Re-strengthening Agricultural Water Management in Africa

A review of the Comprehensive Assessment of water management in agriculture based on experiences from the Central Rift Valley, Ethiopia

Huib Hengsdijk, Plant Research International
Outline of presentation

- Comprehensive Assessment (CA) of water management in agriculture
- Introduction of the Central Rift Valley in Ethiopia
- Proposed solution pathways CA
- Conclusions
CA for water management in agriculture

The context:

- About 850 mln of malnourished people.
- Food and feed demand doubles in coming 50 years.
- Agriculture takes 70% of freshwater withdrawals.
- Without further improvement in water productivity agricultural water demand will almost double from 7130 km2 today to 12 - 13,500 km2 in 2050.
CA for water management in agriculture

- Sufficient resources to feed the world, but urgent action required!

Most promising contributions to food problem:
- Increase productivity of low-yield farmers
- Largest potential in rainfed areas
- Increase productivity in irrigated areas
CA solutions to meet future food demand

- Investing to increase production in rainfed agriculture
 - Enhanced soil moisture management and supplemental irrigation
 - Improving soil fertility management
 - Expanding crop areas
- Investing in irrigation
 - Increasing supply (e.g. innovations, storage facilities)
 - Increasing water productivity by integrating multiple uses
- Agricultural trade within and between countries
- Reducing gross food demand (e.g. changing diets, reducing post-harvest loss)
Central Rift Valley (CRV) in Ethiopia

- Altitude 1500 - 3000 m
- Annual rainfall 650-1250 mm
- Closed river basin

Major agricultural problems:
- Food deficit area
- Overexploitation of freshwater for irrigation
- Overgrazing
- Encroachment on marginal land
Overexploitation of freshwater for irrigation
CA solutions vs practical lessons from the CRV

Investing in irrigation

- Increasing supply (e.g. innovations, storage facilities)
- Water extraction is already associated with the depletion of fresh water resources affecting ecosystem functions.
- Improve water productivity of delivery systems (hard and soft infrastructure).

- Increasing water productivity by integrating multiple uses
- Partly already happening (e.g. livestock watering, washing), but options for more uses may be further explored
CA solutions vs practical lessons from the CRV

Investing in rainfed agriculture. Why?
- Low yields: largest potentials for improvement
- Most hungry and poor people depend on rainfed agriculture
- Majority of cropland is rainfed, providing 60% of global cereal production

1. CA: Enhanced soil moisture management
 - Soil moisture management practices:
 - Bunds, ridges, etc. → Very labor intensive
 - Conservation tillage → Herbicides or labor required; unsuitable for teff
 - Mulching → Biomass shortage
Investing in rainfed agriculture

2. CA: Supplemental irrigation, e.g. storage of rain water
 - Technically feasible (soils), economically viable and sustainable (siltation)?
 - Shift towards non-cereal crops, while markets are already flooded with vegetables of poor quality?
 - Upscaling: Tradeoffs with downstream users?
 - By reducing risk, supplemental irrigation may be provide incentives for investments in other production factors, but….
 - …..only when other requirements are in place (e.g. credit and input markets)!
 - Poor experiences with micro catchments elsewhere in Ethiopia.
CA solutions vs practical lessons from the CRV

Investing in rainfed agriculture

3. CA: Improving soil fertility
 - Very important for soils that received low inputs for many years
 - Access to fertilizers?
 - Liberalization of fertilizer market (monopoly of government related organization)
 - On degraded and marginal soils, low fertilizer recoveries can be expected: fertilizer use economically viable in short term?
 - Increase fertilizer efficiency by combining organic inputs (but available?)
CA solutions vs practical lessons from the CRV

Investing in rainfed agriculture

4. CA: Expanding crop areas
 - Limited possibilities because good land is scarce.
 - Agriculture already shifted towards marginal areas and areas of interest for nature and biodiversity.
 - More attention for land reform and land markets in combination with the development of a social safety net.
Equally important for improving agriculture production

- Fair and stable output prices
- Access to credits and inputs
- Research and capacity building
- Re-allocation of resources
Conclusions

- CA: “Investments in water management are the entry point to unlock the potential in rainfed agriculture.”
- R&D should not focus on isolated (e.g. water management) technologies.
- Rainfed farmers face many social, economic and institutional constraints.
- Solving these constraints will require leadership at different levels.
- It is the combination of the entire technology package and lifting of the social, economic and institutional constraints (‘enabling environment’) that can make the difference.
- Only then important synergies possible, and investments in water management will pay off.