Coping with Competing Claims on Water in the Inkomati Basin through Interactive Science (WIBIS)

Sérgio Barros

The Hague, 9 December 2010

WIBIS

Introduction

Who are involved?

Challenges

The WIBIS project

Objectives

Managing water by managing land

Results

Tool concept and application Indicators

Analyze current situation Identify and discuss future scenarios

Gains

Who are we involved?

Developers:

LEI (WUR): Agricultural Economics Research Institute

Alterra (WUR): Research Institute for the Green Environment

WaterWatch: Scientific Advisory firm specialised in water management using satellite data

WE consult: Advisory firm on Water Resources and Environment (Mozambique)

Main stakeholders

DNA, DWAF-SA, DWA, Ministries of Agriculture PRIMA initiative ICMA, ARA-SUL

Challenges

The Inkomati basin experiences:

-Competing claims on Land & Water Resources (between sectors and areas/countries)

-Water variability & scarcity / over-allocation / global climate change / land development and reforms

Objective

Development of a Discussion Support Tool that provides transparent, impartial and verifiable information regarding the impact of land-use changes on water consumption and productivity.

Support the process of the implementation of the transboundary Tripartite Interim Agreement

Managing water by managing land

Emphasis on land management & spatial planning

The availability of surface water resources (and groundwater resources) is primarily determined by land use and management

Water planning and management is the secondary determining factor

Managing water by managing land

Rainfall ≈ 5 billion m³/year

and forestry receive more than 5 times more water as rainfall than the amount of freshwater withdrawn for irrigation

Agriculture (incl. forestry)

Irrigation
< 1 billion m³/year

Runoff

In the Inkomati basin agriculture

Tool application

Analyze (current) situation
Interactively identify (spatial distributed) land use scenarios
Rapid assessment on various indicators (various policy priorities)
Discuss outcomes

Detailed assessment of scenarios

Indicators for policy priorities

- Crop water productivity CWP (kg/m³)
 yield per unit of water consumed
- Economic water productivity EWP (€, \$, R/m³)
 net private benefits per unit of water consumed
- Socio-economic water productivity SWP(jobs/m³)
 net social benefits per unit of water consumed
- Water equity (m³)
 Water available to downstream uses

Tool application

Analyze current situation and evaluate alternatives.....

.....by visualizing geographical, temporal and sectoral distribution of the indicators as well as thematic information (land use, rainfall, evapotranspiration, biomass production)

- ⇒ Geographical: 24 land management areas
- ⇒ Temporal: 3 years: dry, average, wet
- ⇒ Sectoral: 15 land uses

Analyze present situation. Example: Rainfall surplus

Analyze present situation

Example

Average Evapotranspiration year (mm/year)

	Forestry	Sugar
Mozambique	777	1001
Swaziland	939	808
South-Africa	802	765

Example: Economic water productivity sugar

Example: 25,000 ha sugarcane in Mozambique

Area 5	Average year	
	Before	After
$CWP (kg/m^3)$	0.023	0.164
$EWP (ZAR/m^3)$	0.003	0.116
Production value (million ZAR)	<mark>8</mark>	<mark>321</mark>
Water use related jobs	<mark>1086</mark>	18028
ET _{act} (mm)	672	691
Commercial area (ha)	2450	27401
Rainfall surplus (million m ³)	<mark>62</mark>	<mark>10</mark>
Water availability to downstream	1727	1675
areas (million m ³)		

Gains

Stakeholders discussions are now based on impartial and verifiable information

Tangible indicators for policy development

Support to discussions during the following meetings:

- Task Team of the TPTC meeting May 2008 Swaziland
- LOGO-South twinning April 2009 Mozambique
- PRIMA water allocation workshop Nov 2009 Swaziland
- African Water Week Nov 2009 South-Africa
- REMCO Conference October 2010 Swaziland

