Management of genetic diversity in small populations

Chapter 5

Theo Meuwissen & Kor Oldenbroek

Introduction

- Goals of live conservation
 - ΔG to meet future market demands (e.g. wrt niche products)
 - Maintain genetic resources / prevent their loss
 - Research opportunities
 - Maintain socio-economic / cultural / historic value
 - Keep rural areas populated
 - Maintain landscape / ecological value
- genetic improvement important to small breeds:
 - Breed needs to be attractive to some breeders
 - genomic selection is option
 - Genomic infra-structure available

Aim

• Use of genomic tools to achieve these goals of live conservation schemes

A simple, linear model of inheritance / ΔG

- (often used in computer simulations)
- Limited number (1000) of genes have effects
 - Normally or Exponentially or Gamma distributed
- Selection program : fix the good alleles
 - Don't loose initially rare good alleles (reduces longterm gain)
 - Limit random drift at the genes => allele-freq changes in right direction
 - Genetic drift outside genes is not important for (longterm) gain
- Loss of genetic variance due to selection is rapid
 - Partly remedied by assuming very many genes
 - Does not agree with practical observations
- Linear model only works in the shortterm

A shortterm linear, longterm nonlinear model

- Consider longterm strong selection program (e.g. broilers)
 - During the course of selection various problems occured (ascites; leg-weakness)
 - As pathways under current selection start to perform 'good':
 - Selection needs to be directed towards new 'pathways' that limit performance
 - Overall genetic variance remains
 - This is due to a nonlinear interactions between pathways
- Conclusion wrt maintaining genetic diversity:
 - We need to maintain genetic diversity everywhere in the genome
 - Because we dont know which set of genes we will be selecting for next
 - Differential weighing of chromosomal regions in diversity management is unnecessary
 - This is enhanced by changes in the breeding goal / management of animals

(non)genomic selection/management

Matrices	EBV estimation	
F-Management	Α	G
Α	EBV-OC	GEBV-OC
G	XX	GEBV-GOC

- EBV-OC = Pedigree-based selection and pedigree based optimum contrib.
- GEBV-OC = Genomic EBV and pedigree based OC
- GEBV-GOC = GEBV and G matrix based OC

Pedigree versus genomic F

- Breeding schemes cause genetic drift mainly in 'gene-rich' regions
 - GEBV concentrate more on gene-rich regions
 - Pedigree-F is defined for unlinked loci
 - These dont exist in finite genome
 - $\Delta F_{\text{Genomic}} > \Delta F_{\text{Ped}}$
- target rates of inbreeding: mainly based on molecular genetic drift
 - Thus ΔF_{Target} of ½ 1 % / generation apply to genomic ΔF
 - And ΔF_{Target} for pedigree ΔF should be reduced:
 - E.g. ¼ ½ % / generation

Use small population genetics into comm. breeds: Marker Assisted Introgression

- Assumes trait to be introgressed from 'small' to 'commercial' breed
- Trait due to 1-2 known QTL (not a complex trait)
- Three steps
 - 1. Create F1
 - 2. Backcross to superior breed (maintain good alleles by markers)
 - 3. After 5 generations: intercross to obtain good alleles in homozygous form
- Manage inbreeding
- If causal mutation known: gene editing may be used
 - Takes one generation

GS-introgression

- Introgression of complex trait(s) from donor breed
- Donor breed better for e.g. disease resistance but inferior for Total

Odegard et al. 2008

Merit

Genomics for 'breed-recovery'

Problem description:

- Local breed that is no longer fashionable
- Semen of large commercial breed introduced
 - Assume Holstein semen => Holsteinisation
- Breed will be lost (will become Holstein)
 - Diversity will be lost
- How to rescue the breed ?
 - Using genomics
 - Assuming we can manage the selections in part of the breed

OC type of approach

• Minimise:

 $\sum c_i \bar{G}_{i,hol}$

- c_i is the optimal contribution of the animal
- $\bar{G}_{i,hol}$ is the average genomic relationship of i with the introduced holstein bulls
- Efficiency of Recovery:
 - 1 generation of Holsteinisation: 100%
 - 5 generations of Holsteinisation: 85%

Amador et al. GSE 2013

Conclusions

- Need to maintain genetic diversity everywhere in genome
 - Cannot predict which is the next limiting pathway/trait genes are
 - Differential weighing of diversity not needed / beneficial
- Pedigree vs genomic relationships:
 - Creates 2x2 table of selection methods:
 - A or G for EBV estimation
 - A or G for F management
 - In breeding scheme $\Delta F_{\text{Genomic}} > \Delta F_{\text{Pedigree}}$:
 - Target rates of inbreeding lower for $\Delta F_{\text{Pedigree}}$
 - Difference will depend on selection scheme / genetic architecture

Conclusions (2)

- GS introgression:
 - Tool to introgress complex traits from 'small' breeds into a commercial breed
 - Faster than selecting commercial breed for trait
 - Does not require knowledge on QTL positions / limited number of QTL
- Recovery from 'Holsteinisation' is possible
 - I.e. situation where local breed is crossed with a fashionable global breed
 - Remarkably efficient if:
 - Holsteinisation lasted for < 3 generations
 - Fraction Holstein genes < 30%