Defining genetic diversity based on genomic tools

Second chapter in the book:

“Genomic management of animal genetic diversity”

Jesús Fernández, INIA and Jörn Bennewitz, Hohenheim University
You can not maintain what you can not measure!

- Degree of endangerment
 ⇒ prioritisation

- Management

- Monitoring
 ⇒ check for success
Keep phenotypic features

- Morphological
 - Breed standard
- Productive
 - Profitability
- Adaptation to particular environment

Classical approach through the concept of variance

- Good recording scheme (standardised and accurate)
 - Avoid confounding errors with high variability

Look for high levels of phenotypic diversity through high levels of genetic diversity

\[V_P = V_G + V_E \]
- Absent or unreliable
 - Especially between breeds
 - \Rightarrow prioritisation
- Assume founders unrelated and non inbred
- Average ‘expected’ value for neutral loci
 - No Mendelian sampling
 - \Rightarrow no all sibs are equal
Deal with ‘realised’ values

- percentage of polymorphic sites
- distribution of allelic frequencies
- observed and expected heterozygosity
- allelic diversity

⇒ detect relevant individuals or populations
dense coverage by SNPs

- every locus in LD with one marker
 ⇒ more precise measure

- measure non-neutral genetic diversity
 ⇒ account for productivity or fitness

- separate analysis of particular regions
 ⇒ instead of global picture

- finer determination of relationships between individuals/breeds
 ⇒ crucial in management
Close SNPs inherited together

- use haplotype (kinship)
 - detect selection signatures

- Runs Of Homozygosity (ROHs)
 - reflect IBD if they are long enough
 - but still ‘realised’ IBD

‘... long stretches of two homologous chromosomes within the same individual that are identical (homozygous for all the loci within) ...’
- whole sequence
 - detect other types of markers, e.g. Copy Number Variants (CNV)
 - causal mutations for important traits are present
 \Rightarrow not depending on LD with the SNPs
 - easier to detect rare variants
 - efficient way of detecting SNPs for rare breeds
 \Rightarrow avoid ascertain bias from commercial SNP chips
Partition of diversity within and between breeds

- better description of genetic structure
- prioritisation of breeds

\[GD = \lambda GD_W + GD_B \]

- \(\lambda = 0 \Rightarrow \) Weitzman
- \(\lambda = 0.5 \Rightarrow \) TGV
- \(\lambda = 1 \Rightarrow \) Exp. Het.
trait-based adaptive diversity measures

- excess of variance in genotypic values relative to the variance expected in the absence of selection

- adaptivity coverage of a set of subpopulations

- how well the subpopulations could adapt to a large range of environments