The Austrian P-budget as a basis for resource optimization

Paper in preparation

L. Egle1,2, O. Zoboli2, S. Thaler1,2, H. Rechberger1,2, M. Zessner1,2

1) Institute for Water Quality, Resource and Waste Management, Vienna University of Technology, Karlsplatz 13/226, 1040 Vienna, Austria
2) The Centre for Water Resource Systems (CWRS) at the Vienna University of Technology. Karlsplatz 13/222, 1040 Vienna, Austria
System boundaries
- Austrian national boundaries
- 30 cm soil; atmosphere not considered
- Average year 2004-2008
- Population: 8.3 Mio inhabitants

System components
- 9 processes (analyzed as sub-processes)
- 6 stocks
- 64 external flows

Calculation
- Mass flow of goods/materials + uncertainty
- P concentration + uncertainty
- Cross-checking, when possible
- Balance, reconciliation and error propagation by STAN
Results

Total system
- Total import: $8.4 \pm 5\% \text{ kgP/cap\text{*yr}}$
- Total export: $6.3 \pm 6\% \text{ kgP/cap\text{*yr}}$
- Total stock change: $+2.2 \pm 5\% \text{ kgP/cap\text{*yr}}$
- Full dependency on P-import, but only 1/3 of imported phosphate ore is used in Austria

Food production and Consumption
- Major flows between Animal husbandry, Crop farming and agrifood industry
- 36% of total P fertilizers are mineral fertilizers
- Stock increase in agr. soils: $+0.7 \pm 9\% \text{ kgP/cap\text{*yr}}$
- 21% efficiency of food supply chain
- Stock increase in households (home composting?)

Waste and wastewater
- P removal from wastewater $> 85\%$
- Reduced impact on water bodies, more affected by erosion/diffuse sources
- Municipal sewage sludge and carcass meal have a potential of substituting 75% of P-mineral fertilizers
- Highest stock increase in Waste management
Waste management

- Distribution / treatment / storage processes
- P is highly distributed
- Final destinations are: Landfill/Cement kilns 44%; Agriculture 29%; Export 12%; Landscaping 10%; Gardening 5%
Results

- Municipal sewage sludge flow: 0.8 ± 5% kgP/cap*yr
- Potential of substitution of P-mineral fertilizers: 40%
- 27% is reused in agriculture (16% direct application)
- 11% is reused in landscaping
- 2% is exported
- 60% is lost in landfills and cement kilns

Distribution of P from Municipal sewage sludge. All values expressed in %, referred to the initial P content of Municipal sewage sludge (100%).
Animal waste

Results

• Animal wastes flow: 0.72 ± 10% kgP/cap*yr
• Potential of substitution of P-mineral fertilizers: 35%
• 13% is reused in agriculture
• 36% is exported
• 51% is lost in cement kilns

Distribution of P from Animal waste. All values expressed in %, referred to the initial P content of Animal waste (100%).
Ongoing work

Next research question
• How has the Austrian P-budget changed in the last 20 years?

Methodology
• Same conceptual model, with optimizations (e.g. more detailed research in the Consumption/Household process)
• Collection/Estimation of time series-data for all the flows and stocks
• Balance, data reconciliation and error propagation with STAN for every year

Expected results
• Single MFA, displaying time series for every flow and every stock
• Trends in flows of goods/materials
• Changes/trends of P-concentration in flows of goods/materials, due to different composition in time → Dilution of P
• Different uncertainty ranges, according to heterogeneous data availability in the past
Example: P-flows related to treatment of organic material in biogas plants

- Market boom after Green electricity law in 2002
- Stagnation of new projects after new law in 2006
- Main use of manure and organic wastes until 2002
- Rapid increased use of energy crops after 2002

Source: E-Control-Ökostrombericht 2010
Example: P-flows related to treatment of organic material in biogas plants

Preliminary results

• Sharp increase of total material and energy crops consumption after 2003 (delay of 1 year from the law in 2002)
• Slower increase of other materials
• Sharp increase of P load after 2003
• Variations of P concentration of the flows, given to their changing composition
Thank you for your attention!

Ottavia Zoboli
zoboli@waterresources.at
Centre for Water Resource Systems (CWRS) at the Vienna University of Technology. Karlsplatz 13/222, 1040 Vienna, Austria