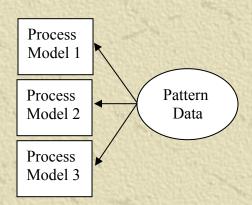
The Challenges of Non-Stationarity, Multi- and Equi-Finality in Validating Land Change Models

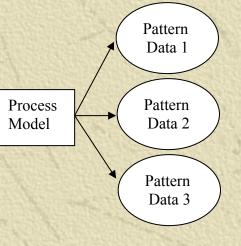
Dan Brown

Goals of Land Change Modeling

- Encode our knowledge of process
- Help test pattern-process links
 - Can help us examine feedbacks between ecosystem structure/function and human actions
- Test alternative futures under various hypotheses, policies, practices, and incentives
- Make projections of future landscape patterns


Non-Stationarity in Predicting

- Means that some aspect of the process *structure* or *parameters* are not constant over time or space.
- Models assume some degree of stationarity
 - Strong stationarity "business as usual"
 - Controlled stationarity scenarios
 - Weaker stationarity adaptive, learning agents
- Even if model predicts well over one period, a non-stationary process (e.g housing market collapse) means that we know little about how it will do the next period.

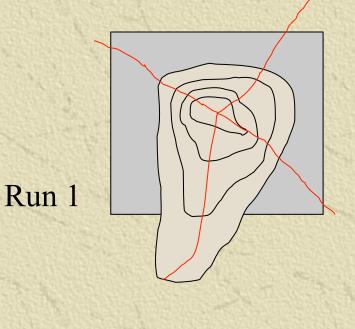

Explaining Pattern-Process Relationships

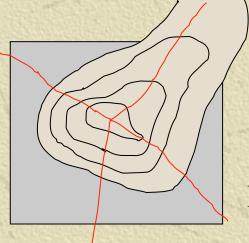
* Two other problems make explanations difficult.

Equi-finality: The Inference Problem

Multi-finality: The Predictability Problem

Unpredictability affected by...


***** Stochastic processes


Processes in a model represented with random elements

* Path dependence

- Feedbacks reinforce early steps in pattern evolution, potentially locking in certain patterns and making others impossible.
- With path dependence, uncertainty associated with stochastic processes can be magnified.
- Alternatively, path dependence can reign in stochastic processes, reducing the total range of possible outcomes.

How path dependence affects pattern
* In a path dependent system, small perturbations at early iterations can lead to big differences in outcomes.

Run 2

Descriptions of Model Accuracy

** Predictive (Pattern) Accuracy
• Aggregate-pattern validation
• Spatial validation
** Process Accuracy
• Structural validation
• requires a structural model

Aggregate Pattern Validation

Involves comparing distribution of aggregated measures of pattern across realizations with the observed pattern value at a given time.

Example: spatial pattern metrics

- Largest Patch Index (LPI)
- Mean Patch Size (MPS)
- Edge Density
- Mean Nearest Neighbor (MNN)
- Only requires that patterns, not locations, are correct.

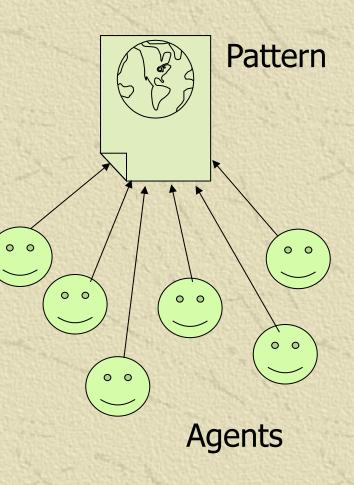
Spatial Pattern Validation

- Involves comparing model output on a locationby-location basis with a reference map at a given time.
- * Example: Error Matrix, Kappa and variants

	C PRODUCTION DESIG	oluco in Reference map		
	a statistical	Developed	Undev	a superior
	Developed	37	2	39
Class Predicted	Undev	3	48	51
by Model	S. March	40	50	90
	NO NAMES OF CONTRACTOR OF CONTRA		Contraction of the Party of the	

total correct = 85 classified (PCC) = 94.4

percent correctly classified (PCC) =


Requires that our explanations of land change be specific enough to allow location-specific predictions.

Approaches to Structural Validation

- Statistical methods (e.g., econometric panel models) to estimate unbiased structural parameters
- Explicitly testing the influence of different model assumptions on its performance
- Evaluation of predictive accuracy for multiple, unrelated aspects of the system (e.g., land use map and income distribution)
 - Pattern-oriented modeling (Grimm et al. 2005)
- Explore structure in outcomes to understand
 - parameter sensitivity over time (Ligmann-Zielinska and Sun 2010)
 - range of of outcomes across multiple runs of a model (Brown et al. 2005).

Empirical Data in ABMs

- * Agent actions aggregate to produce patterns.
- * Need data on:
 - agents to support building the model.
 - aggregate patterns that can then be reserved for validation.
- Contrasts with approaches that (perform calibration within the model based on observed patterns.

Empirical Support of Agents * Social surveys * Participant observation * Field/lab experiments * Companion (participatory) modeling * Spatial/statistical inference

Robinson et al. 2007. Journal of Land Use Science.

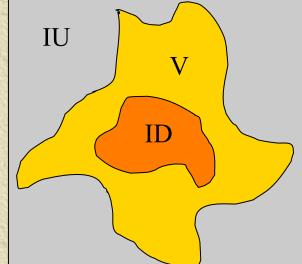
Management Regimes

- We interviewed 25 exurban residents to ascertain their land management behaviors on several dimensions, e.g.,
 - Frequency of mowing, pruning
 - Fate of leaves
 - Irrigation and fertilizer
- Based on analysis of these data, we identified five management regimes that reflect observed variations. Choice of these is related to subdivision, neighbors, preference.
 - Conservationists
 - Watering Conservationists
 - Neatnik
 - Waterer
 - Infrequent Waterer

Nassauer et al., MS in Preparation

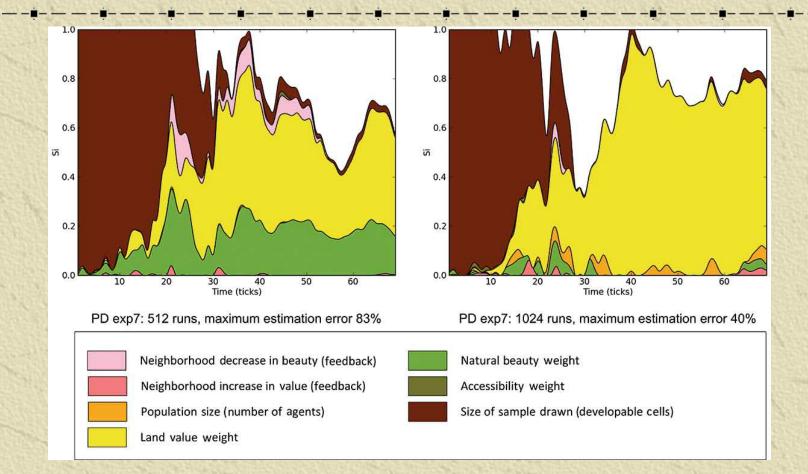
Neighbor Effects

Web-based survey (2005) asked ~500 residents preferences for


- Regional open-space availability and type
- Neighborhood open-space
- Yard-scale designs

Results show strong *neighbor effect;* residents select yard designs based on what they see neighbors doing.

Details: Nassauer et al. 2009. Landscape and Urban Planning


Variant-Invariant Approach

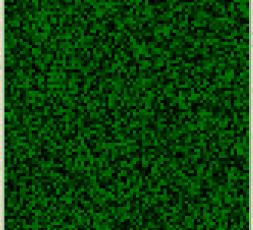
- * An alternative approach to spatial validation.
- Identify the area that all (or most) of the runs predict the same (*the invariant region*)
- Identify the areas in which model outcomes vary from run to run (*the variant region*)
- Calculate size of V
- Compare accuracy with that expected (i.e., random) across entire map and within variant region

V – variant ID – Invariant developed IU – Invariant undeveloped

Time Dependent Global Sensitivity Analysis

Ligmann-Zielinska and Sun 2010. IJGIS.

Agent-Based Models


- ABMs are simulation models that can incorporate several **important processes** (i.e., they describe the *structure* of the system):
- heterogeneity among the actors
- interaction among actors at different scales (townships, developers, residents)
- feedback effects between land-use decisions and environmental characteristics
- measures of aggregate patterns of landscape change as a result of dynamic interactions of multiple actors.

SLUCE Agent-Based Model

Implemented using objective-C and Swarm (www.swarm.org)

***** Environment

- Represented by lattice; each cell has
 - a value of aesthetic quality (q), assigned randomly or based on defined pattern
 - score for distance to service centers (sd), based on the sum of inverse distances to the nearest 8, updated at each step

Random pattern of Aesthetic Quality

ABM: Agents

Each cell in lattice can accommodate many or only one resident or service center

* residents

- have magnitudes of preference for
 - aesthetic quality (α_q)
 - nearness to SCs (α_{sd})
 - neighborhood density (α_{nd})

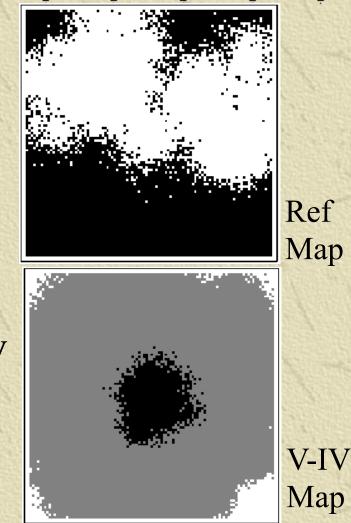
service centers (SC)

- initial SC located in center of map
- one new SC created near location of each 100th resident - SCs follow residents (positive fb).

Red cells are service centers

Experimental Approach

Run the model 30 times for a given set of parameter settings.



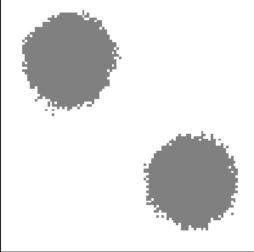
- Select one run of the model as the reference map (i.e., to represent the "truth").
- Calculate aggregate and spatial validation statistics.
- * Any differences area features of the process the model represents, rather than flaws.

Reference: Brown, D.G., S. Page, R. Riolo, M. Zellner, and W. Rand. 2005. International Journal of Geographical Information Science, 19(2): 153-174.

Base Case – Distance only

- Model has large stochastic component.
- ≭ Large V.
- Reproduces pattern statistics well.
- * Overall accuracy of prediction, and especially that within V, not much better than random (1.13 and 1.05, respectively).

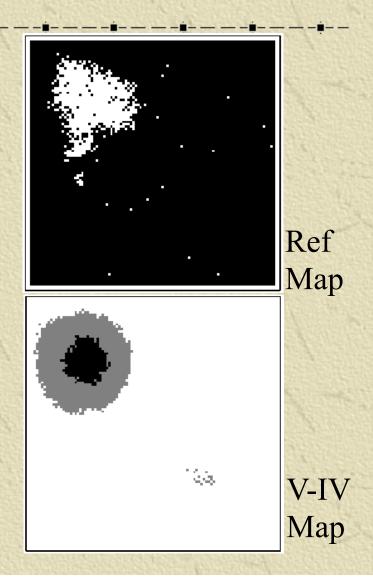
Hypothesis 3 and 4


* 3: Strong path dependence *can* lead to unpredictability.

4: It is possible to create a model that fits the reference map better than does the model that produced it.

Extreme Environmental Effect

Two paths with prediction accuracy worse than random. ***** Reference map has development following one of the paths. ***** Overall accuracy is low and V large with low average accuracy.

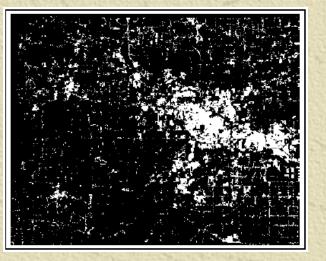


V-IV

Map

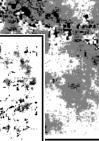
Overfit Model

- Added preference for nearness to "lake," on left side of map.
- By "calibrating" the model to fit the reference pattern increased IV and its accuracy.
- Accuracy is nearly double the model that actually produced the reference map.

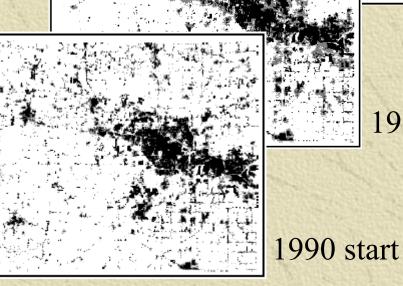


Results III

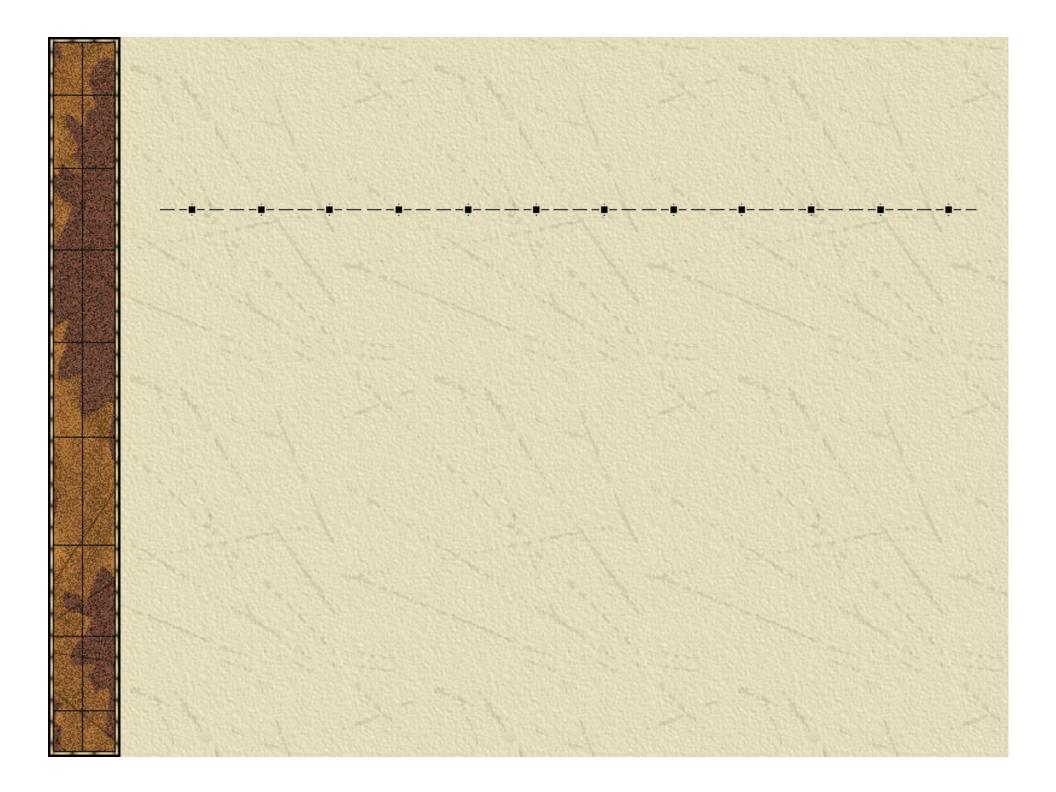
- * Where path dependence is strong, a single realization (e.g., reality) may be insufficient to describe the possible outcomes.
- * The model with the best prediction accuracy is not necessarily the model with the most accurate description of the process.
- * By calibrating models to data we may be missing important opportunities to evaluate novel mechanisms to control patterns.


Model Runs with Data

Start model at four different dates, representing decreasing information - 1990, 1978, and two psuedo-historical dates.



1995 Reference Map



1978

Questions

How might we know when the process itself is unpredictable, thereby placing limits on model predictability and validation?
Are there other approaches to structural validation?

Location Decision

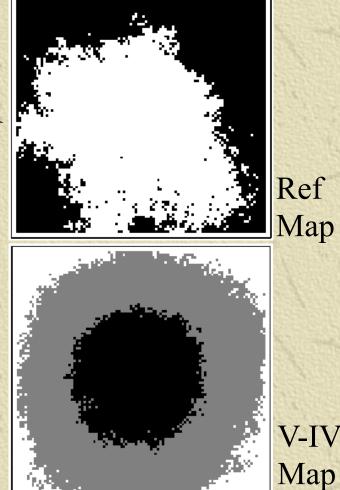
 A number of residents is created during each discrete time step (based on growth rate). Initially set to 10 per step.

***** Residents locate by:

- selecting a # of cells (*numtests*) randomly – initially set to 15
- moving to the cell that provides the highest utility - based on utility model.

Black cells are residents

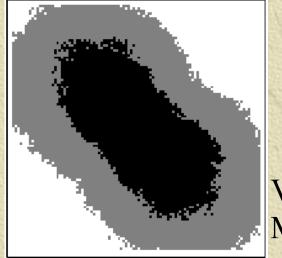
 $u_{xy} = q_{xy}^{\alpha_q} \times sd_{xy}^{\alpha_{sd}} \times \left|1 - \left(\beta_{nd} - nd_{xy}\right)\right|^{\alpha_{nd}}$


Hypothesis 1 and 2

* 1: More and stronger feedbacks will lead to more path dependence.

 Spatial variability in the environment can both strength path dependence and reduce the number of possible paths.

Base + Agents want Density


- Including neighborhood density reduces V and improves accuracy overall and within V (1.46 and 1.11, respectively).
- * All pattern metric values from the reference map were within distribution from model.

Base + Density + Environ.

- * Variable environment further reduces V (i.e., number of available paths) further.
- Environment provides basis for more accurate predictions, overall and in V (1.55 and 1.13, respectively).

V-IV Map

Aesthetic Quality Map

Results 1 and 2

- Spatial pattern of reference map was always within the distribution of patterns in model.
 Density feedback and environmental variability both increased the degree of predictability of the model.
 - Environmental variability reduced the number of possible paths.