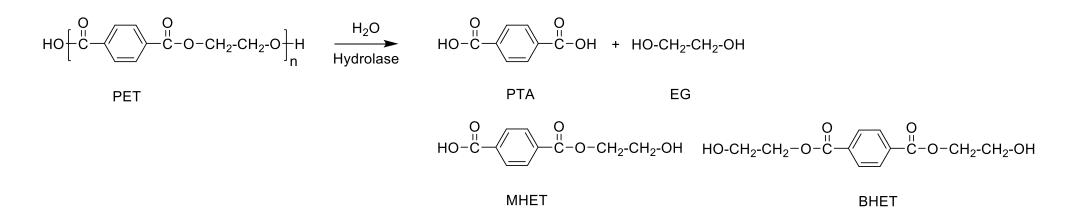

Operating conditions:

• 70-180 °C, 2-20 bar NH₃, Cetyl ammonium bromide (CAMBr), Zn(OAc)₂

Ammonolysis of PET

Up to 90% terephthaldiamide (TADA) is obtained with >99% purity

 TADA can be used to produce terephthalonitrile (TADN), a precursor for either p-xylenediamine (p-XDA) or 1,4-bis(aminomethyl)cyclohexane, (for polyamide synthesis)



Enzymatic hydrolysis of PET

- Enzymatic hydrolysis are advantageous
 - Environmentally friendly, mild reaction conditions (<100 °C); ATM pressure
- Amylases, cellulases, xylanases, pectinases, chitinases and cutinases are well-known examples of hydrolytic enzymes that breakdown naturallyoccurring bio-polymers
- Lately, these enzymes proven for the depolymerisation of polycondensation polymers, for e.g. PET
- Carbios (French biotech company) front-runners in this technology, holding various patents and commercialized PET degradation using enzymes
- Main challenge: limited to amorphous or low-crystallinity materials (<10%)</p>

Enzymatic hydrolysis of PET

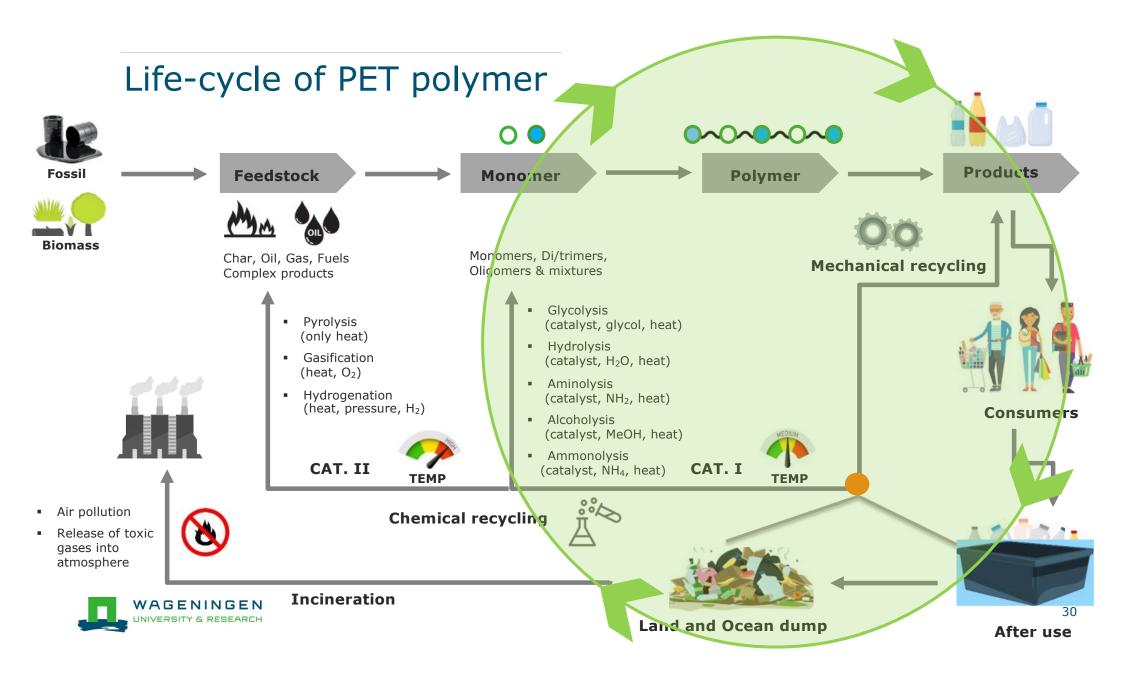
 Depending on enzyme and reaction conditions, one or more products are formed in typical enzymatic hydrolysis reaction

MHET found to inhibit enzyme activity (T-fusca polyester hydrolase) and needs second enzyme addition to break down further to proceed the reaction

Type of Enzyme	Microorganism	Materials	Temperature (°C)	Product
Cbotu_EstA	Clostridium botulinum ATCC3502	PET film	50	TPA,MHET
Lipases	Candida cylindracea	PET nanoparticels	40	1,2-Ethandiol, TPA
Tcur0390	Thermomonospora curvata DSM43183	PET nanoparticels	50	NA
Hydrolase TfH	Thermobifida fusca DSM43793	PET pellete	44–55	TPA, EG
TfCut1	Thermobifida fusca KW3	PET nanospheres	55-65	HEB, MHET, BHET, Benzoic acid
Tha_Cut1	Thermobifida alba DSM43185	PET	50	TPA, Benzoic acid, HEB, MHET
MHETase and PETase	Ideonella sakaiensis	PET	30	MHET
BsEstB	Bacillus subtilis 4P3-11	PET	40-45	TPA, Benzoic acid, MHET
LCC cutinase	Leaf-branch compost	Amorphous PET	50-70	MHET, TPA, Benzoic acid
Polymer polyhydrox- yalkanoate	Pseudomonas	PET	70	EG,TPA
Hydroxyalkanoyloxy- alkanoate	Pseudomonas	PET	70	EG,TPA
Thc_Cut2	T. cellulosilytica	PET films	50	MHET, TPA, BA, HEB
Arg29Asn	Mutant The_Cut2	PET films	50	MHET, TPA, BA, HEB
Lipases	Aspergillus oryzae CCUG 33812	PET fabric	55	BHET, TPA
Gln65Glu	Mutant The_Cut2	PET films	50	MHET, TPA, BA, HEB
TfCut2	Thermobifida fusca KW3	PET films	60	MHET
Thh_Est-esterase	Thermobifida halotolerans	3PET model substrate	50	MHET,TPA, BA, HEB

Overview of enzymatic degradation of PET

- Longer reaction time required for completion (10-96 h)
- Operated up to 70°C
- Various PET grades investigated
- Yield up to 97% demonstrated (mixture of monomers)


Damayanti et al., 2021, https://doi.org/10.3390/polym13091475

28

Overview of
chemical
companies
in
PET
recycling

Company	Type of PET plastic	Technology	Catalyst/Reagent/M edium	Monomer/product	Development stage	Processing capacity
Gr3n (DEMETO) -SW	<u>Bottle grades</u> , packaging, textile	Alkaline hydrolysis	Microwave, base	PTA ¹	Pilot plant	60 kg/h
Eastman	Bottle grade, <u>scrap from</u> <u>various products</u>	Glycolysis/ Methanolysis	N.I.A. ²	BHET ³ /DMT ⁴	Pilot plant	N.I.A. ²
Loop	Low value material, fibre, carpet, scraps, <u>ocean debris</u>	Methanolysis	N.I.A. ²	DMT ⁴	Early commercial	N.I.A. ²
IBM (VolCat) - USA	Bottle grade, packaging, scrap from various products	Glycolysis	DBU⁵ (IBM)	BHET³	Early stage towards pilot plant	N.I.A. ²
Garbo (ChemPET) - IT	Bottle grade, <u>multi-laver</u> <u>packages</u> , fibres, textiles	Glycolysis	N.I.A. ²	BHET ^₃	Pilot plant	1000 t/year
loniqa Technologies - NL	Bottle grades, <u>textiles</u> , multi- layer packages	Glycolysis	Magnetite, (Bmim)(FeCl ₄)	BHET³	commercial Pilot plant	10 kt/year
Jeplan (BRING)	Bottle grade, <u>fibre</u> , textiles	Glycolysis	Sodium Methylate, Carbon⁵	BHET³	Pilot plant	20-25 kt/year
PerPETual – UK/IN	Bottle grades	Glycolysis	N.I.A. ²	Low MW oligomers	Commercial plant	~2 million plastic bottles per day
Resinate Materials Group (Recyolysis)	Bottle grade, scrap from various products, PETG	Glycolysis	N.I.A. ²	Polyester Polyol ⁷	Pilot plant	200 metric ton and 4,500 metric ton
Carbios - FR	Bottle grades, textile, fibres	Enzymatic	Engineered PET- depolymerase	PTA ¹	Pilot plant under construction	N.I.A. ²
BP (Infinia)	Bottle, unrecyclable scrap from various products	Hydrolysis	N.I.A. ²	PTA ¹	Early stage of Pilot plant	N.I.A. ²
Poseidon Plastics	Scrap from various products	Glycolysis	N.I.A. ²	BHET³	Pilot plant	1000 t/year

Thank you for your attention!

Acknowledgments: WFBR colleagues

shanmugam.thiyagarajan@wur.nl
+31-317-480158

6 explore the potential of nature to improve the quality of life