Starch digestibility in dairy cows – how do we handle starch in ration evaluation systems?

Martin Riis Weisbjerg
Animal Science, AU Foulum, Aarhus University, Denmark

WIAS Seminar ‘Development in Ruminant Nutrition’, Wageningen University Monday 30 September 2013 – in combination with PhD defence of Warner and Spek
Ruminant starch digestion

- Glucose: 97% of energy
- VFA: 62% of energy
- VFA Microbial protein: 80% of energy

RUMEN

SMALL INTESTINE

HIND GUT
Outline

• Recent DK studies on starch digestibility
• How to handle starch in feed evaluation models
• Suggestion for in vivo approach
• Major future challenges regarding starch
Starch digestibility in Dairy cows – variable!

- Faba bean, toasted 150°C, rolled
- Smooth pea, toasted 140°C, ground
- Smooth pea, xylose, cracked
- Smooth pea, ground (exp. 2)
- Wrinkled pea, rolled
- Wrinkled pea, toasted 140°C, rolled
- Maize, ground
- Faba bean, toasted 140°C, ground
- Faba bean, rolled
- Faba bean, toasted 120°C, rolled
- Faba bean, ground
- Barley, xylose, cracked
- Wheat, xylose, cracked
- Smooth pea, ground (exp. 1)
- Oats, rolled
- Wheat, ground
- Barley, ground
- Barley, gelatinised, rolled
- Barley, gelatinised, ground
- Barley, cracked
- Ear maize, pelleted
- Wheat, rolled
- Barley, rolled
- Wheat, gelatinised, rolled
- Wheat, cracked

Digested starch, g/kg starch intake
Maize silage – effect of maturity/DM

<table>
<thead>
<tr>
<th>Intake, flow and digestibility of starch in different sections of digestive tract</th>
<th>Treatment(^d)</th>
<th>RMSE</th>
<th>(P) (linear)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MS260</td>
<td>MS350</td>
<td>MS400</td>
</tr>
<tr>
<td>Intake (kg/day)</td>
<td>2.10</td>
<td>3.56</td>
<td>3.72</td>
</tr>
<tr>
<td>Flow (kg/day)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duodenal</td>
<td>0.13</td>
<td>0.31</td>
<td>0.29</td>
</tr>
<tr>
<td>Duodenal corr.(^a)</td>
<td>0.15</td>
<td>0.34</td>
<td>0.36</td>
</tr>
<tr>
<td>Ileal</td>
<td>0.02</td>
<td>0.08</td>
<td>0.06</td>
</tr>
<tr>
<td>Faecal</td>
<td>0.001</td>
<td>0.05</td>
<td>0.08</td>
</tr>
<tr>
<td>Digestibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foreestomach(^a,b)</td>
<td>0.93</td>
<td>0.91</td>
<td>0.91</td>
</tr>
<tr>
<td>Small intestine(^a,c)</td>
<td>0.91</td>
<td>0.78</td>
<td>0.85</td>
</tr>
<tr>
<td>Total tract(^b)</td>
<td>1.00</td>
<td>0.99</td>
<td>0.98</td>
</tr>
</tbody>
</table>
Corn cob silage – Dairy cows

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Barley</th>
<th>Corn cob silage</th>
<th>NaOH wheat</th>
<th>SEM</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter intake (kg/day)</td>
<td>19.0</td>
<td>18.2</td>
<td>19.7</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>DM</td>
<td>71.0</td>
<td>68.1</td>
<td>73.8</td>
<td>2.0</td>
<td>0.3</td>
</tr>
<tr>
<td>OM</td>
<td>72.7</td>
<td>70.1</td>
<td>76.6</td>
<td>2.1</td>
<td>0.3</td>
</tr>
<tr>
<td>NDF</td>
<td>54.6</td>
<td>55.2</td>
<td>62.6</td>
<td>4.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Starch</td>
<td>98.3</td>
<td>99.3</td>
<td>99.2</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Protein</td>
<td>66.1</td>
<td>64.3</td>
<td>68.2</td>
<td>2.4</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Hymøller et al. 2013, submitted
Rye – upcoming in Denmark for feeding, and not just for rye bread

- Rolled rye: 881 g/kg starch intake
- NaoH rye: 787 g/kg starch intake

Digestion in different parts of the digestive system:
- Rumen: 92 g/kg starch intake
- Small intestine: 922 g/kg starch intake
- Hind gut: 131 g/kg starch intake
Conclusion - Starch digestibility in dairy cows

- Starch digestibility variable, also in Danish starch sources
- Digestibility and rumen degradability of ensiled starch is high
Outline

• Recent DK studies on starch digestibility
• How to handle starch in feed evaluation models
• Suggestion for in vivo approach
• Major future challenge regarding starch
In vitro – in situ vs in vivo - starch

Conclusion

• Weak correlations between in situ and in vitro kd
• Effective degradability - OK correlations for both methods
• IS k_d values unrealistic, however ESD values correlated well

Weisbjerg et al. 2011
Mobile bag assessment of in vivo starch digestibility

Conclusion
• Weak correlations between *in vivo* and mobile bag digestibilities

Ghoorchi et al. 2012, Animal, 7, 265-271
Conclusion – estimation of starch digestibility

• No obvious lab method for estimation of starch digestibility
• Probably because both physical form, processing (heat, ensiling, etc.) and origin (protein matrix?) influence starch digestibility – therefore e.g. standardised milling hamper assessment
• Then, at present, in vivo approach seems most appropriate, as it seems that only the animals can give the right answer!
Outline

• Recent DK studies on starch digestibility
• How to handle starch in feed evaluation models
• Suggestion for in vivo approach
• Major future challenge regarding starch
Literature data – dairy cows

62 publications
Observations as treatment means
Selection criteria:
• Lactating dairy cows
• At least total tract starch digestibility, preferentially rumen, small intestinal and hind gut

<table>
<thead>
<tr>
<th>Starch digestibility</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total tract</td>
<td>279</td>
</tr>
<tr>
<td>Rumen</td>
<td>173</td>
</tr>
<tr>
<td>Small intestine</td>
<td>54</td>
</tr>
<tr>
<td>Hind gut</td>
<td>57</td>
</tr>
</tbody>
</table>
Database included

- Nutrient intakes
- Starch flow (digestibilities)
- Name of main starch sources (2 main concentrate and 2 main forage sources, if appropriate)
- Proportion of total starch intake coming from these 4 starch sources
- In total 21 starch sources
Challenge in using in vivo data for lactating cow rations:

• Most examined rations contain more than one starch source!
Data analysis

Regression and multiple regression analysis

$Y = \text{starch digestibility, total or in different digestive compartments}$

- $Y = \text{starch intake/escape} + \text{proportion of starch source}_{1-21}$
- $Y = \text{starch intake/escape}$
- $Y = \text{proportion of starch source}_{1-21}$
Main results – regression analyses

Rumen and total digestibility →
 info on source (name) necessary

Small intestinal digestibility →
 positively correlated to rumen degradability – source (name) still important

Hind gut digestibility →
 source (name) not important - positively correlated to rumen degradability [opposite to hypothesis!!]
Digestibilities for individual starch sources
Digestibilities - estimated using GLM –
obs. dig = source digestibility x source prop. of ration total starch

<table>
<thead>
<tr>
<th>Starch source</th>
<th>Total tract</th>
<th>Rumen</th>
<th>Small intestine</th>
<th>Hind gut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat Starch</td>
<td>1016</td>
<td>1067</td>
<td>739</td>
<td>704</td>
</tr>
<tr>
<td>Corn starch</td>
<td>999</td>
<td>863</td>
<td>669</td>
<td>753</td>
</tr>
<tr>
<td>Wheat</td>
<td>999</td>
<td>915</td>
<td>679</td>
<td>622</td>
</tr>
<tr>
<td>Oat</td>
<td>989</td>
<td>870</td>
<td>703</td>
<td>696</td>
</tr>
<tr>
<td>Faba beans</td>
<td>961</td>
<td>799</td>
<td>360</td>
<td>664</td>
</tr>
<tr>
<td>Barley</td>
<td>952</td>
<td>860</td>
<td>719</td>
<td>545</td>
</tr>
<tr>
<td>Corn silage (CS)</td>
<td>931</td>
<td>629</td>
<td>840</td>
<td>624</td>
</tr>
<tr>
<td>CS high¹</td>
<td>962</td>
<td>910</td>
<td>820</td>
<td>655</td>
</tr>
<tr>
<td>Wheat NaOH</td>
<td>929</td>
<td>648</td>
<td>710</td>
<td>54</td>
</tr>
<tr>
<td>Wrinkled pea</td>
<td>922</td>
<td>740</td>
<td>225</td>
<td>616</td>
</tr>
<tr>
<td>Corn</td>
<td>913</td>
<td>544</td>
<td>509</td>
<td>458</td>
</tr>
<tr>
<td>Sorghum</td>
<td>905</td>
<td>619</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Smooth pea</td>
<td>899</td>
<td>780</td>
<td>472</td>
<td>463</td>
</tr>
<tr>
<td>Barley NaOH</td>
<td>839</td>
<td>670</td>
<td>203</td>
<td>389</td>
</tr>
</tbody>
</table>

Green = highest, blue=high, purple=low, red =lowest

1 → corn silage > 60% of ration starch
How can this be used to model starch digestion in practical feed evaluation models?

Rumen: k_d calculated from in vivo rumen digestibility, and tabulated

Small intestine: function of rumen digestibility (if we forget about starch source, problematic with legumes) or use estimates for digestibility of individual sources

Hind gut: function of rumen digestibility
NorFor update - changed starch model
A new version of the NorFor model was released on June 4, called FRC 1.76. The new update includes a modified calculation of starch digestibility and a recommendation for individual amino acids. We will come back with more information later on amino acids and focus on starch in this newsletter.

http://norfor.info/

However only partly introduced at present, post rumen digestion in NorFor as regressions on rumen escape
Outline

• Recent DK studies on starch digestibility
• How to handle starch in ration evaluation models
• Suggestion for in vivo approach
• Major future challenge regarding starch
Major remaining question

- How does starch pass out of the rumen

- How to assess starch digestibility in samples where no in vivo data are available (‘new’ starch sources, processed starch, commercial concentrates)?
Starch passage!

(A) Flow of starch (g/h) vs. Time after feeding (h) for untreated barley and expanded barley.

(B) Flow of starch (g/h) vs. Time after feeding (h) for untreated maize and expanded maize.

Innovative and practical management approaches to reduce nitrogen excretion by ruminants

This presentation has been carried out with financial support from the Commission of the European Communities, FP7, KBB-2007-1 and from NorFor

It does not necessarily reflect its view and in no way anticipates the Commission’s future policy in this area.