Laser Speckle Imaging of heterogeneous dynamics in drying paint

Hanne van der Kooij and Joris Sprakel

Introduction
The demand for sustainable, high-quality paints is growing. However, solvent-based paints still outperform their water-based counterparts, due to their fundamentally different drying process.1 It is therefore essential to gain spatial insights into the dynamics of paint drying. To address this challenge, we are developing a novel imaging technique specifically targeted at turbid systems. This so-called Laser Speckle Imaging (LSI) method allows visualising the drying dynamics in virtually any turbid sample, over a wide range of time scales, on both sealed and porous substrates.2 Here we explore the potential of LSI for elucidating the complex drying phenomena in water-based paints.

Laser Speckle Imaging (LSI) visualises motion

\[d_s(t, r, x, y) = \frac{(l(t,x,y) - \langle l(x,y) \rangle)^2}{\langle l(x,y)^2 \rangle} \]

Figure 1. Schematic of the LSI setup and data analysis. The sample is illuminated with a laser beam and the backscattered light is detected with a camera. This gives a speckle image of the sample, here a drying paint droplet. Any motion of scattering objects leads to fluctuations in the speckle intensity. These fluctuations are translated into dynamic information via the correlation function \(d_s \) which encodes the local dynamic activity at a given time \(t \), position \(x,y \), and correlation lag \(\tau \).

Heterogeneities in drying dispersion droplets

Radial evaporation:

Cracking and delamination:

Figure 2. Evolution of evaporation, cracking and delamination in concentrated dispersion droplets on glass.

Quantitative analysis of a drying film

The dynamic activity \(d_s \) is a multidimensional function of time, position, and the correlation lag \(\tau \) (see Figure 1). With increasing \(\tau \) the focus shifts to slower dynamics. The bottom graph in Figure 3 demonstrates that fast dynamic processes (\(\tau = 16 \) ms, e.g. diffusion, convection, cracking and delamination) dominate the first drying stages, whereas slow dynamic processes (\(\tau = 1.6 \) s, e.g. particle deformation, relaxation and aging) dominate the last stages.

‘Difficult’ systems: porous substrates and pigmented samples

Conclusions

• LSI visualises dynamics in turbid systems, both spatially and temporally
 • Spatial resolution ~5 \(\mu m \)
 • Temporal resolution 1–20 ms, but processes can be followed over hours/days
• Applicable to a wide variety of complex systems:
 • Inhomogeneous, pigmented and light-absorbing, on porous substrates
 • Quantitative imaging: differentiation between fast and slow dynamic processes
 • Evaporation, cracking and delamination vs. particle deformation, coalescence and aging

Future work

• Study effects of pigments, dispersants, wt% substrate, drying conditions, ...
• ...on paint drying, film homogeneity, aging, ...
• Your input is highly appreciated!

References

(1) Van der Kooij and Sprakel, Soft Matter 11, 2015
(2) Zakharov and Schaffold, Light Scatt. Rev. 4, 2009

a Responsive Colloidal Systems Group – dr. Joris Sprakel
Physical Chemistry and Soft Matter, Wageningen University
Wageningen, The Netherlands
E-mail: hanne.vanderkooij@wur.nl
www.wageningenur.nl/poc

b Dutch Polymer Institute (DPI), P.O. Box 902,
5600 AX Eindhoven, The Netherlands
This research forms part of the research programme of the Dutch Polymer Institute (DPI), project #781