Low investment in sexual reproduction threatens plants adapted to phosphorus limitation

Yuki Fujita, Harry Olde Venterink, Peter M. van Bodegom, Jacob C. Douma, Gerrit W. Heil, Norbert Höltzel, Ewa Jablońska, Wiktor Kotowski, Tomasz Okruszko, Paweł Pawlikowski, Peter C. de Ruiter & Martin J. Wassen

Plant species diversity in Eurasian wetlands and grasslands depends not only on productivity but also on the relative availability of nutrients, particularly of nitrogen and phosphorus. Here we show that the impacts of nitrogen:phosphorus stoichiometry on plant species richness can be explained by selected plant life-history traits, notably by plant investments in growth versus reproduction. In 599 Eurasian sites with herbaceous vegetation we examined the relationship between the local nutrient conditions and community-mean life-history traits. We found that compared with plants in nitrogen-limited communities, plants in phosphorus-limited communities invest little in sexual reproduction (for example, less investment in seed, shorter flowering period, longer lifespan) and have conservative leaf economy traits (that is, a low specific leaf area and a high leaf dry-matter content). Endangered species were more frequent in phosphorus-limited ecosystems and they too invested little in sexual reproduction. The results provide new insight into how plant adaptations to nutrient conditions can drive the distribution of plant species in natural ecosystems and can account for the vulnerability of endangered species.

Species diversity is influenced both by overall nutrient availability and by nutrient stoichiometry—that is, how the ratio of available nutrients relates to their consumers’ requirements. In terrestrial plant communities the two nutrients that most frequently limit growth are nitrogen (N) and phosphorus (P). It has long been recognized that in sites that are N- or P-limited, the species assembly is different; this difference is also reflected in the occurrence of endangered species, most of which are found in P-limited sites. The explanation of why these species are associated with P-limited sites may lie in their functional traits.

In general, fast-growing species dominate in nutrient-rich environments, whereas slow-growing species dominate in nutrient-poor conditions. With respect to the N:P stoichiometry, a number of studies indicate that low N:P-ratio environments favour fast-growing species with long roots, or species that fix N, whereas high N:P-ratio environments favour slow-growing species with specialized P uptake traits; for example, cluster roots, arbuscular mycorrhizae or high phosphatase activity. The association between fast-growing species and low N:P ratios is also consistent with the growth rate hypothesis, which states that a fast growth rate is enabled by high investment in P-rich RNA, resulting in relatively high leaf P concentrations and concomitant low N:P ratios. However, these particular traits do not necessarily explain differences in total species richness along N:P availability gradients and, moreover, it seems possible that the selection for these traits may depend on environmental conditions other than the relative availability of N and P. We looked for an explanation based on inherent plant life-history traits, particularly investments in growth versus reproduction. We had access to a large comparative data set, which enabled us to separate the effects of overall nutrient availability from those of N:P stoichiometry across many species. In addition, by linking our traits analysis to the Red List statuses of the species involved (Red Lists of seven different countries), we were able to assess the mechanisms that might account for why certain species are more vulnerable for extinction than others.

Figure 1 | Relationship between biodiversity indices of vascular plants and N:P ratio corrected for productivity effects. a–c, Tested biodiversity indices are the number of species (a), the number of endangered species (b), and the percentage of endangered species (c) (number of sites (n) = 539). N:P ratio was corrected for the confounding effects of productivity by using the residual values of N:P ratio regressed by productivity (see Supplementary Discussion 1 and Extended Data Fig. 1). 7th quantile regression functions (τ = 0.50, 0.75, 0.90, 0.95) are also shown. See Extended Data Fig. 2 for the 95% confidence intervals of the regression coefficients. The results were not biased by the selection of habitat types in our data set (Extended Data Fig. 3).

1KWR Watercycle Research Institute, PO Box 1072, 3430 BB Nieuwegein, The Netherlands. 2Plant Biology and Nature Management, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium. 3Department of Ecological Science, VU University Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands. 4Centre for Crop Systems Analysis, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands. 5Faculty of Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands. 6Institute of Landscape Ecology, Faculty of Geosciences, University of Münster, Robert-Koch-Strasse 28, 48149 Münster, Germany. 7Department of Plant Ecology and Environmental Conservation, Institute of Botany, University of Warsaw, Al. Ujazdowskie 4, Warsaw, Poland. 8Warsaw University of Life Sciences, Faculty of Civil and Environmental Engineering, 02-722 Warsaw, Nowoursynowska 166, Poland. 9Biometris, Wageningen University, PO Box 100, 6700 AC Wageningen, The Netherlands. 10Environmental Sciences, Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, PO Box 80115, 3508 TC Utrecht, The Netherlands.

©2013 Macmillan Publishers Limited. All rights reserved
The data set consisted of 599 field plots in herbaceous ecosystems in Eurasia, with data on plant species composition, aboveground productivity of vascular plants as a proxy for overall nutrient availability, and the N:P-potassium (K) ratio in the aboveground plant biomass as a proxy for nutrient stoichiometry (see Supplementary Discussion 1). Sites considered to be K-limited (n = 60, based on N:K and K:P ratios) were excluded from further analysis. Across the remaining part of the data set (all N- and/or P- (co-)limited, n = 539), species richness of vascular plants is highest at intermediate N:P ratios (N and P co-limitation; Fig. 1a), whereas the numbers of endangered species tend to be highest at higher N:P ratios (Fig. 1b) and the percentage of endangered species rises as N:P ratios increase towards P limitation (Fig. 1c). For 446 herbaceous plant species occurring in the 539 plots, we retrieved 15 life-history plant traits related to nutrient acquisition, growth and reproductive strategy (see Extended Data Table 1). After accounting for potentially confounding effects of productivity on N:P ratio and community-mean trait values (see Extended Data Fig. 1), we found that plots with a high N:P ratio were significantly (P < 0.001) associated with the occurrence of species with a small investment in sexual reproduction (such as low seed number (Fig. 2f) and seed investment (Fig. 2g), late start of flowering (Fig. 2h), short flowering period (Fig. 2i), vegetative reproduction (Fig. 2j), life span (Fig. 2k), leaf dry matter content (Fig. 2l), flowering period (Fig. 2m), plant architecture (Fig. 2n), and N fixation (Fig. 2o). Extended Data Table 1 gives abbreviations and trait units. Linear regression models are shown, plus their standardized coefficient values (β) and two-tailed P values of the coefficients (***P < 0.001; NS, not significant). Bar graphs show fraction of variance (for continuous traits) or deviance (for binary traits) of community-mean trait values explained by productivity and N:P ratio. Variances in community-mean trait values are separated into unique effects of productivity (green) and N:P ratio (purple), and shared effects of productivity and N:P ratio (grey). Negative shared effects indicate that the trait is suppressed by interaction between productivity and N:P ratio. For these traits, total variance explained (dotted lines) is smaller than the sum of unique effects of N:P ratio and productivity.
annually or biennials (Fig. 2m)) and less association with N fixers (Fig. 2o).

Species occurring at high N:P ratio plots also had leaf traits characteristic of slow-growing species, such as low specific leaf area (SLA) (Fig. 2c) and high leaf dry-matter content (LDMC) (Fig. 2d). Some traits (such as canopy height, leaf mass and plant architecture (monocot or eudicot)) correlated strongly ($P < 0.001$) with productivity but not ($P > 0.05$) with N:P ratio, as shown by a dominant contribution of productivity to their explained variance (Fig. 2a, b, n). The relationships between N:P ratio and particular plant traits also became apparent when species were classified into ‘strategies’ according to a previous paper18; that is, the N:P ratios correlated positively with abundance of ‘stress tolerators’ ($P < 0.001$), correlated negatively with abundance of ‘ruderals’ ($P < 0.001$), and were not significantly correlated with abundance of ‘competitors’ ($P > 0.05$) (Fig. 3). Furthermore, a principal component analysis (PCA) indicated that the trade-off between seed and vegetative reproduction was strongly correlated ($P < 0.001$) with N:P ratio, with the unique effect of N:P ratio being stronger (21% of variation explained) than that of productivity (9% of variation explained), a finding that confirmed the robustness of our analysis (See Supplementary Discussion 2).

We found three contrasting but not mutually exclusive relationships between nutrient availability or stoichiometry and life-history plant traits. First, overall nutrient availability—but not N:P stoichiometry—is related to traits involved in competition for light (for example, plant size, ‘competitor’ strategy). Second, both N:P stoichiometry and overall nutrient availability are related to leaf economy traits (for example, specific leaf area, leaf dry-matter content). Previous studies have shown that leaf economy traits are related to overall nutrient availability17,19, but our results show that fast-growing species also have an affinity for low N:P ratio environments, independently of the overall nutrient availability effect. Third, N:P stoichiometry is related to investment in sexual reproduction almost independently of overall nutrient availability; that is, high N:P conditions (P limitation) correlated with low investment in sexual reproduction. Such low investment restricts P losses, since reproductive organs are P-rich20. Classical allocation studies have shown that plants can invest up to 50 to 60% of all acquired P in sexual reproduction, and that this percentage is generally higher for P than for N and other elements21,22. Impaired investment in sexual reproduction under P limitation is also supported by experimental data23. An alternative strategy for a plant is to produce few seeds in order to maintain a high P concentration per seed, which is an important factor for successful recruitment in P-impovery soils24.

Our study clearly shows that endangered species have different suites of functional traits than non-endangered species (permutational multivariate analysis of variance (PERMANOVA), $F_{1,281} = 2.67$, $P < 0.05$). Compared with non-endangered species, they have a lower canopy height, less investment in sexual reproduction (fewer seeds and smaller seed mass per individual), a shorter flowering period and a later starting time of flowering, and are perennials rather than annuals (all differences significant at least at the $P < 0.05$ level) (Fig. 4). The lower reliance of endangered species on seed reproduction is also seen in the PCA axis scores (Supplementary Discussion 2), and confirms the findings of previous studies.
studies comparing common with endangered or rare species (for example, a shorter flowering period\(^2\), smaller seed mass\(^2\) and poorer dispersal ability\(^2\)\(^3\)).

Endangered species occur more frequently under P-limited conditions (high N:P ratio environments) than can be explained by chance, as shown for temperate regions in our data set and in a previously studied much more limited data set\(^4\) as well as for a tropical region\(^5\). Our trait analysis provides two possible explanations for the frequent occurrence of endangered species in P-limited conditions. First, that endangered species are often small and are therefore poor competitors for light. Small size is a major disadvantage when growing in productive sites, but on poorly productive sites, which are associated with a high plant N:P ratio (see Supplementary Discussion 1), they face little competition. Second, the relatively low investment of endangered species in sexual reproduction is characteristic of plant species under P limitation (high N:P ratio environments). Thus, both increased productivity of ecosystems and changed N:P stoichiometry potentially threaten the survival of such species; moreover, their low dispersal capacity makes them vulnerable to such threats. The idea that endangered species are vulnerable for changes in the relative availabilities of N and P is supported by a global study showing that species with a narrow geographical range (that is, those more likely to become endangered) have higher leaf N:P ratios than those with a wide range\(^6\). The exact mechanisms and potentially interacting processes that may explain why species vulnerable for extinction occur on P-limited sites need to be tested further. However, it is likely that large-scale P enrichment of herbaceous ecosystems that boosts productivity and ends P limitation causes species adapted to P limitation to be more vulnerable to extinction. Moreover, the low investment in sexual reproduction of these species, which is a beneficial trait in P-poor environments, is a drawback for their dispersal ability. N fertilization will probably not promote survival of endangered species, as there are a number of mechanisms for increasing P uptake from diverse forms of P in soil (for example, root exudates, mycorrhizae) under N-rich conditions\(^7\), and therefore P limitation might not be enhanced by N enrichment. Instead, to better protect endangered species, we should aim to preserve P-limited and poorly productive sites. Given that these sites are already scarce and scattered, that landscapes are increasingly human-influenced and urbanized, and that endangered species have less sexual reproduction (and so are disadvantaged in long-distance dispersal), it is clear that these species’ vulnerability for extinction is acute.

METHODS SUMMARY

Species composition of vascular plants, their aboveground biomass (as a proxy for site productivity), and N:P ratio in the biomass (as a proxy for relative availability of N, P and K for plants) were recorded in 599 plots in herbaceous ecosystems. The selected ecosystems range from wet to moist conditions and include grasslands, fens, bogs, marshes, wetlands, and dune slacks in nine countries in Eurasia. As N:P stoichiometry is our focus, K-limited plots (N:K ratio >2.1 and K:P ratio <3.41; \(n = 60\)) were excluded from further analysis. Of the total 491 vascular plant species recorded, 172 endangered species were identified from the combined Red Lists of seven of the countries. We examined the effects of N:P ratio on biodiversity indices (number of species, number and percentage of endangered species) and community-mean values of 15 functional traits and Grime’s CSR (competitor, stress tolerator, ruderal) strategy of 446 herbaceous species retrieved from trait databases (see Extended Data Table 1). In all analyses, the confounding effects of productivity on the variables of interest were statistically removed (Extended Data Fig. 1). For the effects of N:P ratio on biodiversity indices, quantile regression analysis was carried out between N:P ratios (corrected for productivity) and biodiversity indices for the 0.50 to 0.95 quantiles. The impact of N:P ratio on community-mean trait values (both corrected for productivity) was tested using path analysis, and the relative contributions of productivity and N:P ratio to community-mean trait values were quantified by partitioning the explained variance of traits to unique and shared effects of productivity and N:P ratio. Furthermore, differences between endangered and non-endangered species in terms of their functional trait composition were examined with a PERMANOVA. In addition, for each of 15 traits and CSR strategy, the differences between endangered and non-endangered species were examined by Cohen’s \(d\) for continuous traits and log-odds ratio for binary traits.

Online Content

Any additional Methods, Extended Data display items and Source Data are available in the online version of the paper; references unique to these sections appear only in the online paper.

Received 15 July; accepted 3 October 2013.

Published online 17 November 2013.

©2013 Macmillan Publishers Limited. All rights reserved

Supplementary Information is available in the online version of the paper.

Acknowledgements We would like to thank N. A. Soudzilovskaia for obtaining the Russian Red List of plant species, M. Soons, D. Ertsen and D. van der Goes for permission to use their vegetation records, T. Markus and M. Stoete for drawing figures and J. Burrough for editing the near-final draft. Y.F. was funded by the Utrecht Centre of Geosciences, and the research in the Rospuda river valley was financed by the Polish Ministry of Science and Higher Education Grant no. N304 010 31/0414.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to M.J.W. (m.j.wassen@uu.nl).
METHODS

Plot selection. We collected vegetation data on 599 plots from herbaceous ecosystems, including the 276 sites studied in ref. 2. The sample consists of grasslands, fens, bogs, marshes, reed beds and dune-slash vegetation. All plots are non-brackish, with moist to wet conditions, thus impacts of drought and salinity on species richness were avoided. Only 19 plots are lightly fertilized (\(\leq 100\) kg N ha\(^{-1}\) yr\(^{-1}\)), and 102 plots are exposed to periodic river flooding. All plots are dominated by herbaceous species (>50% cover). The plots were selected to span a wide geographical range of Eurasian countries: The Netherlands (255 plots), Poland (153), Russia (82), Germany (43), Belgium (20), Iceland (17), Sweden (10), Scotland (10) and Belarus (9). These plots encompass most of the west and central European lowlands. The flora in the country-wise partial data sets we collected is similar: on average, 86% (and a minimum of 70%) of the species recorded in any country had also been recorded in the other regions. For each plot, aboveground standing biomass of vascular plants was harvested at the peak of the growing season; that is, from June to August. The harvested area ranged from 0.06 m\(^2\) to 1 m\(^2\). The content of N, P and K in the biomass was analysed after Kjeldahl digestion\(^{17}\). Composition of vascular plant species was recorded in or around the harvested area in plots of 0.06 to 25 m\(^2\). The different plot sizes did not affect the relationships between biodiversity and N:P stoichiometry (see Supplementary Discussion 3).

Functional characteristics of species. Per species, we quantified those functional traits available in trait databases\(^{20–23}\) for most of the recorded plant species that are known to be important for the growth or reproduction strategies of herbaceous plant species\(^{24}\) (See Extended Data Table 1 for an overview of traits, units and sources). We excluded woody species (45 species out of the total 491 species) from the trait analysis, as most woody species recorded in our plots were seedlings and therefore the trait values available in databases (which are for adult individuals) are not relevant. The selected traits were those related to competition for light (canopy height, leaf mass), leaf economy traits (specific leaf area (SLA), leaf dry-matter content (LDMC)), seed traits (seed mass, number of seeds per individual, seed investment (that is, seed mass per individual, calculated as seed mass times number of seeds per individual)), phenology traits (starting month of flowering, duration of flowering period), reproduction strategy traits (lateral spread, type of reproduction, plant lifespan), a plant architecture trait (that is, eudicots or monocots), and a nutrient acquisition trait (N fixation) (Extended Data Table 1). We note that seed investment is a trait that may be biased by the size of the plant. However, even when we corrected seed investment roughly for plant size, the relationship between N:P ratio and this trait did not change (Supplementary Discussion 4). Duration of flowering period (expressed in months) and starting month of flowering (ranging from January to August, and thus coded 1 to 8) were treated as continuous variables. All continuous traits except LDMC and starting month of flowering were log-transformed to adjust the right-skewed frequency distributions. Type of reproduction, expressed on an ordinal scale with five classes, was converted into two log-transformed to adjust the right-skewed frequency distributions. Type of reproduction, expressed on an ordinal scale with five classes, was converted into two

Data analysis approach. We are interested in the effects of nutrient stoichiometry (that is, the ratio between N and P availability for plants) on species diversity and on prevailing functional traits of species in plant communities, irrespective of confounding effects of overall nutrient availability. We use N:P ratios of aboveground plant biomass as a proxy for nutrient stoichiometry (see Supplementary Discussion 1 for a justification of using plant N:P ratio), and site productivity (that is, aboveground biomass of vascular plants) as a proxy for overall nutrient availability. As the consideration of N:P ratio is relevant only when a plot is limited or co-limited by N or P, we excluded N-limited plots (\(n = 60\)) from the analysis. We considered a plot as N-limited if the N:P ratio was more than 2.1 and the K:P ratio was less than 3.4 (ref. 1).

We propose the following relationships between plant N:P ratio, site productivity, species diversity and community-mean species traits (see also Extended Data Fig. 1). Plant N:P ratio and site productivity are related through a scaling law proposed by the growth rate hypothesis\(^{24,49}\) (arrow a in Extended Data Fig. 1): plants grown in fertile environments (these tend to be fast-growing species) exhibit low biomass N:P ratios because of the high amount of P-rich RNA needed for rapid division of cell\(^{69}\) (see Supplementary Discussion 1 for more details). We are aware of the opposite direction of effect too (that is, N:P ratio influencing site productivity), particularly at extreme values of N:P ratios, where a deficiency of N or P limits site productivity, but we consider this effect to be minor. Furthermore, we posit that both species diversity and community-mean trait values are influenced by site productivity and N:P ratio. However, there is an intrinsic difference between how these drivers affect species richness and how they affect community-mean traits. Site productivity and N:P ratio ‘filter’ the community-mean traits (arrows c and d, respectively, in Extended Data Fig. 1b), acting on the upper values of species diversity. Given the different nature of the relationships, we employed two sets of methods to eliminate potential confounding factors from our analysis. All analyses were performed in R\(^{25}\).

Effects of N:P ratio on species diversity. A relationship between a dependent variable, species diversity and community-mean species traits (see (Supplementary Discussion 2).

For each plot, community-mean values (unweighted for the abundance of species) of continuous traits were calculated as an indicator of the mean response of the plant community to the site conditions. We treated the community-mean values of lateral spread, an ordinal trait, in the same way as those of continuous traits, because they were approximately normally distributed. For binary traits, the number of species with 1s and 0s were counted per plot. Plots with fewer than three species with a valid trait value, and plots in which less than 50% of occurring herbaceous species had a valid trait value, were omitted from the analysis. The omitted plots ranged from 6 to 16 plots (average 10.7 plots) of the total (539 plots).

Endangered species. We compiled a list of endangered species by combining the regional Red Lists of the Netherlands\(^{26}\), Germany\(^{27}\), Poland\(^{28}\), Sweden\(^{29}\), UK\(^{30}\), Iceland\(^{31}\) and the Novosibirsk region in Siberia\(^{32}\). The Red List of Belgium was not included, because the Belgian plots were near the border with the Netherlands and their flora was comparable with the flora in the Dutch plots. We did not use the list of Belarus, because the number of plots in this country was small (\(n = 9\)) and the flora in these plots overlapped with those of Poland. The Red List status of a species reflects both the decline of the habitat in the region and the susceptibility of the species to the changing environment. Some species are Red Listed in one country but not in others, because in those countries their habitat is not deteriorating. For our analysis, only the susceptibility of an endangered species is relevant, not the region-specific habitat deterioration, because we are interested in the mechanisms whereby species become endangered (that is, their functional traits). Therefore, we identified a species as ‘endangered’ if it is on at least one regional Red List (meaning that this species has fragile characteristics that are susceptible to environmental changes), and applied this new list to all plots. In this way we corrected for habitat loss, which is largely region-specific. Note that we included the categories which refer to actual decline of the species (‘critically endangered’, ‘endangered’ and ‘vulnerable’ species), but not the category which refers to the scarcity of the species (‘rare’). In this way, we excluded species which are always rare irrespective of environmental change. Of our 491 vascular plant species, we identified 172 endangered species (157 herbaceous and 15 non-herbaceous species). For each plot, we counted number and percentage of endangered species. The latter is the number of endangered species divided by the total number of species (\(\times 100\)) per plot.

Examples of functions shown in the figure.
when N:P ratio actively limits biodiversity, we examined high values of r only ($r > 0.50$). To evaluate the precision of the obtained model, 95% confidence intervals of the coefficients were computed with the rank inversion method10 (Extended Data Fig. 2). These analyses were performed with the R package `quantreg`46.

The analyses were run for the complete data set. A control run was carried out on the data set excluding two dominant habitat types (fens and bogs). This tested whether our analysis results could have been biased by habitats that may be severely deteriorated (for example, fens and bogs in western Europe with desiccation problems) or contain taxonomically distinct species that are only marginally normally distributed (flowering time, flowering period, C. S. R. scores; $P < 0.05$ with Kolmogorov–Smirnov test). The difference between endangered and non-endangered species was also tested with the Mann–Whitney U-test; the conclusions were identical. For binary traits, the effect size was examined by the log-odds ratio. The equations of log-odds ratio and its 95% confidence intervals48 are shown in Supplementary equation (2). Note that the scales of Cohen’s d and log-odds ratio are different, so the effect size of continuous and binary traits cannot be compared. For ordinary traits, effect size cannot be calculated. For these traits, the Mann–Whitney U-test was used to test the difference between endangered and non-endangered species.

Effects of N:P ratio on community-mean traits. Our aim was twofold: to examine, first, the significance of N:P ratios in affecting community-mean trait values; and second, the explained variation in community-mean trait values by N:P ratios in addition to and in interaction with productivity.

First, we tested the association between N:P ratio and community-mean traits in the proposed relationships between N:P ratio, productivity and community-mean traits (Extended Data Fig. 1b) using concepts of path modelling44. Note that we proposed the causal model as depicted in Extended Data Fig. 1b to be true, even though causality as such cannot be tested in this model because the hypothesized model is ‘saturated’ (that is, all the possible interconnections are specified). However, it is still possible to refute the existence of a relationship between N:P ratio and community-mean trait values (arrow d in Extended Data Fig. 1b) by testing the significance of this association while statistically holding productivity constant. We only included topics that were only marginally normally distributed (flowering period, flowering time, C. S. R. scores; $P < 0.05$ with Kolmogorov–Smirnov test). The difference between endangered and non-endangered species was also tested with the Mann–Whitney U-test; the conclusions were identical. For binary traits, the effect size was examined by the log-odds ratio. The equations of log-odds ratio and its 95% confidence intervals48 are shown in Supplementary equation (2). Note that the scales of Cohen’s d and log-odds ratio are different, so the effect size of continuous and binary traits cannot be compared. For ordinary traits, effect size cannot be calculated. For these traits, the Mann–Whitney U-test was used to test the difference between endangered and non-endangered species.

Extended Data Figure 1 | Data analysis approach. a, b, Schematic proposed relationships between site productivity (that is, aboveground biomass of vascular plants; \(X_2\)), N:P ratio in aboveground plant biomass (\(X_1\)), and species diversity (\(a; X_3\)) or community-mean traits (\(b; X_4\)). Solid arrows are relationships in which the explanatory variable is constrained by the response variable (direct causality); dashed arrows are relationships in which upper bound of the explanatory variable is constrained by the response variable (limitation). Arrow \(a\) represents the pattern predicted by the growth rate hypothesis (see Supplementary Discussion 1 for details). The effect of N:P ratio on species diversity (arrow \(b\)) was tested by quantile regression analysis (thus treating arrow \(c\) as another limiting factor) with the residual values of \(X_1\) versus \(X_2\) as an explanatory variable (thus removing the effect illustrated by arrow \(a\)). The effect of N:P ratio on a community-mean trait (arrow \(d\)) was tested by comparing the residual values of \(X_1\) versus \(X_2\) (thus removing the effect illustrated by arrow \(a\)) with the residual values of \(X_4\) versus \(X_2\) (thus removing the effect illustrated by arrow \(e\)), using concepts of path analysis.
Extended Data Figure 2 | Ninety-five per cent confidence intervals of the quantile regression coefficients. a–c, Estimates (dots) and 95% confidence intervals (bars) of quadratic and linear coefficients (b_2 and b_1, respectively) of quantile regression models are shown for the number of vascular plant species (a), the number of endangered species (b), and the percentage of endangered species (c) regressed by N:P ratio corrected for productivity effects. The fitted models were (y_1): $\ln(y_1 + 1) = b_0 + b_1x + b_2x^2$ for number of species; (y_2): $\ln(y_2 + 1) = b_0 + b_1x$ for number of endangered species; and ($y_3 = 100\times y_2/y_1$): $\ln((y_2 + 0.5)/(y_1 - y_2 + 0.5)) = b_0 + b_1x$ for percentage of endangered species, where x is the residuals of plant N:P ratio regressed by productivity. Models were examined for 50% ($\tau = 0.50$) to 95% ($\tau = 0.95$) quantiles. See Fig. 1 for the shape of the quantile regression models for $\tau = 0.50$, 0.75, 0.90, 0.95.
Extended Data Figure 3 | Effects of habitat types on relationships between residual N:P ratio and biodiversity indices. Relationships between N:P ratio corrected for productivity effects and the number of endangered species (a) and percentage of endangered species (b) are shown for different habitat types (left, 187 fens; middle, 56 bogs; and right, 296 other habitat types). Linear, rather than quadratic, quantile regression models were applied because for most quantiles the quadratic coefficients did not differ significantly from zero. The linear quantile regression models ($\tau = 0.50, 0.75, 0.90, 0.95$) are shown only when the 95% confidence intervals of the linear coefficients of the regression models were above or below zero for the majority of the quantiles. Number and percentage of endangered species increased concomitantly with increasing N:P ratio (corrected for productivity) even in plots that are not fens and bogs, indicating that our findings on the relationship between N:P ratio and endangered species were not an artefact resulting from the stratified sampling of habitat types.
Extended Data Figure 4 | Relationships between community-mean trait values and plant N:P ratio. a–r, The tested traits are canopy height (a, number of sites ($n = 530$), leaf mass (b, $n = 525$), specific leaf area (c, $n = 529$), leaf dry-matter content (d, $n = 525$), seed mass (e, $n = 533$), seed number per shoot (f, $n = 524$), seed investment (g, $n = 523$), starting month of flowering (h, $n = 528$), flowering period (i, $n = 528$), lateral spread (j, $n = 526$), reproduction by seeds (k, $n = 528$), vegetative reproduction (l, $n = 528$), life span (m, $n = 531$), plant architecture (n, $n = 533$), N fixation (o, $n = 502$), C score (p, $n = 528$), S score (q, $n = 528$) and R score (r, $n = 528$). See Extended Data Table 1 for abbreviations and units of the traits. Canopy height, leaf mass, specific leaf area, seed mass, number of seeds, seed investment, and flowering period were log-transformed before the calculation of community-mean values. For binary traits, plot mean values were shown as a fraction of species with 1s over total species (that is, sum of 1s and 0s) to allow graphical presentation. Standardized regression coefficients (β) of community-mean trait regressed by N:P ratio using GLM and their two-tailed p-values ($***P < 0.001$, **$P < 0.01$, *$P < 0.05$) are shown.
Extended Data Table 1 | List of functional traits of herbaceous vascular plant species

14 species functional traits were retrieved from trait databases, and 2 binary traits (‘Reproduction by seeds’ and ‘Vegetative reproduction’) were derived from an ordinal trait (‘Type of reproduction’). For regression analyses of community-mean trait values (Fig. 2) and for effect-size calculation (Fig. 4), we did not use ‘Type of reproduction’ but the two derived binary traits instead. The traits were retrieved for 446 herbaceous vascular plant species. Canopy height, leaf mass, SLA, seed mass, number of seeds, seed investment, and flowering period were log-transformed before all analyses.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Scale and Unit</th>
<th>% of species with a trait value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canopy height</td>
<td>Continuous; m</td>
<td>93</td>
<td>32, 33</td>
</tr>
<tr>
<td>Leaf mass</td>
<td>Continuous; mg</td>
<td>81</td>
<td>33</td>
</tr>
<tr>
<td>Specific leaf area (SLA)</td>
<td>Continuous; mm²/mg</td>
<td>84</td>
<td>33</td>
</tr>
<tr>
<td>Leaf dry matter content (LDMC)</td>
<td>Continuous; %</td>
<td>81</td>
<td>33</td>
</tr>
<tr>
<td>Seed mass</td>
<td>Continuous; mg per seed</td>
<td>83</td>
<td>33, 36, 38</td>
</tr>
<tr>
<td>Number of seeds</td>
<td>Continuous; number per shoot</td>
<td>76</td>
<td>33</td>
</tr>
<tr>
<td>Seed investment</td>
<td>Continuous; mg per shoot</td>
<td>73</td>
<td>Seed mass x Number of seeds</td>
</tr>
<tr>
<td>Starting month of flowering</td>
<td>Continuous*; month</td>
<td>94</td>
<td>32, 36</td>
</tr>
<tr>
<td>Duration of flowering period</td>
<td>Continuous*; month</td>
<td>94</td>
<td>32, 36</td>
</tr>
<tr>
<td>Lateral spread</td>
<td>Ordinal†; 0: annuals, 1: <0.01m, 2: 0.01-0.25m, 3: >0.25m</td>
<td>85</td>
<td>34, 35</td>
</tr>
<tr>
<td>Type of reproduction §</td>
<td>Ordinal; 1: s, 0.75: ss, 0.5: sv, 0.25: svv, 0: v</td>
<td>90</td>
<td>36</td>
</tr>
<tr>
<td>Reproduction by seeds</td>
<td>Binary; 1: yes (s/ss/ssv/sv), 0: no or seldom (sv/v)</td>
<td>90</td>
<td>Derived from ‘Type of reproduction’</td>
</tr>
<tr>
<td>Vegetative reproduction</td>
<td>Binary; 1: yes (v/vsv/sv), 0: no or seldom (sv/s)</td>
<td>90</td>
<td>Derived from ‘Type of reproduction’</td>
</tr>
<tr>
<td>Life span</td>
<td>Binary; 1: annual or biennial, 0: Perennial</td>
<td>95</td>
<td>32, 33, 36</td>
</tr>
<tr>
<td>Plant architecture</td>
<td>Binary; 1: monocot, 0: eudicot</td>
<td>97</td>
<td>32</td>
</tr>
<tr>
<td>N-fixation</td>
<td>Binary; 1: nodulated legume, 0: others</td>
<td>100</td>
<td>37</td>
</tr>
</tbody>
</table>

* Month is strictly speaking an ordinal scale, but treated here as a continuous scale.
† Range from January to August, thus coded as 1 to 8.
‡ Community-mean values of lateral spread were treated as continuous variables, as lateral spread does not deviate from normal distribution.
§ Expressed as the relative dependency on seed reproduction. The original categories in the database are: s (by seeds), ss (mostly by seeds), sv (both by seeds and vegetatively), ss (mostly vegetatively), v (vegetatively).