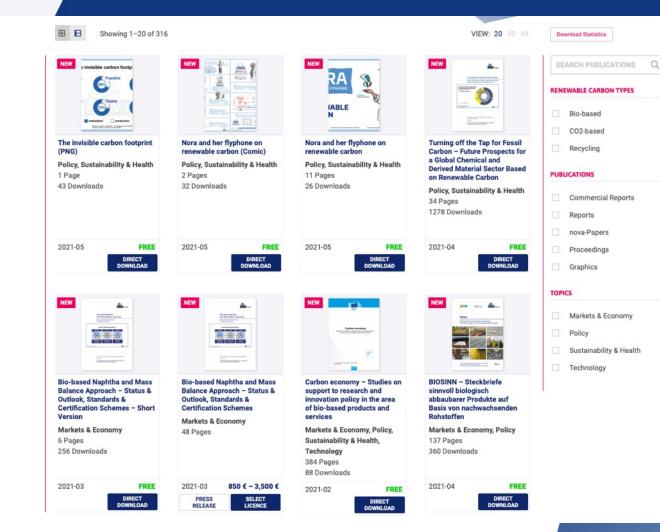


Market Data and Trends for "Bio-based Building Blocks and Polymers"

Nova-Institute Wageningen University & Research 19 October 2021, ONLINE

Pauline Ruiz, nova-Institute



nova provides studies on all renewable carbon relevant topics such as bio-based & CO₂-based polymers as well as chemical recycling

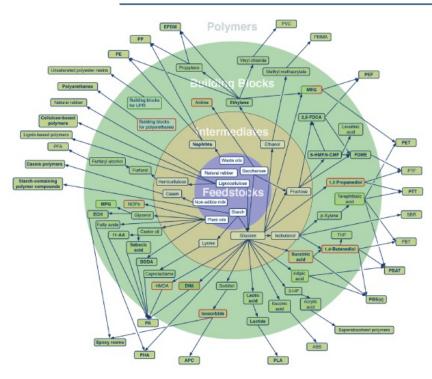
Renewable Carbon Publications

Over 300 publications on bio-based, CO₂-based and recycling by nova-institute

www.renewablecarbon.eu/publications

Market and Trend Reports on Renewable Carbon

The Best Available on Bio- an CO₂based Polymers & Building Blocks and Chemical Recycling


renewable-carbon.eu/ publications

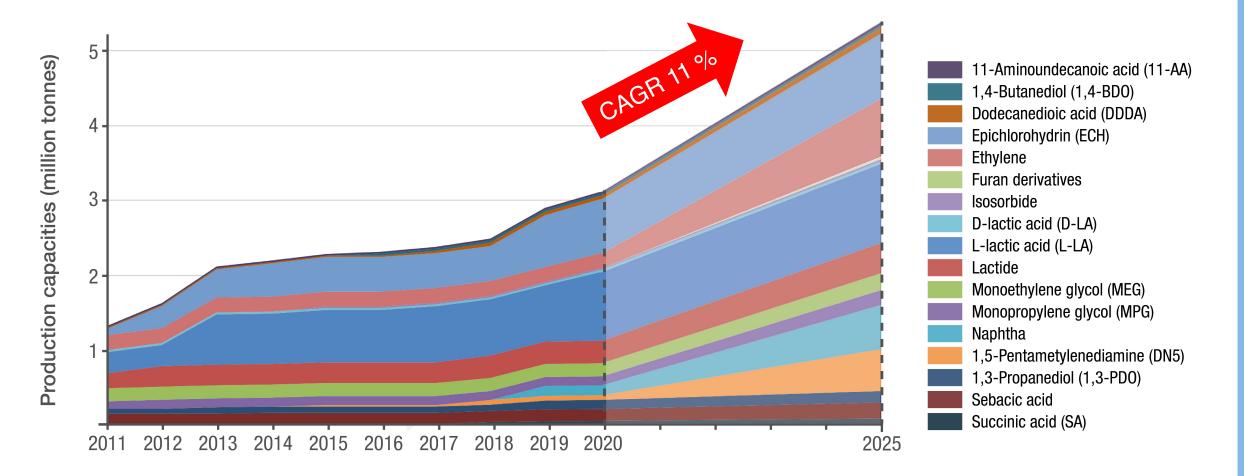
Bio-based Building Blocks and Polymers – Global Capacities, Production and Trends 2020–2025

Authors: Pia Skoczinski, Michael Carus, Doris de Guzman, Harald Käb, Raj Chinthapalli, Jan Ravenstijn, Wolfgang Baltus and Achim Raschka

January 2021

This and other reports on renewable carbon are available at www.renewable-carbon.eu/publications

- Published in January 2021
- Data for 2020
- 338 pages
- 17 bio-based building blocks and 17 polymers
- 174 company profiles
- € 3,000 <u>www.renewable-carbon.eu/publications</u>



Bio-based Building Blocks

Bio-based building blocks Evolution of worldwide production capacities from 2011 to 2025

Increase in production capacity of 212,000 tonnes from 2019 to 2020

- Asian expansion of epichlorohydrin (ECH) capacity
- Asian capacity increase of **D-/L-lactic acid**
- European capacity increase of 1,3-propanediol (1,3-PDO)
- Asian increase in **succinic acid (SA)** capacity

	2020	2025
Capacity	3.1 million tonnes	5.4 million tonnes

Main drivers for capacity increase to 2025:

- 11-Aminoundecanoic acid (11-AA)
- Dodecanedioic acid (DDDA)
- Ethylene
- Furan derivatives: 5-Chloromethylfurfural (5-CMF), 2,5-furandicarboxylic acid (2,5-FDCA), 5-hydroxymethylfurfural (5-HMF)
- Monopropylene glycol (MPG)
- Naphtha
- 1,5-Pentamethylenediamine (DN5)
- Succinic acid (SA)

5-Chloromethylfurfural (5-CMF), feedstock: fructose

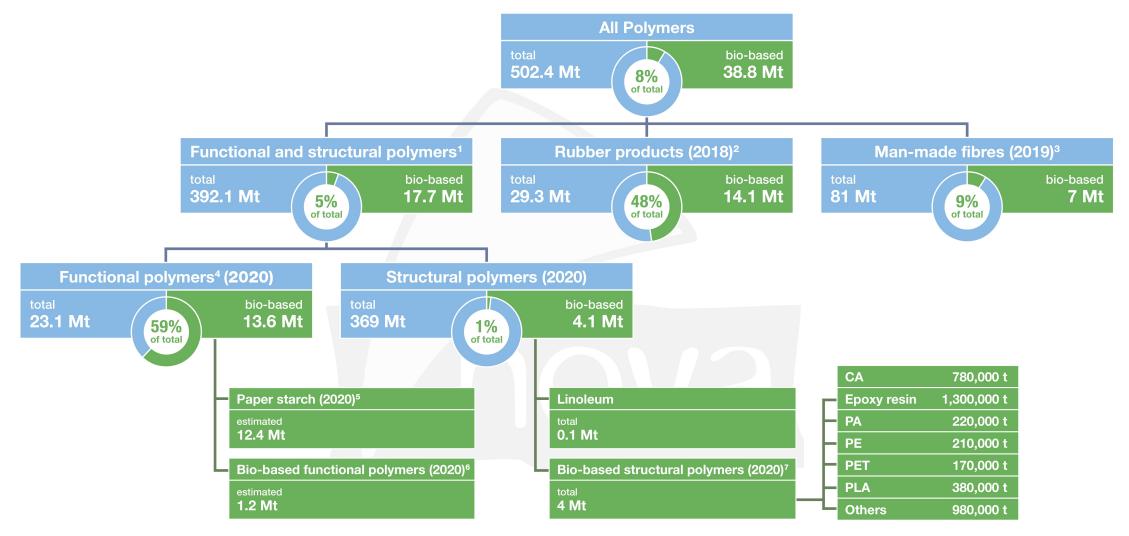
- Alternative for 2,5-FDCA and FDME synthesis via the instable 5-HMF
- Mainly used as an intermediate and raw material for the production of biofuels and bio-based PET
- Production is mainly in North America and Australia and expected for 2021/2022

5-Hydroxymethylfurfural (5-HMF), feedstock: fructose

- Mainly used as the basis for 2,5-FDCA production
- Production is mainly in Europe, currently at demo scale, large scale production expected for 2025

2,5-Furandicarboxylic acid (2,5-FDCA), feedstock: fructose

- Most important application as a building block for the production of bio-based polyesters, polyamides, and polyurethanes
- Can potentially replace several chemicals as terephthalic acid (TPA), bisphenol A, adipic acid and phthalic anhydride
- Strong potential to be used in the production of solvents especially novel solvents
- Production is mainly in Europe, currently at demo scale, large scale production expected for 2023

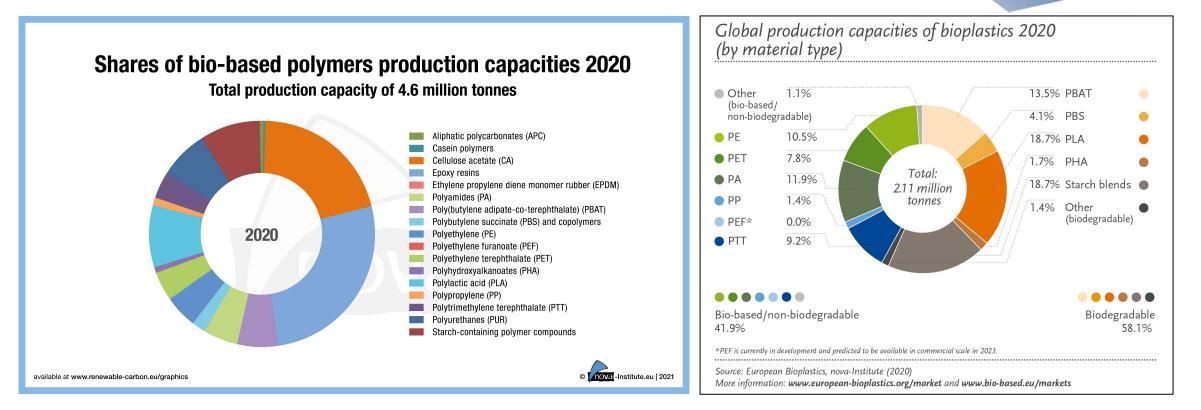


Bio-based Polymers

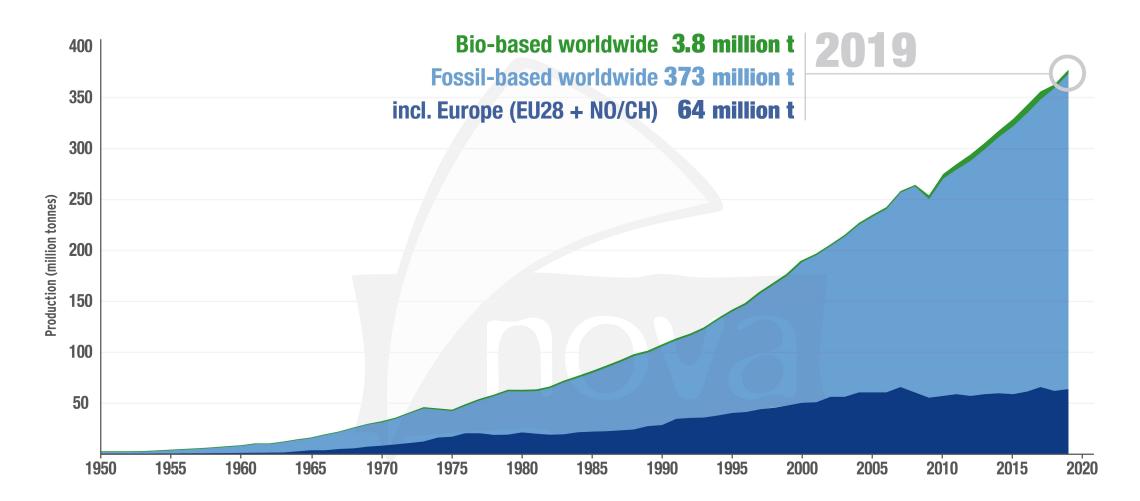
– 13 –

Polymers worldwide, bio-based shares (2018-2020)

Sources: ¹ Plastics Europe; ² International Rubber Study Group (IRSG); ³ The Fiber Year 2020; ⁴ Calculations by nova-Institute based on different company and industry reports; ⁵ Calculations by nova-Institute based on CEPI, FAOSTAT, Starch Europe; ⁶ Calculations by nova-Institute based on different industry reports; ⁷ nova-Institute: Bio-based Building Blocks and Polymers – Global Capacities, Production and Trends 2020–2025, **www.bio-based.eu/reports**

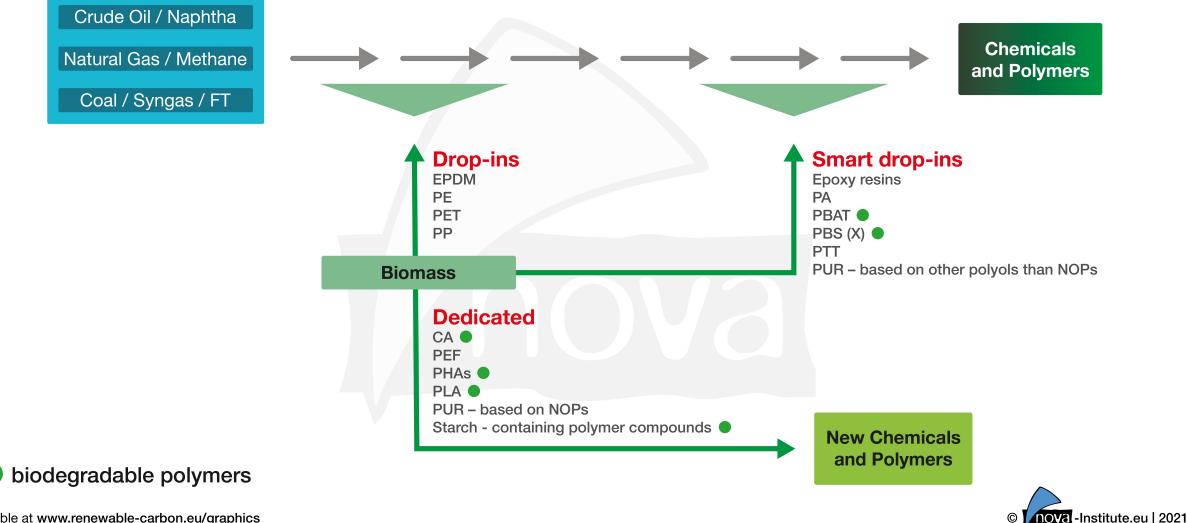


available at www.renewable-carbon.eu/graphics

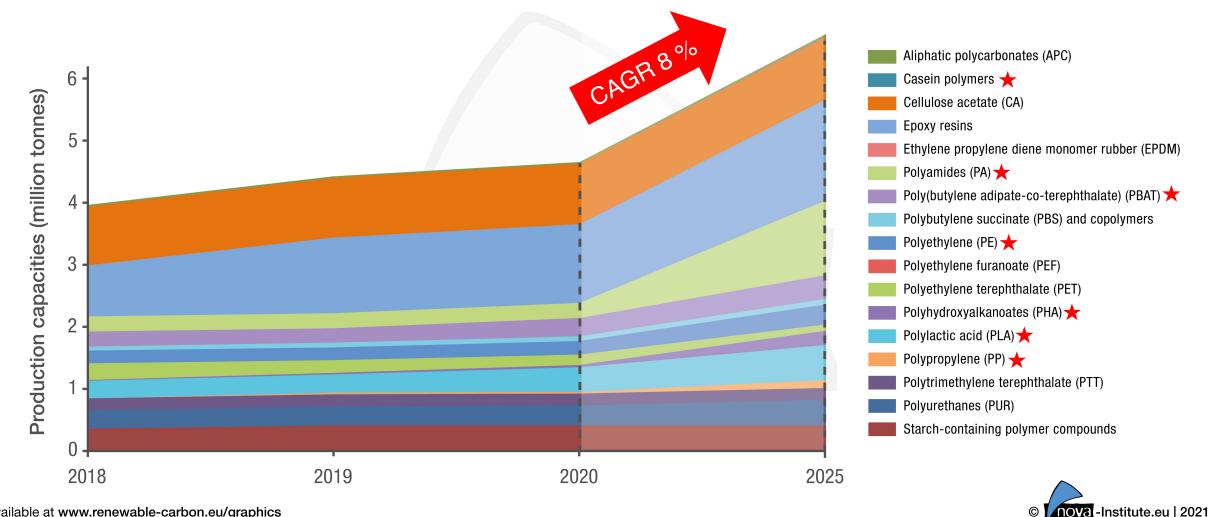

Difference between nova and EUBP data

EUBP data does not include aliphatic polycarbonates (APC), casein polymers, cellulose acetate, epoxy resins, ethylene propylene diene monomer rubber (EPDM) and polyurethanes (PUR).

Plastics production from 1950 to 2019



available at www.renewable-carbon.eu/graphics


Includes thermoplastics, polyurethanes, thermosets, elastomers, adhesives, coatings and sealants and PP-fibres. Not included PET-, PA-, and polyacryl-fibres.

Schematic differentiation of pathways of drop-in, smart drop-in and dedicated bio-based chemicals and polymers

available at www.renewable-carbon.eu/graphics

Bio-based polymers Evolution of worldwide production capacities from 2018 to 2025

Significant Findings from 2019 to 2020

	2019	2020
Capacity	4.4 million tonnes	4.6 million tonnes
Production	3.9 million tonnes	4.2 million tonnes

Increase in production capacity of 229,000 tonnes from 2019 to 2020

- Asian expansion of **epoxy resin** production
- Increase in Asian capacity for poly(butylene adipate-co- terephthalate) (PBAT) and polybutylene succinate (PBS)
- European production increase for **polyethylene (PE)** and **polypropylene (PP)**
- Worldwide PHA capacity increase
- Asian expansion in PLA capacity

	2020	2025
Capacity	4.6 million tonnes	6.7 million tonnes

Main drivers for capacity increase to 2025:

- Casein polymers
- Polyamides (PA)
- Poly(butylene adipate-co- terephthalate) (PBAT)
- Polyethylene (PE)
- Polyhydroxyalkanoates (PHA)
- Polylactic acid (PLA)
- Polypropylene (PP)

Peak capacity and production 2013 to 2016: 650,000 t/a

 Mainly based on the Plant PET Technology Collaborative (PTC) initiative launched by The Coca Cola Company

Significant decrease in actual production 2016 to 2020: 165,000 t/a

- Operation rate for PET production is at 10 %, at least for 2 producers disclosing their production
- Annual decrease of 15 % of the production is estimated by the end of 2025
- Coca Cola, the main customer of bio-based PET, decided to not further use this bio-based alternative on large scale – all expansion plans were stopped (originally up to 7 Million t).
 - Decision of Coca Cola was due to low crude oil prices together with high production costs of MEG
 - The marketing effects of the GreenBottle were far less than expected (wrong product)
 - Major bio-based MEG producer is India glycols

Worldwide PLA capacities

2011-2025

(example)

es highlighted in gr												
Company	Location	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	
BBCA Blochemical & GALACTIC Lactic Acid Co., Litd.	Bengbu (China)	0	0	0	0	0	0	0	0	0	30,000	
Chengdu Dikang Biomedical Co., Ltd.	Chengdu (China)	200	200	200	200	200	200	200	200	200	1,000	
Corbion	Georgia (United States)	0	0	10	10	10	10	10	10	10	10	
Carbian	Gorinchem (The Netherlands)	5	5	5	5	Б	5	Б	5	5	6	
DIC Corp.	Tokyo (Japan)	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	
Futerro	Escanaffles (Belglum)	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	
Guangzhou Blo- plus Materials Technology Co., Ltd.	Guangzhou (China)									10,000	10,000	
Henan Jindan Lactic Acid Technology Co., Lid.	Dancheng (China)	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	6,000	
Henan Placan Group Co., Ltd.	Chanyuan (China)	100	100	100	100	100	100	100	100	100	10,000	
Hitachi Plant Technologies Ltd.	Kudamatsu (Japan)	5	5	5	5	5	5	5	5	Б	5	
Jilin COFCO Biomaterial Corporation	Changchun (China)	0	0	0	0	0	0	0	10,000	10,000	10,000	
Musashino Chemical Laboratory, Ltd.	Nanchang (China)											
Nantong Jiuding Biological Engineering Co., Ltd.	Rugao (China)	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	
NatureWorks	Biair (United States)	140,000	140,000	150,000	150,000	150,000	150,000	150,000	150,000	150,000	150,000	
Shanghal Tong- Jie-Llang Blomaterials Co., Ltd.	Shanghal (China)	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	10,000	
Shenzhen Esun Industrial Co., Lid. (formerly Shenzhen Bright China Industrial Co., Lid.)	Shenzhen (China)	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000	
Shenzhen Guanghua Welye Industry Co., Ltd.	Shenzhen (China)	0	0	0	0	0	0	0	0	0	1,000	
Sichuan Dikang Sci & Tech Pharmaceutical Industry Co., Ltd.	Sichuan (Chine)	0	0	0	0	D	0	O	0	0	100	
Sinopec Group	Yushu (China)	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	10,000	
SK Chemicals Co., Ltd.	Suwon (South Koree)	100	100	100	100	100	100	100	100	100	100	
SPC Blotech Private Ltd.	Hyderabad (India)	0	0	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	
Sulzer Chemlech AG	Winterthur (Switzerland)	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	
SUPLA Material Technology Co., Ltd.	Suqian (China)	0	0	0	0	0	10,000	10,000	10,000	10,000	10,000	
Teljin Ltd.	lwakuni (Japan)	200	200	200	200	200	200	200	200	200	200	
Teljin Ltd.	Matsuyama	3,000		3,000								-

Bio-based Building Blocks and Polymers - Global Capacities, Production and Trends 2020 - 2025

Bio-based Building Blocks and Polymers – Global Capacities, Production and Trends 2020 – 2025

Company	Location	2011	2012	2013	2014	2016	2016	2017	2018	2019	2020	2025
thyssenkrupp Industrial Solutions AG (includes Uhde Inventa-Fischer AG and thyssenkrupp Uhde GmbH)	Berlin (Germany)	15	15	15	15	15	15	15	15	15	15	15
thyssenkrupp Industrial Solutions AG (includes Uhde Inventa-Fischer AG and thyssenkrupp Uhde GmbH)	Guben (Germany)	500	500	500	500	500	500	500	500	500	500	600
thyssenkrupp Industrial Solutions AG (Includes Uhde Inventa-Fischer AG and thyssenkrupp Uhde GmbH)	unknown (Chine)	0	0	0	0	0	0	0	0	0	0	30,000
Total Corbion	Grandpults (France)	0	0	0	0	0	0	0	0	0	0	100,000
Total Corbion	Rayong (Thalland)	0	0	0	0	0	0	0	75,000	75,000	76,000	75,000
Toyobo Co., Ltd.	Osaka (Japan)	200	200	200	200	200	200	200	200	200	200	200
Wuhan Sanjiang Space Good Biolech Co., Ltd.	Wuhan (China)	100	100	100	100	100	100	100	100	100	100	100
Yunan Fuji Bio- Material Technology Co., Ltd.	Kunming (China)	2	2	2	2	2	2	2	2	2	2	2
Zhejlang Hisun Biomaterials Co., Ltd.	Talzhou (China)	5,000	5,000	5,000	5,000	15,000	15,000	15,000	15,000	15,000	15,000	15,000
Zhejlang Hisun Biomaterials Co., Ltd.	Unknown (China)	0	0	0	0	0	0	0	0	0	30,000	30,000
Zhejlang Youcheng New Materials Co., Llid.	Chongzuo (China)	0	0	0	0	0	0	0	0	0	1,000	1,000
Grand Total		172,827	172,827	183.837	183,837	193.837	203,837	203.837	288,837	298.837	395,137	560,137

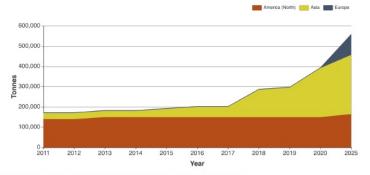


Figure 43: Worldwide production capacities of Polylactic acid (PLA) in 2011 - 2025 (in tonnes)

96

Bio-based Building Blocks and Polymers – Global Capacities, Production and Trends 2020 – 2025

4.99 NatureWorks LLC

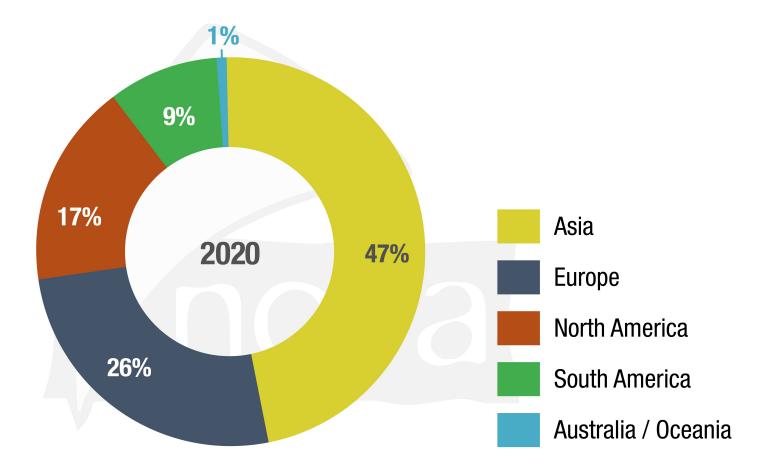
Company Profile

NatureWorks LLC was established in 1989 as a 50/50 joint venture of Dow Chemical Co. and Cargill and is located in Minnetonka, USA. NatureWorks LLC is the leading company in polylactic acid (PLA) production. In 2004, Dow Chemical Co. left NatureWorks LLC. In 2007, Teijin Ltd. entered as a new partner but left in 2009.

In 2011, PTT Global Chemical invested \$ 150 million in NatureWorks LLC in anticipation of NatureWorks LLC building a new production line in Thailand for start up in 2015.

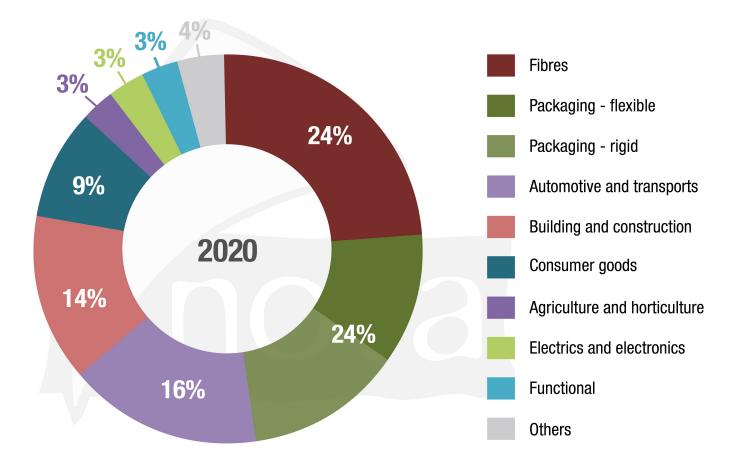
Company profile (example)

In 2013, NatureWorks LLC announced that the company has located its first Asia Pacific regional headquarters in Bangkok and has expanded its team of senior commercial, managerial and technical personnel to enhance support of polylactic acid customers throughout the region and to expand business. The tactics of NatureWorks LLC were initially to produce PLA as a compostable plastic for disposable, one-time-use applications, such as packaging films and bottles, as well as homecare products. Their longer-term strategy is to move more and more into durable applications, like fibres & fabrics, automotive, and consumer electronics. NatureWorks LLC produces their PLA (Ingeo®) in Blair, Nebraska (USA) in a plant with a current name plate capacity of 150,000 t/a. In order to establish a market for their PLA grades, they offer PLA at price levels as low as $\in 2/kg$ or even lower for preferred customers. Prices as low as $\in 1.25/kg$ have been found in Europe. NatureWorks LLC makes quite an effort to develop the PLA market for fibres and already moves an estimated 40,000 t/a of PLA (2016) into this market. Most of it went into non-wovens, but newer grades also show progress in woven fabrics and in 3D printing. In 2017, NatureWorks LLC licensed Plaxica's Optipure® D-Lactic acid process technology to expand its Ingeo® product portfolio. NatureWorks LLC created a Vercet Technology for lactide and lactide-based performance materials.

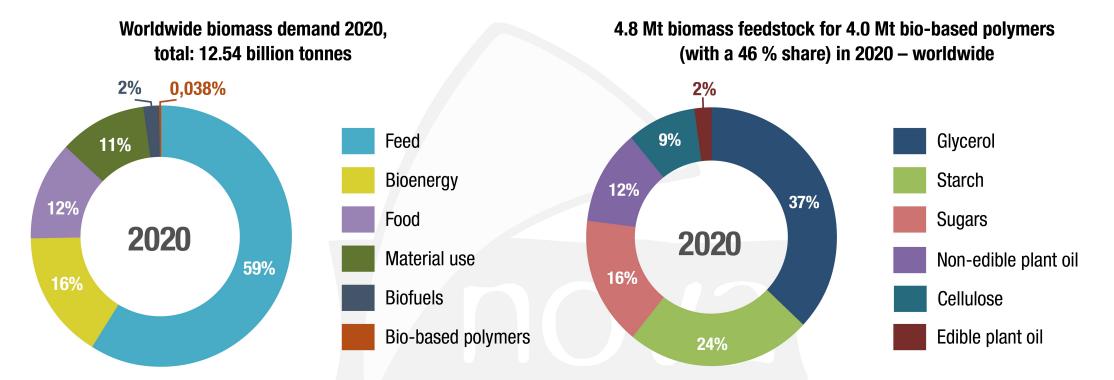

Products included in this report, worldwide production capacities in 2011 - 2025 (in tonnes)

Lines highlighted in gray indicate that capacities are installed but no information on volume is known.

Product	Location	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2025
Lactic acid L-lactic acid (L-LA)	Biair (United States)	0	0	180,000	180,000	180,000	180,000	180,000	180,000	180,000	180,000	198,000
Lactide	Biair (United States)	200,000	200,000	200,000	200,000	200,000	200,000	200,000	200,000	200,000	200,000	220,000
Polylactic acid (PLA)	Biair (United States)	140,000	140,000	150,000	150,000	150,000	150,000	150,000	150,000	150,000	150,000	165,000
Grand Total		340,000	340,000	530,000	530,000	530,000	530,000	530,000	530,000	530,000	530,000	683,000


Global production capacities of bio-based polymers per region 2020

without cellulose acetate, epoxy resins and polyurethanes



Shares of the produced bio-based polymers in different market segments in 2020

Biomass utilisation worldwide First and second generation, total and for bio-based polymers

The 0.038% share of biomass used to produce bio-based polymers translates into an area share of only 0.006%. This is due to various factors: high-yielding crops (like maize) are used for the production of bio-based polymers leading to a high area efficiency; the yields are not only used for polymer production but also for animal feed (the protein share) and thus only a part is allocated; and finally, because the biomass is a process by-product that uses no land (such as glycerol).

- The complete substitution of fossil carbon with renewable carbon from alternative sources: biomass, CO₂ and recycling is the way for polymers, plastics and chemicals to become sustainable, climate-friendly and part of the circular economy
- This necessary transition is already on the strategic agenda of several global brands, that are already expanding their feedstock portfolio to include, next to fossil-based, all three sources of renewable carbon
- This rethinking from the market point of view, especially in the use of biomass, will, and already did, increase the supply of bio-based as well as biodegradable polymers

Remaining challenging market, low crude oil prices and little political support

No political reward of the two major advantages of bio-based polymers:

1) Replacement of fossil carbon in the production process with renewable carbon from biomass

• This is indispensable for a sustainable, climate-friendly plastics industry and is not yet politically rewarded

2) Biodegradability

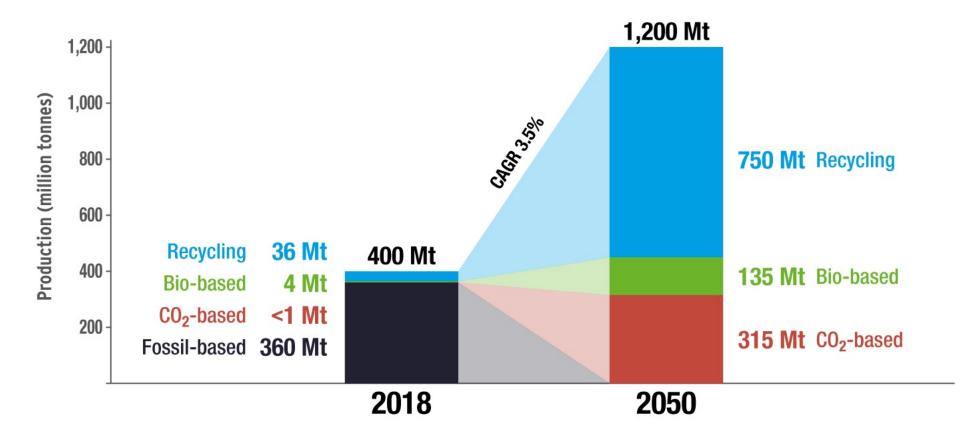
- More than half of the produced bio-based polymers are biodegradable (depending on the environment)
- Solution for plastics that cannot be collected and enter the environment
- Can biodegrade without leaving behind microplastics
- Only a few countries such as Italy, France and probably Spain will politically support this additional disposal path

Important market drivers in 2019 and 2020

The most important market drivers in 2018 and 2019:

• Brands that want to offer their customers environmentally friendly solutions and critical consumers looking for alternatives to petrochemicals

Future scenarios for a supportive, positive development of bio-based polymers:

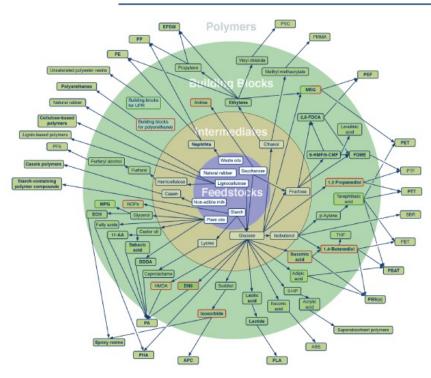

Political support

 If bio-based polymers were to be accepted as a solution and promoted in a similar way as biofuels, annual growth rates of 10 to 20 % could be expected

Crude oil price

- Same growth rates could be expected should the price of oil rise significantly
- Based on the already existing technical maturity of bio-based polymers, considerable market shares could be gained in these cases

World Plastic Production and Carbon Feedstock in 2018 and Scenario for 2050 (in Million Tonnes)

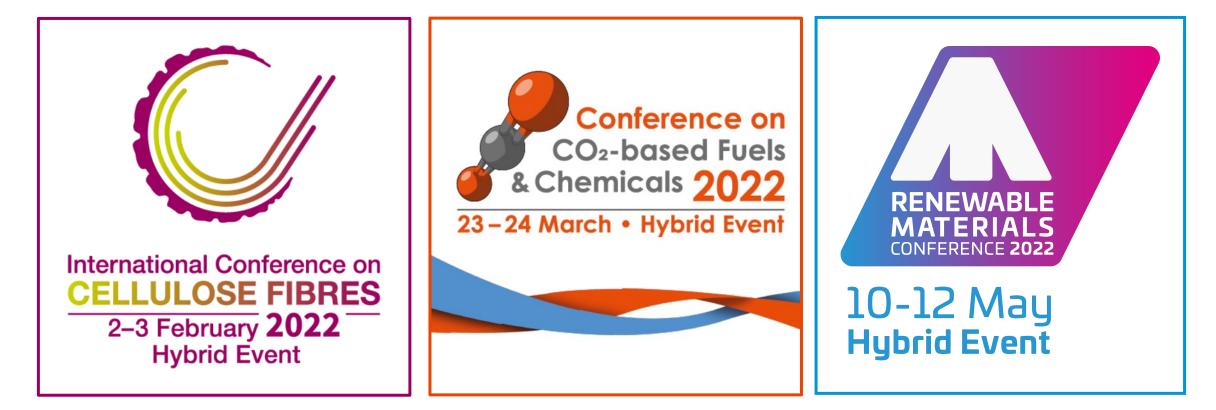

The virgin plastic production of 364 Million t in 2018 will increase to 450 Million t in 2050, completely based on renewable carbon. The total demand for plastics of 1,200 Million t in 2050 will be mainly covered by recycling.

Bio-based Building Blocks and Polymers – Global Capacities, Production and Trends 2020–2025

Authors: Pia Skoczinski, Michael Carus, Doris de Guzman, Harald Käb, Raj Chinthapalli, Jan Ravenstijn, Wolfgang Baltus and Achim Raschka

January 2021

This and other reports on renewable carbon are available at www.renewable-carbon.eu/publications


- Published in January 2021
- Data for 2020
- 338 pages
- 17 bio-based building blocks and 17 polymers
- 174 company profiles
- € 3,000 <u>www.renewable-carbon.eu/publications</u>

Save the Date

Contact: Mr. Dominik Vogt, +49 (0) 2233 48 14 49, dominik.vogt@nova-institut.de All conferences at renewable-carbon.eu/events

9 Sessions, 18 Presentations Join Free Webinars on Markets and Strategies for Renewable Chemicals and Materials

11 - 22 October 2021

Hosted by nova-Institute and Wageningen University & Research

Monday, 11 Octobe	r 2021
14:00 - 15:30 CET	01 The Renewable Carbon Vision
15:30 - 17:00 CET	02 Carbon Flows for Chemicals and Derived Materials and Carbon Management
Thursday, 14 Octob	per 2021
14:00 - 15:30 CET	03 Technologies, Markets and Trends for "CO2-based Products"
15:30 - 17:00 CET	04 Technologies, Markets and Policies on "Chemical Recycling"
Tuesday, 19 Octobe	er 2021
13:00 - 14:30 CET	05 Future of Refineries and Chemical Verbund Sites
14:30 - 16:00 CET	06 Circular & Plastic Policy
16:00 - 17:30 CET	07 Production Capacities, Markets and Trends for "Bio-based Building Blocks & Polymers"
Friday, 22 October	2021
14:00 - 15:30 CET	08 Food vs. Non-Food Crops for Industry
15:30 - 17:00 CET	09 Useful Applications of Biodegradable Plastics

Where: Online via Zoom

Thank you for your attention!

Sustainability M. Sc. Pauline Ruiz +49 (0) 2233 48 14-62 pauline.ruiz@nova-institut.de Sustainability assessment / LCA Chemicals, building blocks & polymers Material Science

Stay in touch: renewable-carbon.eu/newsletter