Modelling impacts of SLM: bottom-up approaches to regional assessments

26 September 2013, Luuk Fleskens

Impact modelling entry points

Potentials:

- Effectiveness
- Applicability
- Efficiency
- → (Spatial) CBA, MCA

Goals / constraints:- Problem definition

- DM preferences
- Framework conditions
- **Optimization**

Why modelling impact of SLM practices?

- experimental conditions limited (weather & environmental conditions)
- trial duration too short
 (long-term impacts not tested)
- opportunity of scenario analysis
 (evaluating performance under extreme circumstances)
- effects across larger scales
 (aggregate effects study site)
- alternative and complimentary approach

Why bottom-up modelling?

- better reflection of local realities
 (starting point local resilience rather than global vulnerability)
- opportunity to interact with stakeholders
 (incorporation of decisive factors; scope for collective learning)
- counterweight to top-down models
 (e.g. GCM impact modelling; often doom messages)
- solution-oriented rather than driver-oriented (hybrid models incorporating decision-making perspectives)
- understanding bottlenecks to upscaling SLM (direct policy relevance)

PESERA-DESMICE modelling framework

PESERA: Grid-based regional scale soil risk assessment model (grid 0.1 – 1 km), modified to take into account effect of various SLM strategies and other degradation types

DESMICE: New model scaling up SLM feasibility assessments from local to regional level using spatially-explicit financial costbenefit analysis

Combined, these models can assess effects of policy scenarios on uptake of SLM and mitigation of land degradation

PESERA-DESMICE steps

each technology and grid cell

PESERA-DESMICE scenario analysis

- PESERA baseline run

- Technology scenario
 (for each SLM option)
- Policy scenario
 (linked to one or more SLM options)
- Adoption scenario
 (estimating adoption of all simulated technologies)
- Global scenario (maximum food production; minimum land degradation)

PESERA-DESMICE results: Jessour, Tunisia

Investment cost fixed at TND 3,900 (€1945); Economic life of 20 years; Maintenance costs TND 1170 (€584); Discount rate 10%; CCR of 1:6 assumed; Extensive grazing not affected; Terrace cropped to olive; Trees productive after 6 y (25%); mature after 12 y; Olive harvest index (HI) set at 0.1; olive price TND 0.55 (€0.27) per kg; Wheat intercropped until year 12. Max. yield is 930 kg/ha; price TND 0.43 €0.21) per kg.

Net Present Value (20 years): olive trees newly planted

Maintenance of jessour with existing olive trees

Effect variability investment costs

$$INV_S = US$1,823 * S/30$$

In Yanhe river basin, China bench terraces applicable in 3,732 km2

The average cost is $$1,591 \pm 717

Subtracting mean from calculated cost, we can reduce spatial variability by multiplying by fractions 0.75, 0.5, 0.25 and 0.

Effect spatial variability investment cost

Investment cost (US\$)	Relative level of spatial cost variability				
	0	0.25	0.50	0.75	1
Maximum	1,591	2,488	3,386	4,284	5,182
Minimum	1,591	1,196	801	406	12
St. deviation	0	179	359	538	717

Participatory evaluation of model results

- Model results can affect stakeholders' perceptions of SLM technologies: stakeholder preferences altered in light of new information or were confirmed.
- An iterative workshop approach can help to build a bridge between researchers and stakeholders, ultimately leading to greater trust in the information with which stakeholders were presented.
- Model outputs considered helpful in determining the impacts of technologies over larger areas, as well as demonstrating where technologies are not applicable or have a lower impact.
- The iterative and interactive approach helped to address some of the common critiques associated with top-down approaches to technology adoption and technology transfer, and resulted in a process with which many stakeholders were satisfied.

Stringer, Fleskens et al. (2013) Environ Manage

Ongoing DESMICE development

- Socio-economic data
 - PhD -> Cadastral information / Farm type Combination with farm-level optimisation
- Stated preferences

 WAHARA → Choice experiment

 CBA + Attitude to Risk + WTP limits

PBL Netherlands Environmental

- Update technical coefficients CGE model
 WAHARA (PhD Mohamed) → Scenario output
 Coupling with macro-economic model to assess regional impact
- Global cost-effectiveness C-sequestration

 PBL GEO4 → Generalised global interchange of SLM options

 Coupling with GCM scenario assessment

From stated preference to economic impact

Fleskens et al. (2013) Reg Environ Change

Other model developments

Optimal timing of SLM to avoid critical transitions

Dynamic value of water for water trading

Outlook

Other degradation processes

(RECARE)

Large-scale interactions SLM

Multiple ecosystem

Scale effects

services

Adaptive management

Decision-support

