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Current situation



1. Crisis: Anthropogenic Climate Change 

 Cause: uncontrolled/unmitigated Green House Gas emissions (CO2, CH4)

 Effect: global existential threat

● Severe weather conditions, flooding, etc

● Failing crop harvests (famine)

● Energy crises

● Tipping points, accelerating, exponential, uncontrollable 

 Solution: eliminate linear GHG emissions; restore biosphere equilibria

Current situation
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2. Crisis: Anthropogenic Persistent & Accumulating global pollution

 Cause: uncontrolled/unmitigated environmental emissions of persistent chemicals and 

materials (e.g. PFAS, HCFCs, nano-plastics, plastic soup)

 Effect: global existential threat, e.g.

● (eco)Toxicity

● Decreasing biodiversity

 Solution: phase out of ‘forever’ chemicals and materials; restore biosphere equilibria

Current situation
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From Linear to Circular



 Current production; cradle to gate/grave

1. Low cost (cradle tot gate, costs non-inclusive)

2. High performance (strength, durability, weight, etc) Now overdesigned?

3. No/few concern(s) about End-of-Life scenarios

 Circular production; cradle to cradle

1. EoL options should be clear; licence to produce

2. Costs should include EoL, EPR

3. Performance should be related to overall circularity

● Sometimes less is better?

From linear to circular
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Needed: A new sustainable, circular economy

1. Keep what works (time is running out) 

● Condensation polymers vs polyolefins

● Also consider inter-material exchange: paper vs plastic, wood vs steel, glass vs PET

2. Change what is needed

● Linear non-renewable feedstock use (fossil feedstocks)

● Linear waste generation (fossil based GHG, chemicals and materials emissions)

● Close resource loops (reuse, repair, recycle, recover) 

Designing a Circular Carbon Economy
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R-ladders – e.g. 7R Model (Royal HaskoningDHV)

 Reuse, Repair/Refurbish, Recycle; cascading 

● Limit energy demand, limit resource losses

 Recover: energy reclaim: not a good long-term choice! 

● Recover C: CCS+U; CHP -> bonus; focus on controlling carbon cycles

 Rethink & Reduce: excellent; disruptive, out-of-the-box, paradigm shift 

● Prevent linear extrapolation of current situation

● Back-casting from desired ideal situation

Designing a Circular Carbon Economy
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Note: Simultaneous interacting transitions as part of transition to circularity

 Renewable energy transition: zero-net emissions technologies

● Also driven by desire for energy independence & security

 Circular agriculture transition: save biodiversity, prevent soil degradation

 Protein transition: reduce GHG emissions, secure global food accessibility

 Renewable chemicals and materials transition

● Move from fossil/linear- to renewable feedstocks

● Control resource cycles; prevent losses

● Don’t forget industrial renewable energy transition…

Transition(s) towards a Circular Economy
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Focus of this presentation: Carbon based chemicals and materials

 Enormous complexity and variety: excellent for functionality & performance

● Detrimental for recycling and control

 Very large scale

● » 500 million ton/a (and growing): (point)sources?

 Ideally: Control/limit

● Uncontrolled emissions of GHG (not only CO2, but also CH4!), toxic substances, 

persistent chemicals and materials

● Loss of feedstocks (500 Mt/a virgin renewable feedstocks?)

Circular carbon based chemicals and materials
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Second law of thermodynamics

 Entropy: a natural process runs only in one sense, and is not reversible

 In other words without the input of energy (work) a system tends to increase its 

entropy (“chaos”)

● Chemicals and materials degrade (abrasion, hydrolysis, oxidation, 

thermal/photo degradation, biodegradation, etc)

● Chemicals and materials disperse (littering, leakage, leaching, etc)

 Full control is an illusion; yet reduced complexity helps

Control vs Reality
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WUR Model for circular materials and chemicals
(work in progress)



In a circular carbon economy:

 All feedstocks (and energy) are renewable

 All products are either single use or (potentially) recyclable  
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Single use products

 EoL - Disperse, complex, contaminated, toxic

 Focus on long cascading carbon cycles
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Single use products

 Complexity possible (H&PC formulations, CASE, hygiene products)

 Funnel complex/contaminated to C1 resources with known/new technology

 Control required at EoL; waste collection, waste water treatment, etc.

 Sustainable & selective C1 conversion methods (fermentation, electrochem, etc)
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Recyclable products

 EoL - Concentrated, simple, deconstructable

 Focus on short cascading carbon cycles

17

Chemical recycling Digestion

Incineration Biodegradation

C D

E F

3
Reuse Mechanical recyclingA B



Recyclable products

 Limit complexity; ease Collection & Sorting; increase concentration

 Mechanical recycling options limited for materials (degradation, contamination)

 Chemical recycling required to retrieve carbon and retain energy

 Most important variable: selective deconstruction and efficient DSP
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Examples for circular materials
PE vs PLA

An exercise for discussion
(work in progress)



 PE -> ethylene: >200,000 kt/a (www.statista.com)

● Many other outlets for ethylene: PVC, EO, EG, PS, LAO, etc.

 Many different grades of PE: LLDPE, HDPE, UHMWPE, etc.

 Currently majority of fossil based ethylene via steam cracking (naphta or ethane)

● 850°C: 1-1.6 tons CO2 emission per ton of ethylene

● Selectivity from naphta 25-35 wt% (+15wt% propylene)*

● Selectivity from ethane 53 wt% (70% conversion)*

 Cost-efficient due to mega-scale; 1 ton ethylene requires 3-4 tons of naphta

* source TechnipFMC

Example: PE – current situation
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Renewable ethylene

 SOTA: Fermentation of glucose to bioethanol -> dehydration to ethylene

● Selectivity: 1 glucose -> 2 ethanol + 2 CO2 -> 66% carbon efficient

● 1 ton of glucose yields 450-500 kg ethanol

● 1 ton of ethanol yields approx. 1 ton of CO2

 Ethanol dehydration to ethylene

● 300-500 °C; Selectivity 95-99% at 89-99% conversion

● 1 ton of ethylene requires 1.64 tons of ethanol

 Overall: 1 ton of bio-ethylene requires 3.2 tons of glucose

Example: renewable PE?
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Current global bioethanol production approx. 80,000 kt

 80,000 kt ethanol -> 61,000 kt ethylene = 31% of current fossil production

 Bioethanol production by fermentation is mature and scalable

Alternative routes to Renewable Ethylene

 Fermentation of COx gas to ethanol

● Syngas (CO/H2) to ethanol, industrial e.g. 80 kt plant by Lanzatech

● CO2 + H2 to ethanol, low TRL level

 Direct electrochemical reduction of CO2, low TRL level

 Biomass gasification/combustion + CCU + renewable H2

Example: renewable PE?
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PE End-of-Life scenarios

 Mechanical recycling: challenging due to separation of (incompatible) grades from mixed 

polyolefin waste

 Chemical depolymerisation: 

● Current practice

● Pyrolysis (700-900°C): traditional focus on liquid fuel

● Low selectivity to ethylene (30-40%)

● Potential technology: gasification/combustion followed by fermentation or 

electrochem; hydrocracking to methane; possible yet low TRL

Example: circular PE?
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PE End-of-Life scenarios

 Biodegradability of PE is extremely low

● Littering -> environmental persistence

 Combustion (waste incineration); partial energy recovery

● Note: 1 ton of PE (or general polyolefin) generates 3.1 tons of CO2

 Landfill: Undesirable? -> uncontrolled emissions e.g. CO2 and CH4

● Storing biologically inert polyolefins reduces CO2 emissions

● Renewable polyolefins -> condensed carbon sequestration

● Out of the box solution?

Example: circular PE?
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 Lactic acid (LA); almost exclusively from sugar fermentation; approx. > 1,000 kton/a

 Polylactic acid (PLA) from LA; approx. 500 kt/a, typically in 100-150 kt plants

● Technology proven and scalable

 Industrial LA yields are typically 900 kg LA per ton of glucose

● Very C-efficient and selective

Example: circular PLA?
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PLA End-of-Life?

 PLA is mechanically recyclable

 PLA can be chemically recycled via

● Solvolysis to lactic acid (esters): >98%, industrial practice

● Thermolysis to lactide: 50-80%, low TRL

 PLA is not readily biodegradable (though ultimately biodeg, and biocompatible): durable 

products possible, yet not persistent

 Biodegradable under controlled industrial conditions (e.g. anaerobic digester)

Example: circular PLA?
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Example: (bio)PE vs PLA

(bio)PE

 Industrial: very large scale

 Renewable: potentially

 Steps from glucose: 3

 1 ton PE -> 3.2 ton glucose

 Biodeg: No

 ChemRec: <40% ethylene

 Incineration: 3.1t CO2/tPE

PLA

 Industrial: large scale

 Renewable: yes

 Steps from glucose: 3

 1 ton PLA -> 1.1 ton glucose

 Biodeg: yes (not readily)

 ChemRec: >90% LA

 Incineration: 1.8t CO2/tPLA
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Preliminary conclusions from comparison

 Use glucose as feedstock for (P)LA (more efficient C-use)

 Identify which PE applications can be substituted with PLA

 Design full scale circular system for PLA (replace part polyolefins, part PET)

 Use C1 stream from biomass for ethanol -> ethylene

 Develop more selective ChemRec processes for (bio)PE; until then sequester, don’t 

incinerate

 Part of on-going internal WUR project (TEE and early stage LCA)

Example: (bio)PE vs PLA
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 The definitions and concepts of circularity are still developing and improving

● Note: 100% recycling is impossible 

 Performance of a substance or material should include circularity

● Resource renewability and efficiency

● Carbon footprint (i.e. selectivity and sustainability in production)

● Closing carbon cycles at EoL

● Control over EoL (e.g. emission control and environmental half-life)

 All future chemicals and materials (existing and new) should be designed for circular

Conclusions
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