14th Edition

Edited by
Paul W. Goedhart & Jac T.N.M. Thissen

Biometris is the integration of the Centre for Biometry of Plant Research International and the Department of Mathematical and Statistical Methods of Wageningen University. Biometris, part of Wageningen University and Research center (Wageningen UR), was established on 20th June 2001.

For more information please visit the website www.biometris.nl or contact:

Biometris, Wageningen UR
P.O. Box 100
6700 AC Wageningen, The Netherlands
Visiting address:
Buildingnumber 116
Bornsesteeg 47
6708 PD Wageningen
Phone: +31 (0)31 484085; Fax: +31 (0)31 483554
E-mail: Biometris@wur.nl

August 2011
Contents of the Biometris Procedure Library 14th Edition

Disclaimer and Notes ... 3
BICORRELATE forms pairwise correlations between variates including as many units as possible 5
BIOMETRIS accesses information, examples and source of the Biometris Procedure Library 7
CHPOINTER checks identifier equivalence of structures in two pointers ... 9
CHSTRUCTURE checks attributes of structures ... 11
DBBI PLOT produces a high-resolution graphical biplot ... 13
DDEVICE selects a graphics device and opens a corresponding graphics file 15
DRLIST provides details about (wildcarded) files in a specified directory 17
DORDINAL plots and displays the results of a simple ordinal logistic regression model 19
EDCONTINUOUS calculates equivalent deviates for continuous distributions 23
EMMULTINORMAL estimates parameters of the multivariate normal for data with missing values 25
FEXPAND forms a variate/factor by expanding a structure a specified number of times 27
FGRID forms a grid of values in one or more dimensions ... 29
FISHEREXACT performs pairwise tests of independence of rows in a r x 2 table 31
FPINTER forms a pointer from a text structure .. 33
FP PRODUCT forms a factor with a label for every combination of other factors 35
FSCVFRACTOR forms a factor to index the units within another factor ... 37
FUNIQUETEXT forms a text with unique strings from another text .. 39
GENBATCH runs several GenStat programs simultaneously in batch ... 41
GMULTIVARIATE generates random numbers from multivariate normal or Student’s t distribution .. 45
GUNITCUBE generates random numbers from a distribution with marginal uniform distributions 47
IRCLASS fits a generalized linear mixed model to grouped response variables 49
IRE ML forms a generalized linear mixed model .. 53
LRPAIR gives likelihood ratio tests for all pairwise differences from a regression or GLM 57
MATCHTARGET extracts units of a set of vectors by matching a target vector 59
MOSTSIMILAR displays the most similar units for each candidate unit given a set of variates 61
OCPLAN finds an acceptance sampling plan for attributes given two points on an OC curve 63
PERMUTE forms all possible permutations of a set of values ... 67
PPAIR displays results of t-tests for pairwise differences in compact diagrams 69
QDIRECTORY returns a directory selected by means of a directory browse dialog box on screen 71
QFILENAME returns a single filename selected by means of a file open dialog box on screen 73
QMESSAGE displays a message on screen ... 75
QPICKLIST can be used to pick one or more items from a list presented on screen 77
QSTOPWATCH can be used to display timing information ... 79
QTEXT can be used to obtain string(s) of a text structure from screen 81
QTIMEDELAY pauses execution for a specific amount of time ... 83
QYESNO can be used to choose between alternatives Yes, No and Cancel on screen 85
RBETABINOMIAL fits the beta-binomial regression model to overdispersed proportions 87
RENAMEPINTER renames the structures of a pointer .. 91
RGDISPLAY displays and stores the non-groups parameters of a within-groups regression 93
RLMS does regression by least median squares .. 95
RMLSTACK “stacks” data to allow the fitting of a multinomial logistic regression model 97
RMLUNSTACK “unstacks” results of a multinomial logistic regression model 99
RPLS does regression by partial least squares with leave-out options ... 101
RSELECT selects best subsets of predictor variables in regression .. 105
RUNCERTAINTY calculates contributions of model inputs to the variance of a model output 109
SFFILENAME splits a filename, which is opened by GenStat or not, into substrings 111
SPECIALFUNCTION calculates a number of special mathematical functions 113
SREPLACE replaces (or removes) substrings from each string of a text structure 115

Continue on next page
SUMMARIZE prints summary statistics for variates ... 117
TPOWER............... calculates the power of Student’s t-test and plots power curves 119
TSQUEEZE.......... squeezes a table to fewer levels of the classifying factors 123
V2TABLE............ forms a variate and a set of classifying factors from a table 125
VSEARCH............. helps search through models for a generalized linear mixed model (GLMM) 127
VWALD saves non-hierarchical Wald tests for fixed terms in a REML analysis 131
WEAVEVECTORS..... weaves two sets of vectors into a new set according to the first vector of both sets 133
Disclaimer for the Biometris Procedure Library 14th Edition

Permission to use, copy and distribute the Biometris Procedure Library and its documentation for any purpose is hereby granted without fee, provided that the entire package is kept together and that this permission and disclaimer notice appears in all copies.

Biometris, Plant Research International and Wageningen UR make no warranty of any kind, expressed or implied, including without limitation any warranties of merchantability and/or fitness for a particular purpose. Biometris, Plant Research International and Wageningen UR do not assume any liability for the use of this software. In no event will Biometris, Plant Research International or Wageningen UR be liable to you for any additional damages, including any lost profits, lost savings, or other incidental or consequential damages arising from the use of, or inability to use, this software and its accompanying documentation, even if Biometris, Plant Research International or Wageningen UR has been advised of the possibility of such damages.

Notes for the 14th Edition

- The Library contains a collection of procedures mainly written by members of Biometris of Wageningen UR. The library supplements the official GenStat Procedure Library which is distributed with GenStat itself. The Biometris Library is distributed over the Dutch agricultural research sites and is installed as a User Procedure Library. The Biometris procedures can therefore be used in exactly the same way as the standard GenStat directives and procedures.
- The BIOMETRIS [PRINT=allfiles] command outputs the example, source code and associated Fortran code of all Biometris procedures in a directory named "BiometrisSource" below the current working directory.
- Uncertainty and regression-based sensitivity analysis of a deterministic model can be performed using Biometris procedures EDCONTINUOUS, GMULTIVARIATE, GUNITCUBE and RUNCERTAINTY. Biometris report 11.12.05 describes these procedures in detail and includes a number of illustrative examples. This report is distributed with this library and can be found in the Biometris subdirectory below the AddIns folder of GenStat.
- Procedures EMMULTINORMAL, GENBATCH, OCATTRIBUTES, OCPLAN and QTIMEDIDELAY are new in this release.
- Procedure FCOLOURS is succeeded by procedure DCOLOURS in the GenStat Procedure Library, and PADTEXT is succeeded by TXPAD.
- Procedures BIOMETRIS, DORDINAL and FGRID have some new options and/or parameters.
- Procedure PPAIR succeeds a procedure in the official GenStat Procedure Library.
- Procedures PER2MUTE, RLMS, RPLS and RSELECT use an external Fortran DLL by means of the PASS directive. There are separate DLLs for the 32 and 64 bits version of GenStat.
- Procedures DIRLIST, QDIRECTORY, QFILENAME, QMESSAGE, QPICKLIST, QSTOPWATCH, QTEXT, QTIMEDIDELAY and QYESNO use an external WinBatch program, which is called by means of SUSPEND [CONTINUE=no], to interact with the user. The internet site www.winbatch.com provides more information about WinBatch.
BICORRELATE procedure

Forms pairwise correlations between variates including as many units as possible

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT = strings</td>
<td>What to print (correlations, nobservations, tests); default correlations</td>
</tr>
<tr>
<td>METHOD = string</td>
<td>Type of test to make (against zero) for the correlations (twosided, greaterthan, lessthan); default twosided</td>
</tr>
<tr>
<td>CORRELATIONS = symmetric matrix</td>
<td>Stores the pairwise correlations between the variates specified by the VARIATES parameter</td>
</tr>
<tr>
<td>PROBABILITIES = symmetric matrix</td>
<td>Saves the test probabilities</td>
</tr>
<tr>
<td>NOBSERVATIONS = symmetric matrix</td>
<td>Stores the pairwise number of observations on which the correlations are based</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARIATES = variates</td>
<td>Variates for which the correlations are to be calculated; must be set</td>
</tr>
</tbody>
</table>

Description

Procedure BICORRELATE calculates pairwise correlations by excluding only units with missing values in the corresponding pair of variates. Note that the CORRELATE directive and procedure FCORRELATION exclude all units with at least one missing value in the set of variates. Printed output is controlled by the PRINT option with settings: correlations prints the correlation matrix; tests prints tests for the correlations.

By default PRINT=correlation. The METHOD option indicates the type of test to be done, with settings: twosided for a two-sided test of the null hypothesis that the correlation is zero; greaterthan for a one-sided test of the null hypothesis that the correlation is not greater than zero; lessthan for a one-sided test of the null hypothesis that the correlation is not less than zero.

Tests cannot be produced if there are fewer than two observations. The correlation matrix can be saved using the CORRELATIONS option, the (symmetric) matrix of test probabilities can be saved using the PROBABILITIES option, and the number of observations upon which it is based can be saved using the NOBSERVATIONS option.

Method

BICORRELATE uses the CORRELATION function for each pair of variates.

Action with RESTRICT

The VARIATES identifiers may be restricted. If they are restricted they must be restricted in the same way.

References

None.

Procedures Used

None.

Similar Procedures

FCORRELATION forms the correlation matrix for a list of variates.
Example

CAPTION 'BICORRELATE example'; STYLE=meta
READ x[1...5]
490 450 399 415 441
461 465 436 426 413
537 535 448 439 445
510 522 421 441 444
* 491 493 516 554
* 504 455 448 515
* 418 345 420 463
* 342 367 437 431
495 440 514 359 400
382 400 407 373 358
376 470 479 525 542
413 395 423 395 429
427 433 382 431 381
481 * 462 485 469
461 * 496 433 454
422 492 449 529 495
405 * 315 364 388
394 * 438 422 427 :
BICORRELATE [PRINT=correlations, nobservations, test] x[1...5]
FCORRELATION [PRINT=correlations, test] x[1...5]
BIOMETRIS procedure

Accesses information, examples and source of the Biometris Procedure Library

Options

PRINT = strings
Printed output required (information, allfiles); default *, i.e. no printing, or information when no other options or parameters have been set

CONTENTS = text
Saves the contents of the Biometris Procedure Library

PCWINDOWS = scalar
Saves whether the Windows implementation of GenStat is used (1) or not (0)

LIBRARYFILE = text
Saves the full filename of the Biometris Procedure Library

EXAMPLESFILE = text
Saves the full filename of the backingstore file in which the example and source code of all Biometris procedures is stored

WINBATCHEXECUTABLE = text
Saves the full filename of the external WinBatch executable used by some of the Biometris procedures; only useful for the Windows implementation of GenStat

PASSEXECUTABLE = text
Saves the full filename of the external Fortran executable or DLL used by procedures which employ the PASS mechanism

PASSOPTION = text
Saves the setting of the NAME option of the PASS directive for calling the external Fortran executable or DLL

PASSENDIMENSIONS = variate
Saves the array dimensions MRDATA, MIDATA and MSTRUC as set in the external Fortran executable or DLL

DEVICE = scalar
Saves the default device used by the DDEVICE procedure; default 4 for the Windows implementation

EXIT = scalar
Saves a scalar which is used internally by other Biometris procedures

GENDIRECTORY = text
Saves the main GenStat directory

Parameters

PROCEDURE = texts
Single-valued texts indicating the procedures about which the information is required

EXAMPLE = texts
To store the example for each procedure

SOURCE = texts
To store the source code for each procedure

FORTRAN = texts
To store the Fortran code, if applicable, for each procedure

DATA = texts
To store example data, if applicable, for each procedure

Description

Procedure **BIOMETRIS** allows you to obtain an example of the use of any procedure in the Biometris Procedure Library, also to access the source code of any procedure, so that you can see how it works, or modify it. For procedures which employ the PASS mechanism, Fortran code of subroutines is also available. The names of procedures for which examples, source code or Fortran code are required should be listed, in quotes, using the **PROCEDURE** parameter. The **EXAMPLE** parameter can be used to specify the identifier of a text to store each example and the **SOURCE** parameter to store the source code. The **FORTRAN** parameter stores the source code of the Fortran subroutines, and the **DATA** parameter stores example data used in the example program for some procedures. The main Fortran program, which is a modified version of the GNPASS Fortran program which is distributed with GenStat itself, can be stored by specifying **PROCEDURE='BIOMETRIS'**. The main Fortran program also contains a common block which is included in all other Fortran programs. The following code would run an example of the RSELECT procedure.

```
BIOMETRIS 'RSELECT' ; EXAMPLE=ExRselect
EXECUTE   ExRselect
```

The **PRINT=information** setting prints a list of index lines giving brief details about the Biometris procedures. It also prints the full name of all the files which are relevant for the Biometris Procedure
Library: (1) the Procedure Library file, (2) the backingstore file with the examples, source and Fortran code, (3) the full filename of the external WinBatch executable file which is used by some procedures, (4) the Fortran executable or DLL file used by the procedures which employ the PASS mechanism and finally (5) the setting of the NAME option of the PASS directive for calling the external Fortran executable or DLL. These can also be stored by setting options LIBRARYFILE, EXAMPLESFILE, WINBATCHEXECUTABLE, PASSEXECUTABLE and PASSOPTION respectively. The PASSDIMENSIONS option saves three array dimensions used in the external Fortran program. The GENDIRECTORY option saves the main GenStat directory.

The PRINT=allfiles setting outputs the example, source code and associated Fortran code of all Biometris procedures in a directory named "BiometrisSource" below the current working directory.

The CONTENTS option can be used to save the contents of the Biometris Procedure Library. The DEVICE option saves the default device which is used by the DDEVICE procedure. The default value is 4 for the Windows implementation. Its main use is in the DDEVICE procedure. The EXIT option saves a scalar which is used internally by other Biometris procedures.

Method

The examples, source code, Fortran code and example data are held in a backing-store file. These are accessed using standard retrieval of text structures.

Action with RESTRICT

Not relevant.

References

None.

Procedures Used

None.

Similar Procedures

LIBEXAMPLE accesses examples and source code of library procedures in the GenStat Procedure Library.

Example

```plaintext
CAPTION 'BIOMETRIS example' ; STYLE=meta
BIOMETRIS [PRINT=information]
BIOMETRIS 'RSELECT' ; EXAMPLE=ExRselect
PRINT ExRselect ; FIELDWIDTH=1 ; JUSTIFICATION=left ; SKIP=0
EXECUTE ExRselect
```
CHPOINTER procedure

Checks identifier equivalence of structures in two pointers

Options

PRINT = string
What to print (information); default *

CASE = string
Whether lower- and upper-case (small and capital) letters are to be regarded as identical in identifiers (significant, ignored); default significant

Parameters

CHECKPOINTER = pointers
Pointer whose structures are checked; must be set

TARGETPOINTER = pointers
Pointer whose structures are compared with the structures in CHECKPOINTER; must be set

PRESENT = variates
Saves a variate of the same length as the CHECKPOINTER parameter with elements 1 (structure present in TARGETPOINTER) or 0 (structure absent in TARGETPOINTER)

ALLPRESENT = scalars
Scalar to save whether all structures of CHECKPOINTER are present in TARGETPOINTER (1) or at least one structure is absent (0)

Description

Procedure CHPOINTER can be used to check whether structures of the CHECKPOINTER parameter are present in the TARGETPOINTER parameter or not. Note that only the first 32 characters of an identifier are relevant. The CASE option specifies whether the case of letters (small and capital) in the identifiers of CHECKPOINTER and TARGETPOINTER should be regarded as significant or ignored when comparing the identifiers. The PRESENT parameter can be used to save a variate of the same length as the CHECKPOINTER parameter with elements 1 and 0, indicating whether the corresponding structure of CHECKPOINTER is present (1) in TARGETPOINTER or absent (0). The ALLPRESENT parameter saves whether all structures of CHECKPOINTER are present in TARGETPOINTER (1) or at least one structure is absent (0).

PRINT=information prints presence of the structures and a warning when structures differ only in lower- and upper-case of their letters.

Method

CHPOINTER uses standard GenStat directives for data manipulation.

Action with RESTRICT

Not relevant.

References

None.

Procedures Used

None.

Similar Procedures

None.
Example

CAPTION 'CHPOINTER example' ; STYLE=meta
POINTER [VALUES=AA,b,C,d] check
POINTER [VALUES=aa,e] target
CHPOINTER [PRINT=information ; CASE=ignored] CHECKPOINTER=check ; \TARGETPOINTER=target
POINTER [VALUES=AA,aa] case
CHPOINTER CHECKPOINTER=case ; TARGETPOINTER=target ; PRESENT=present
PRINT case, present
CHSTRUCTURE procedure
J.T.N.M. Thissen & L.C.P. Keizer

Checks attributes of structures

Options

PRINT = string
What to print (information); default *

Parameters

STRUCTURES = pointers
Pointer to structures to check; must be set

TYPE = texts
Saves a text of the same length as the STRUCTURES parameter with the type of the structures

DECLARED = variates
Saves a variate of the same length as the STRUCTURES parameter with elements 1 if the structure is declared or 0 if the structure is not declared

ALLDECLARED = scalars
Scalar to save whether all the elements of the STRUCTURES parameter are declared (1) or at least one structure is not declared (0)

PRESENT = variates
Saves a variate of the same length as the STRUCTURES parameter with elements 1 if the structure has values or 0 if the structure has no values

ALLPRESENT = scalars
Scalar to save whether all the elements of the STRUCTURES parameter have values (1) or at least one structure has no values (0)

NVALUES = variates
Saves a variate of the same length as the STRUCTURES parameter with the number of values of the structures

NMV = variates
Saves a variate of the same length as the STRUCTURES parameter with the number of missing values of the structures

Description

Procedure CHSTRUCTURE can be used to check structures with respect to declaration, presence of values and the number of (missing) values. The STRUCTURES parameter defines the identifiers to check. The TYPE, DECLARED, PRESENT, NVALUES and NMV parameters all have the same length as the STRUCTURES pointer. The TYPE text saves an asterisk (*) for non-declared identifiers. The DECLARED parameter saves a 1 for declared structures and a 0 otherwise. The PRESENT parameter saves a 1 for structures with (possibly missing) values and a 0 otherwise. The parameters NVALUES and NMV save the number of values and the number of missing values respectively. The ALLDECLARED parameter saves whether all structures of the STRUCTURES parameter are declared (1) or at least one is not (0), whereas the ALLPRESENT parameter saves whether all structures of the STRUCTURES parameter have values (1) or at least one has not (0).

The option setting PRINT=information prints an overview of the different attributes of the structures.

Method

CHSTRUCTURE uses standard GenStat directives for data manipulation.

Action with RESTRICT

Restrictions on structures in the STRUCTURES pointer are ignored, i.e. the number of (missing) values is calculated for unrestricted vectors.

References

None.

Procedures Used

None.
Similar Procedures
None.

Example
CAPTION 'CHSTRUCTURE example' ; STYLE=meta
SCALAR scal
VARIATE [NVALUES=10] vari1
VARIATE [VALUES=5(*)] vari2
VARIATE [VALUES=1...3] vari3
TEXT text
SYMMETRIC [ROWS=10] symm
POINTER [VALUES=scal, vari1, vari2, vari3, text, symm, not1, not2] input
CHSTRUCTURE [PRINT=information] input ; TYPE=type ; DECLARED=declared
PRINT input, type, declared
DBBI PLOT procedure
J.T.N.M. Thissen

Produces a high-resolution graphical biplot

Options
- **XUPPER = scalar**
 - Upper bound for x- and y-axis in the individuals plot
- **VXUPPER = scalar**
 - Upper bound for x- and y-axis in the variates plot
- **XMarks = scalar or variate**
 - Distance between each tick mark on x- and y-axis (scalar) or positions of the marks in the individuals plot
- **VXMarks = scalar or variate**
 - Distance between each tick mark on x- and y-axis (scalar) or positions of the marks in the variates plot
- **XTITLE = text**
 - Title for the x-axis in the individuals plot
- **VXTITLE = text**
 - Title for the x-axis in the variates plot
- **YTITLE = text**
 - Title for the y-axis in the individuals plot
- **VYTITLE = text**
 - Title for the y-axis in the variates plot
- **LABELS = text**
 - Labels at each point in the individuals plot
- **VLABELS = text**
 - Labels at each point in the variates plot
- **SYMBOLS = scalar, pointer, factor or text**
 - Plotting symbols: scalar for special symbols, pointer for user defined symbols, text or factor for character symbols
- **VSYMBOLS = string**
 - What to draw at the end of the line (arrowhead, line, none); default arrowhead
- **COLOUR = scalar**
 - Number of the colour used in the individuals plot
- **VCOLOUR = scalar**
 - Number of the colour used in the variates plot
- **VLINESTYLE = scalar**
 - Style for the lines in the variates plot
- **SCREEN = string**
 - Whether to clear the screen before plotting the individuals plot or to continue plotting on the old screen (clear, keep); default clear
- **VSCREEN = string**
 - Whether to clear the screen before plotting the variates plot or to continue plotting on the old screen (clear, keep); default clear

Parameters
- **COORDINATES = matrices**
 - Scores for the individuals
- **VCOORDINATES = matrices**
 - Scores for the variates

Description

Procedure DBBI PLOT produces a high-resolution graphical biplot either by employing the saved results of the BIPLOT procedure or by specifying explicitly the matrices of scores for individuals and for variates. Gabriel (1971) provides a full description of the technique. The scores for the individuals, contained in a matrix, must be specified by the **COORDINATES** parameter and the scores for the variates, also contained in a matrix, must be specified by the **VCOORDINATES** parameter. Although both matrices can have any dimension, only the first two columns are used. The options can be used to change the appearance of the graph. Option names starting with a **V** relate to the variates plot and the other options relate to the individuals plot.

The individuals plot is just a graph with the scores for individuals represented by dots (default) and labelled by numbers 1 to n (default). The dots are drawn with pen 1 and the labels with pen 2. Options **SYMBOLS** and **LABELS** can be used to change these default settings. If no labels are required the **LABELS** text structure should contain strings with spaces only.

The variates plot gives lines from each point to the origin. Option **VSYMBOLS** specifies what must be drawn at the end of the line. Option **VLABELS** can be used to label the lines. By default the letters of the alphabet are used. The lines are drawn with pen 3, the labels with pen 4 and the arrow-head or perpendicular line with pen 5. The other options are self explanatory.

It is not necessary to specify both matrices. This gives for instance the opportunity to extend biplots to triplots (Gower and Hand, 1996) by using **DBBI PLOT** twice. In that case the second biplot should have the option setting **SCREEN=keep** or **VSCREEN=keep**.
Method

DBBIPLT calculates the positions of the labels alongside the points for the individuals and the endpoints of the lines for the variates. Then points for the individuals and/or lines for the variates are plotted in the same graph.

Action with RESTRICT

Not relevant.

References

Procedures Used

FTEXT.

Similar Procedures

Procedure BIPLOT calculates the COORDINATES and VCOORDINATES matrices for producing a biplot. Procedure DBBIPLT produces a similar graph.

Example

```plaintext
CAPTION 'DBBIPLT example', 'Data taken from the BIPLOT example', ' ' ; 
STYLE=meta, 2/plain
VARIATE [NVALUES=20] v[1...7]
READ v[
  4 11 4 28 31 17 21 5 11 5 29 30 16 21
  7 9 6 25 30 17 23 3 9 5 28 32 12 15
  5 15 6 29 34 18 21 3 10 5 23 27 17 20
  3 10 7 24 28 18 21 3 13 7 29 34 18 21
  3 10 5 26 21 17 28 5 10 6 26 30 16 23
  7 9 5 26 30 16 23 4 11 8 27 31 17 22
  3 12 6 26 31 18 24 4 11 7 26 31 18 23
  6 10 9 28 31 21 27 4 12 9 27 32 16 25
  5 12 8 29 33 15 22 4 14 6 23 29 16 19
  4 10 6 25 29 19 22 3 15 7 25 29 16 19 :
TEXT [VALUES=va,vb,vc,vd,ve,vf,vg] vlabs
BIPLOT [METHOD=var ; PRINT=singular,scores ; VLABELS=vlabs] v ; 
COORDINATES=comat ; VCOORDINATES=vcomat
TEXT title ; 'Example of DBBIPLT: AXIS-1 variates'
DBBIPLT [VLABELS=vlabs ; VXTITLE=title] COORDINAT=comat ; VCOORDINAT=vcomat
```

DDEVICE procedure

Selects a graphics device and opens a corresponding graphics file

Options

MESSAGE = string
Whether to print a one-line message with the device number and the corresponding graphics file (yes, no); default no

Parameters

NUMBER = scalars
Device number; the default value is *, i.e. 4 for the Windows implementation of GenStat and 6 for other implementations

NAME = texts
External name of the graphics file; default * uses the name of the current input file. When there is no current input file the default name is "genstat"; the default extension is 100 * NUMBER + 1

ENDACTION = strings
Action to be taken after completing each plot (continue, pause)

Description

Directive DEVICE switches between (high-resolution) graphics devices. If a file-based device is selected, the OPEN directive has to be used to open a file to receive the graphical output, e.g.

OPEN 'plot.401' ; CHANNEL=4 ; FILETYPE=graphics
DEVICE 4

Procedure DDEVICE combines these two statements with sensible default settings.

The NUMBER parameter selects the graphics device number. If the NUMBER parameter is unset, the procedure switches to device 4 for the Windows implementation of GenStat and to device 6 for other implementations.

The NAME parameter specifies the filename of the graphical output file. If the NAME parameter is unset, the name of the graphics file is identical to the name of the current input file. When there is no current input file, the default name of the graphics file is "genstat". The default extension of the graphics file is 100 * NUMBER + 1. This extension can be useful if graphical output is send to individual graphics files in which case the extension is automatically incremented for each new plot. If there is already a graphics file attached to the specified device, that graphics file is used and a warning message is printed. Note that no graphical output file is opened when device number 1 is selected, because graphical output is then written to screen.

The ENDACTION parameter controls the action taken by default at the end of the plot. The MESSAGE option can be used to print a one-line message with the device number and the name of the graphics file which is opened on the corresponding graphics channel.

Method

The ENQUIRE directive is used to obtain the name of the current input file.

Action with RESTRICT

Not relevant.

References

None.

Procedures Used

The BIOMETRIS procedure is used to determine the implementation of GenStat.

Similar Procedures

Procedure SETDEVICE opens a graphical file and specifies the device number on basis of its extension.
Example

```
CAPTION 'DDEVICE example' ; STYLE=meta
DDEVICE [MESSAGE=yes]
PRINT 'Restore default graphics device' ; SKIP=0
CLOSE CHANNEL=4,6 ; FILETYPE=graphics
DEVICE 1
```
DIRLIST procedure

Provides details about (wildcarded) files in a specified directory

Options

PRINT = string What to print (filelist); default filelist
DIRECTORY = text Single-valued text which specifies the directory for the file list; default *, i.e. the current working directory
SAVEDIRECTORY = text Saves the full name of DIRECTORY
EXISTDIRECTORY = scalar Saves whether DIRECTORY exists (1) or not (0)
SUBDIRECTORIES = text Saves the subdirectories of the specified directory
CASE = string Case to use for letters of SAVEDIRECTORY, NAME, SURNAME and EXTENSION (given, lower, upper, changed, title); default given leaves the case of each letter unchanged
SINDEX = strings Defines the ordering of the printed filelist and of the saved parameters (name, surname, extension, size, date, time, attribute); default name
SDIRECTION = string Order in which to sort (ascending, descending); default ascending
NOMESSAGE = strings Which warning messages to suppress (readdeny, existdirectory, nofilesfound); default *

Parameters

FILES = texts Files for file list, may contain wildcards * and ?, must not contain drives or directories
PRESENT = variates Saves the number of files in each line of FILES; 0 indicates that the corresponding file is not present and * that the directory does not exist
NAME = texts Saves the name of the files
SURNAME = texts Saves the surname of the files, i.e. the name excluding the period and extension
EXTENSION = texts Saves the extension of the files, excluding the leading period
SIZE = variates Saves the size of the files
DATE = texts Saves the date of the files
TIME = texts Saves the time of the files
ATTRIBUTE = texts Saves the attributes of the files; this is a 4 letter string with successively r(readonly), a(archive), s(system), h(hidden). A hyphen in any of these positions indicates that the specified attribute is off.

Description

Procedure DIRLIST can be used to obtain information about files in a specified directory. It can also be used to obtain a wildcarded directory list. The directory can be specified by the DIRECTORY option; default is to look for files in the current working directory. Note that the double backslash (\) is required in DIRECTORY because in GenStat a single "\" is treated as indicating a continuation on the next line. However, you can use a single "\" instead of de double backslash (\).

The files for which information is required must be specified by the FILES parameter. The number of files present can be saved by the PRESENT parameter; this parameter is of the same length as FILES. The PRESENT parameter is filled with missing values when DIRECTORY does not exist. Further information about the files can be saved by means of parameters NAME, SURNAME, EXTENSION, SIZE, DATE, TIME and ATTRIBUTE. These structures are all of length SUM(PRESENT), the length depends on whether files exist and whether wildcards are used. In case a file is opened by another program in read deny mode, its size cannot be determined and the size is set to missing. The full path of DIRECTORY can be saved by means of the SAVEDIRECTORY option. Option EXISTDIRECTORY saves whether the DIRECTORY exists, and the SUBDIRECTORIES option can be used to save the subdirectories of the specified directory.
The `CASE` option can be used to change the case of the saved text structures `NAME`, `SURNAME`, `EXTENSION` and `SAVEDIRECTORY`. The `title` setting of `CASE` changes the case of all letters to lowercase, except the first letter which is changed to uppercase. The `SINDEX` option defines the ordering of the printed file list and of the saved parameters. The `DIRECTION` option controls whether the ordering is into ascending or descending order. The default settings are `SINDEX=name` and `SDIRECTION=ascending`.

The `PRINT` option controls printed output. The `NOMESSAGE` option can be used to suppress warning messages in case the `DIRECTORY` does not exist, or when no `FILES` are found or when one or more files are in read deny mode, i.e. when files are in use by another program. For files in read deny mode, the size and time are set to missing, while the date is set to the date at which `DIRLIST` is called.

Method

The `SUSPEND [CONTINUE=no]` directive is used to invoke an external WinBatch program. This procedure can therefore only be used with the Windows implementation of GenStat.

Action with RESTRICT

Restrictions on the `DIRECTORY` option and the `FILES` parameter are ignored.

References

None.

Procedures Used

The `BIOMETRIS` procedure is used to retrieve the filename of the external WinBatch executable.

Similar Procedures

`QDIRECTORY` returns a directory selected by means of a directory browse dialog box on screen.
`QFILENAME` returns a single filename selected by means of a file open box on screen.

Example

```
CAPTION   'DIRLIST example' ; STYLE=meta
DIRLIST   [SAVEDIRECTORY=savedir ; CASE=title] FILES=!t('*.*')
PRINT     savedir
TEXT      files ; !t('*.ini', '*.hlp')
DIRLIST   [PRINT=* ; DIRECTORY='C:/WINDOWS' ; EXISTDIRECTORY=exist] \
FILES=files ; PRESENT=present ; NAME=name ; SURNAME=surname ; \ 
EXTENSION=extension
PRINT     files, present ; FIELD=14
IF exist .AND. SUM(present)
  PRINT   name, surname, extension ; FIELD=14
ENDIF
```
DORDINAL procedure

Plots and displays the results of a simple ordinal logistic regression model

Options

PRINT = strings

Output required (plot, curve, line, predictions, pairtest, items); default plot, curve, line, predictions, pairtest

CTITLE = text

General title for the display of curves; default *

LTITLE = text

General title for the display of lines; default *

CYTITLE = text

Title for the y-axis in the display of curves; default *

LYTITLE = text

Title for the y-axis in the display of lines; default *

CXTITLE = text

Title for the x-axis in the display of curves; default *

LXTITLE = text

Title for the x-axis in the display of lines; default *

SCTITLE = scalar

Multiplier used in the calculation of the size in which to draw CTITLE; default 1

SLTITLE = scalar

Multiplier used in the calculation of the size in which to draw LTITLE; default 1

SCYTITLE = scalar

Multiplier used in the calculation of the size in which to draw CYTITLE; default 1

SLYTITLE = scalar

Multiplier used in the calculation of the size in which to draw LYTITLE; default 1

SCXTITLE = scalar

Multiplier used in the calculation of the size in which to draw CXTITLE; default 1

SLXTITLE = scalar

Multiplier used in the calculation of the size in which to draw LXTITLE; default 1

SORT = string

Whether to sort the means in the diagram in ascending order (yes, no); default yes

XLGAP = scalar

Gap on the x-axis for the labels of the treatment factor; default 0.02

NPAGES = scalar

Number of pages for plotting the line plot

Parameters

TREATMENTSTRUCTURE = factor

Defines the treatment factor of the model

BLOCKSTRUCTURE = factor

Defines the block factor of the model

TPROBABILITIES = symmetric matrix

Saves the t-probabilities of tests of pairwise comparisons

PREDPERCENTAGES = pointer

Saves the predictions in the categories expressed as percentages

Description

Ordinal logistic regression can be performed by using the MODEL directive with option settings YRELATION=cumulative, DISTRIBUTION=multinomial and LINK=logit. This model is also called the proportional-odds model, see McCullagh & Nelder (1989). Procedure DORDINAL can be used to aid in the interpretation of the results of a simple ordinal logistic regression model, i.e. a model with only one treatment factor and possibly one block factor.

A call to DORDINAL must be preceded by an appropriate MODEL statement, a TERMS [FULL=yes] statement and a FIT statement. The TREATMENTSTRUCTURE and BLOCKSTRUCTURE parameters of DORDINAL should be set to the factors specified with TERMS and FIT. Plotting and printing of the results is controlled by the PRINT option with the settings: plot to display the fitted logistic distributions over the categories for each level of the treatment factor in a high-resolution plot; curve to display the distributions as a curve and line to display the distributions as a line between the 2.5% and 97.5% point of the logistic distributions (default both plots are produced unless the number of levels of the TREATMENTSTRUCTURE factor is greater than 20, in which case only the line plot is drawn); predictions to print the predicted percentages of the numbers of observations in each category; and pairtest to perform t-tests for all pairwise differences between the levels of the treatment factor. If pairtest is specified procedure PPAIR with option PRINT=groups is used to print the diagram of
significant differences; the items setting prints significant differences in another format (see procedure PPAIR). If the labels of the treatment factor are too long to fit in the default left hand side of the plot, the XLGAP option can be used to widen that gap. With the NPages option the number of pages can be supplied if the number of treatments is too big for a line plot on one page.

The t-probabilities of the tests of pairwise comparisons can be saved by parameter TPROBABILITIES. The SORT option controls whether the means in the diagram of PPAIR are sorted into ascending order. The predictions in the categories, expressed as percentages, can be saved by the PREDPERCENTAGES parameter. This parameter is a pointer (with length the number of categories) referring to variates with length the number of levels of the treatment.

All other options relate to the graphical environment of the plot. The CTITLE option can be used to provide a title for the graph of the curves and LTITLE for the graph of the lines. Titles can be added to the axes using the CYTITLE, LYTITLE, CXTITLE and LXTITLE options. By default the names of the category structures are plotted alongside the y-axis and the labels (or levels) of the treatment factor alongside the x-axis. The pensizes for the titles can be changed by using the options SCTITLE, SLTITLE, SCYTITLE, SLYTITLE, SCXTITLE and SLXTITLE.

Method

Procedures PAIRTEST and PPAIR are used to test all pairwise comparisons between the levels of the TREATMENTSTRUCTURE factor. The saved fitted values are used to calculate the predictions, and the formula of the logistic distribution is used to plot the logistic curves and to display the line plot.

Action with RESTRICT

Not relevant. The parameters TREATMENTSTRUCTURE and BLOCKSTRUCTURE are only needed to distinguish between the treatment and block factor.

References

Procedures Used

CHECKARGUMENT, PAIRTEST, PPAIR, FFRAME, FTEXT.

Similar Procedures

None.
Example

CAPTION 'DORDINAL example' ; STYLE=meta
FACTOR [LABELS=!t(T1, T2, T3, T4, T5, T6, T7) ; VALUES=8(1...7)] Treatm
FACTOR [LEVELS=8 ; VALUES=(1...8)] Block
READ Healthy, Light, Middle, Heavy
477 115 38 20 413 231 43 0 372 136 67 20 417 135 45 0
449 116 6 0 409 147 142 0 387 149 71 0 354 201 21 0
82 344 141 52 107 279 187 28 73 340 157 54 43 384 232 0
95 286 173 32 100 372 144 0 149 239 85 0 61 424 131 0
55 299 206 57 25 307 245 71 120 182 239 21 51 356 146 114
77 388 117 0 160 301 37 0 71 406 58 27 168 289 109 0
246 352 93 0 128 360 173 16 198 318 99 40 163 362 117 47
263 239 113 8 269 249 71 0 181 296 102 0 219 345 77 0
226 385 80 6 231 306 93 0 284 362 38 0 216 434 31 0
316 203 54 0 270 333 72 0 288 253 37 0 229 308 128 0
180 351 105 64 129 437 60 66 124 423 81 20 194 341 103 18
164 364 65 0 180 334 113 0 269 251 69 0 291 232 37 0
159 404 104 32 227 409 42 0 227 357 50 33 253 377 57 0
287 243 53 16 300 298 30 0 430 122 22 0 296 196 70 0
MODEL [DISTRIBUTION=multinomial ; LINK=logit ; YRELATION=cumulative ; DISPERSION=*] Healthy, Light, Middle, Heavy
TERMS [FULL=yes] Treatm + Block
FIT Block + Treatm
DORDINAL [CTITLE='DORDINAL' ; LTITLE='DORDINAL'] Treatm ; Block
DORDINAL [PRINT=pairtest ; SORT=no] Treatm ; Block
EDCONTINUOUS procedure

Calculates equivalent deviates for continuous distributions

Options

- DISTRIBUTION = string
 Type of distribution required (beta, gamma, lognormal, normal, uniform); default normal
- METHOD = string
 Method by which the defining parameters of the distribution are specified (moments, quantiles); default moments
- MEAN = scalar
 Mean of distribution; default *
- VARIANCE = scalar
 Variance of distribution; default *
- PROPORTIONS = variate
 Two cumulative lower probabilities of distribution; default *
- QUANTILES = variate
 Two quantiles (equivalent deviates) corresponding to PROPORTIONS; default *
- LOWER = scalar
 Lower bound of beta, gamma, lognormal or uniform distribution; default 0
- UPPER = scalar
 Upper bound of beta or uniform distribution; default 1

Parameters

- CUMPROBABILITY = variates or scalars
 Cumulative lower probabilities for which equivalent deviates are required; must be set
- DEVIATE = variates or scalars
 To save equivalent deviates corresponding to CUMPROBABILITY

Description

Procedure EDCONTINUOUS calculates equivalent deviates corresponding to given cumulative lower probabilities for five continuous distributions: beta, gamma, lognormal, normal and uniform. The CUMPROBABILITY parameter specifies the cumulative lower probabilities and the corresponding equivalent deviates are saved by means of the DEVIATE parameter. The DISTRIBUTION option specifies the type of distribution. The METHOD option specifies how the parameters of the distribution are defined. When METHOD=moments the first two moments must be set by the MEAN and VARIANCE options. Alternatively, when METHOD=quantiles the distribution is characterised by a pair of cumulative lower probabilities with corresponding quantiles, and options PROPORTIONS and QUANTILES must be set. The uniform distribution is characterised by the LOWER and UPPER option settings, and other options are ignored. Lower and upper bounds for the other distributions can be specified by options UPPER and LOWER; these must be compatible with other option settings.

Method

Internal calls are made to Genstat’s ED-functions EDNORMAL, EDBETA and EDGAMMA. In most cases, the required ED-function parameters are derived from simple, well-known relations between ED-function parameters and moments or quantiles. However, when a beta or gamma distribution is specified by two quantiles, the ED-function parameters are derived by means of the FITNONLINEAR directive, which may cause numerical problems.

Action with RESTRICT

Deviates are only calculated for the set of units to which CUMPROBABILITY is restricted. Other units will remain unaffected.

References

None.

Procedures Used

None.
Similar procedures

GRANDOM generates pseudo-random numbers from probability distributions. GMULTIVARIATE generates pseudo-random numbers from multivariate normal or Student’s t distribution. GRMULTINORMAL generates pseudo-random numbers from the multivariate normal distribution.

Example

```
CAPTION 'EDCONTINUOUS example' ; STYLE=meta
VARIATE cum ; !(0.01, 0.02 ... 0.99)
EDCONTINUOUS [DIST=normal ; METHOD=quantiles ; PROPORTION=!(.05, .95) ; QUANTILES=!(6.9, 8.2)] CUMPROBABILITY=cum ; DEVIATE=v[1]
EDCONTINUOUS [DIST=beta ; METHOD=quantiles ; PROPORTION=!(.25, .75) ; QUANTILES=!(0.3, 0.5)] CUMPROBABILITY=cum ; DEVIATE=v[2]
EDCONTINUOUS [DIST=gamma ; MEAN=2 ; VARIANCE=1] CUMPROBABILITY=cum ; DEVIATE=v[3]
TEXT title ; 'Example of EDCONTINUOUS: v[1]'
DHISTOGRAM [WINDOW=5 ; KEY=0 ; TITLE=title ; SCREEN=keep] v[1]
DHISTOGRAM [WINDOW=6 ; KEY=0 ; TITLE='v[2]' ; SCREEN=keep] v[2]
DHISTOGRAM [WINDOW=7 ; KEY=0 ; TITLE='v[3]' ; SCREEN=keep] v[3]
DGRAPH [WINDOW=8 ; KEY=0 ; TITLE='v[2,3]' ; SCREEN=keep] v[2] ; v[3]
```
EMMULTINORMAL procedure

Estimates parameters of the multivariate normal distribution for data with missing values

Options

PRINT = string
Printed output required (pattern, monitoring, estimates); default pattern, estimates

MAXCYCLE = scalar
Maximum number of iterations for EM algorithm; default 200

TOLERANCE = scalar
Convergence criterion; default 1.0e-4

Parameters

DATA = pointers
Pointer of variates with observed values

MEANS = variates
To save the estimate mean vector of the multivariate normal distribution

VCOVARIANCE = symmetric matrices
To save the estimate variance-covariance matrix of the multivariate normal distribution

EXPECTED = pointers
To save the expected values for missing data

Description

Procedure EMMULTINORMAL estimates the parameters of the multivariate normal distribution for data with missing values using the EM algorithm. The DATA pointer specifies the variates for which parameters must be estimated. The estimates can be saved by means of the MEANS and VCOVARIANCE parameters. Missing values are replaced by conditional expected values in the EM algorithm and these can be saved by means of the EXPECTED parameter.

The EM algorithm is an iterative procedure and the maximum number of cycles and the convergence criterion can be set by MAXCYCLE and TOLERANCE. The PRINT options can be set to pattern to display the number of observations for each pattern of missing and non-missing values, to monitoring for convergence monitoring of the EM algorithm and to estimates to print the estimated parameters.

The algorithm can be very slow when there are many variates and/or many units.

Method

Each iteration in the EM algorithm consists of two steps. The E-step of the algorithm computes the expected value of the sufficient statistics conditional on the observed values and the current parameter estimates. The M-step then uses the expected complete-data sufficient statistics to compute an update of the parameter estimates. This is iterated until the maximum of the relative difference of two subsequent estimates of the mean vector is less than the TOLERANCE convergence criterion. The algorithm starts with raw means, variances and covariances. Gelman et al (1995) gives a concise description of the algorithm for the multivariate normal distribution. To speed up the algorithm, the E-step is performed for all units with the same pattern of missing and non-missing values instead of for each unit separately.

Action with RESTRICT

Restrictions on variates in the DATA pointer are not allowed.

References

Procedures Used

None.

Similar procedures

None.
Example

CAPTION 'EMMULTINORMAL example' ; STYLE=meta
VARIATE [VALUES=1...4] mean
SYMMETRIC [ROWS=4 ; VALUES=1, 0.8, 1, 0.7, 0.6, 1, 0.5, 0.4, 0.3, 1] vcov
GRMULTINORMAL [NVALUES=100 ; SEED=32892 ; MEAN=mean ; VCOV=vcov] data
CALCULATE data[] = MVINSERT(data[]) ; URAND(4(0);100).LT.0.4
EMMULTINORMAL data
FEXPAND procedure

Forms a variate and/or factor by expanding a structure a specified number of times

Options
None.

Parameters

- **STRUCTURE = identifiers**: Structure (scalar, variate, text, table, matrix, symmetricmatrix, diagonalmatrix) to be expanded
- **NOBSERVATIONS = identifiers**: Numerical structure (scalar, variate, table, matrix, symmetricmatrix, diagonalmatrix) specifying the number of times each value of STRUCTURE must be expanded
- **VARIATE = variates**: Variate to save the expanded values
- **FACTOR = factors**: Factor to save the expanded values

Description

Procedure FEXPAND expands the values of the STRUCTURE parameter a number of times as specified by parameter NOBSERVATIONS. Each value of the STRUCTURE parameter is copied as many times as the corresponding value of the NOBSERVATIONS parameter. The VARIATE and FACTOR parameters can be used to save the expanded structure as a variate and a factor. The STRUCTURE parameter can be set to a scalar, variate, text, table, matrix, symmetricmatrix or diagonalmatrix. If the STRUCTURE parameter is set to a text, output structure VARIATE must not be set. The NOBSERVATIONS parameter can be set to the same type of structures as the STRUCTURE parameter, with the exception of a text structure. The STRUCTURE and NOBSERVATIONS parameters must have the same number of values.

Missing values are not allowed in the NOBSERVATIONS parameter. If NOBSERVATIONS contains a zero the corresponding value of the STRUCTURE parameter is omitted.

Method

The EXPAND function is used to calculate the new variate. The GROUPS directive is used to form the factor.

Action with RESTRICT

Restrictions on the STRUCTURE and NOBSERVATIONS parameters are not allowed.

References

None.

Procedures Used

FTEXT and SUBSET.

Similar Procedures

None.
Example

CAPTION 'FEXPAND example'; STYLE=meta
VARIATE [VALUES=1...5] x
VARIATE [VALUES=4, 3, 2, 1, 0] nobs
FEXPAND STRUCTURE=x; NOBSERVATIONS=nobs; VARIATE=newx
PRINT newx; DECIMALS=0
FACTOR [LEVELS=3; VALUES=3(1), 2(2)] f
TABULATE [CLASSIFICATION=f; PRINT=means, nobservations] x; MEANS=meantab; NOBS=nobstab
FEXPAND STRUCTURE=meantab; NOBSERVATIONS=nobstab; VARIATE=newvarx
PRINT newvarx
TEXT [VALUES=jan, feb, mar, apr, jan, feb, mar] month
VARIATE [VALUES=3, 4, 2, 5, 1, 2, 3] ntimes
FEXPAND STRUCTURE=month; NOBSERVATIONS=ntimes; FACTOR=fmonth
PRINT fmonth
TABULATE [CLASSIFICATION=fmonth; PRINT=counts]
FACAMEND fmonth; NEWLEVELS=!t(jan, feb, mar, apr)
TABULATE [CLASSIFICATION=fmonth; PRINT=counts]
FGRID procedure

Forms a grid of values in one or more dimensions

Options

VALUES = numerical structures Values from which to form a grid of values; default *
MINIMUM = numerical structure Minimum value of grid in each dimension; default 0
MAXIMUM = numerical structure Maximum value of grid in each dimension; default 1
NGRID = numerical structure Number of grid points in each dimension; default 11

Parameters

GRID = pointer To save the grid in a pointer to a set of variates
LEVELS = pointer To save the distinct values of each grid variate

Description

Procedure FGRID can be used to form a grid of numerical values in one or more dimensions. The grid may be specified in either of two ways. The first method is to set the grid points in each dimension by setting the VALUES option to a list of numerical structures. The dimension then equals the number of numerical structures in the VALUES list. The second method is to specify the MINIMUM and MAXIMUM value in each dimension. NGRID then specifies the number of grid points in each dimension. In this case the dimension equals the length of MINIMUM, which must equal the length of MAXIMUM. The length of NGRID must equal 1 or the length of MINIMUM. Note that the VALUES setting takes precedence over the other options. The GRID parameter saves the grid in a pointer to a set of variates. The LEVELS parameter can be used to save the distinct values of each grid variate.

Method

The GenStat directive GENERATE is used to form the grid.

Action with RESTRICT

Restrictions on the VALUES, MINIMUM, MAXIMUM and NGRID options are not allowed.

References

None.

Procedures Used

None.

Similar Procedures

None.

Example

```
CAPTION     'FGRID example' ; STYLE=meta
FGRID       [VALUES=!(1,8,2,3), !(10,49,31)] grid
PRINT       grid[]
FGRID       [MINIMUM=0 ; MAXIMUM=10 ; NGRID=11] grid
PRINT       grid[]
FGRID       [MINIMUM=!(-10,0, 100) ; MAXIMUM=!(10,1,200) ; NGRID=!(5,3,2)] \
            grid ; LEVELS=levels
PRINT       levels[], grid[]
```
FISHEREXACT procedure

Options

- **PRINT = string** What to print (probabilities); default probabilities
- **METHOD = string** Type of test required (twosided, lessthan, greater); default twosided
- **SORT = string** Whether to sort the observed proportions in ascending order (no, yes); default no

Parameters

- **XBINOMIAL = variates** Observed binomial counts
- **NBINOMIAL = variates** Binomial totals
- **LABELS = texts** Text vector naming the elements of XBINOMIAL; if LABELS is unset the unit numbers of XBINOMIAL are used; default *
- **TWOSIDED = symmetric matrices** To save the tail probabilities of the test statistic corresponding to METHOD=twosided.
- **LESSTHAN = symmetric matrices** To save the tail probabilities of the test statistic corresponding to METHOD=lessthan.
- **GREATER = symmetric matrices** To save the tail probabilities of the test statistic corresponding to METHOD=greater.

Description

Fisher's exact test is an unbiased uniformly most powerful test of independence in a 2 x 2 table (Kendall and Stuart, 1979). It is particularly useful for tables with small marginal counts because the approximation of other test statistics, such as chi-squared and likelihood ratio, is poor for such tables. The test is most easily explained when one classifying factor is simply a labelling of two populations (e.g. smokers and non smokers), and the two populations are to be compared with respect to the probability of having an attribute (e.g. lung cancer). More formally, let x1 and x2 be two independent binomial distributions, x1 ~ Binomial (n1, p1) and x2 ~ Binomial (n2, p2), for which the equality of probabilities p1 and p2 is to be tested. Fisher's exact test uses the test statistic (x1 | x1+x2=r), which follows, assuming p1=p2, a hypergeometric distribution with parameters (N=n1+n2, n1, r).

The XBINOMIAL parameter specifies the observed binomial counts (x1, x2, x3, ...) while NBINOMIAL specifies the binomial totals (n1, n2, n3, ...). FISHEREXACT performs all pairwise tests of equality of probabilities (p1, p2, p3, ...). The METHOD option, with default setting twosided, specifies which type of test is performed:

- **twosided** gives two-sided tests for $H_0: p_i = p_j$ for $i < j$
- **lessthan** gives one-sided tests for $H_0: p_i <= p_j$ for $i < j$
- **greater** gives one-sided tests for $H_0: p_i >= p_j$ for $i < j$

where i and j number the elements of XBINOMIAL. Twosided probabilities are calculated as the minimum of 1 and twice the smaller of the two tail probabilities. Tail probabilities can be saved in symmetric matrices TWOSIDED, LESSTHAN and GREATER. These matrices are labelled by the first 9 characters of the text vector LABELS or, if this is unset, by the unit numbers of XBINOMIAL.

The PRINT option controls the output of FISHEREXACT. By default a symmetric matrix with tail probabilities is printed with the observed percentages (100 x XBINOMIAL/NBINOMIAL) on the diagonal. The SORT option controls whether the percentages on the diagonal are sorted into ascending order. Combining SORT=yes with METHOD=lessthan is particularly useful.

Method

The standard GenStat functions CLHYPERGEOMETRIC and CUHYPERGEOMETRIC are used to calculate the hypergeometric probabilities.
Action with RESTRICT
Pairwise tests are only performed for the set of units to which XBINOMIAL is restricted. Restrictions on NBINOMIAL and LABELS are ignored.

References

Procedures Used
None.

Similar Procedures
Procedure FEXACT2X2 provides an alternative way of performing Fisher's exact test.

Example
```
CAPTION     'FISHEREXACT example' ; STYLE=meta
VARIATE     Improved, Total ; VALUES=!(0,1,1,2,12),  !(100,100,10,5,20)
TEXT        [VALUES=Drug1, Drug2, Drug3, Placebo, Drug4] Labels
FISHEREXACT XBINOMIAL=Improved ; NBINOMIAL=Total ; LABELS=Labels
```
FPOINTER procedure

Forms a pointer from a text structure

Options

SCOPE = string

This allows pointer elements within a procedure to be set to point to structures in the program that called the procedure (SCOPE=external) or in the main program itself (SCOPE=global); default global

Parameters

TEXT = texts

Names of the structures to be stored in POINTER

POINTER = pointers

To save the pointer structure

Description

Procedure FPOINTER can be used to form a pointer from a text structure. This is especially useful for procedure writers who retrieve information about structures in a text structure, e.g. by using procedure QPICKLIST. The strings in the TEXT parameter define the structures (identifiers) of the POINTER parameter. The SCOPE option is similar to that of the ASSIGN directive.

Method

Directive ASSIGN, with the SCOPE option set, is printed to a text structure and then executed.

Action with RESTRICT

If the TEXT parameter is restricted, the POINTER is formed from the restricted text.

References

None.

Procedures Used

FTEXT.

Similar Procedures

RENAMEPOINTER renames the structures of a pointer.

Example

```
CAPTION 'FPOINTER example' ; STYLE=meta
UNIT [10]
FACTOR Treat
READ Treat, Time[1...3], Weight ; FREPRESENTATION=labels,4(*)
A 91.7 12.4 44.3 41.0  B 91.7 11.3 35.4 36.5
C 92.4 9.5 48.6 44.4  D 91.8 10.4 39.9 37.1
E 93.1 11.2 38.1 36.0  A 91.2 13.4 42.5 43.2
B 91.9 12.1 38.4 36.9  C 91.2 11.3 41.6 45.4
D 92.2 11.8 39.7 33.7  E 92.9 11.7 40.0 41.9

QPICKLIST [TITLE='Which variables do you want to analyse?'] \
LIST=t('Time[1]','Time[2]','Time[3]','Weight') ; SELECTED=select
FPOINTER select ; pointer
TREATMENT Treat
ANOVA [PRINT=aov] pointer[]
```
FP PRODUCT procedure

Forms a factor with a label for every combination of other factors

Options

SPACE = string
Whether to use spaces between the labels of the factors (yes, no); default yes

Parameters

FACTORS = pointers or formulae
Factors contributing to each product

PRODUCT = factors
Factors to be formed

FREPRESENTATION = texts
Defines how the labels of the PRODUCT factor are formed from the values of the FACTORS parameter (labels, levels, ordinals); default is to use labels of the FACTORS if available and levels otherwise

IDENTIFIER = texts
Whether to represent the identifier of the factors from the FACTORS parameter into the labels of the PRODUCT factor (yes or no); default * uses the identifier only for factors without labels

LABELS = texts
Text structure to save the labels of the PRODUCT factor

Description

Procedure FP PRODUCT is a modified version of the FACPRODUCT procedure from the official Procedure Library. FP PRODUCT allows a factor to be formed whose labels represent all the combinations of a list of other factors. Parameter PRODUCT specifies the identifier of the factor to store the product, and parameter FACTORS gives the list of factors from which it is to be formed. These factors can be input in either a pointer or a model formula.

The labels of the PRODUCT factor are defined by the settings of the parameters FREPRESENTATION and IDENTIFIER. The length of the FREPRESENTATION and IDENTIFIER text structures should equal the length of the FACTORS pointer, or should be equal to 1 in which case the specification is for each factor. Each string of the FREPRESENTATION text structure can be set to ordinals, levels or labels indicating the way in which the factor levels appear in the labels of the PRODUCT factor. Each string of the IDENTIFIER text structure can be set to yes or no indicating whether the corresponding factor name precedes the factor level in the label. Default is to use the identifier only for factors which have no labels.

By default the labels of the factors are separated by one or more spaces. Setting option SPACE=no suppresses all spaces. The labels of the PRODUCT factor can be saved by the LABELS parameter.

Method

The FCLASSIFICATION directive is used, if necessary, to form lists of factors whose product is to be calculated. The labels for the new factor are formed by printing the labels (or levels and whether or not with identifier) of the factors of the FACTORS parameter into one text structure. The GROUPS directive is then used to form the new factor.

Action with RESTRICT

If any of the factors is restricted, the labels will be formed only for the units not excluded by the restriction.

References

None.

Procedures Used

CHECKARGUMENTS is used to check that all the elements of the FACTORS pointer are factors. FTEXT is used to form text structures from the factors and SUBSET is used in case the factors are restricted.
Similar Procedures

FACPRODUCT forms a factor with a level for every combination of other factors.

Example

```
CAPTION 'FPRODUCT example' ; STYLE=meta
FACTOR [NVALUES=18 ; LEVELS={4,20,34}] temp ; DECIMALS=0
FACTOR [NVALUES=18 ; LABELS={Male,Female}] sex
GENERATE temp, sex, 3
VARIATE [NVALUES=18] initweight, finalweight, tumourweight
READ initweight, finalweight, tumourweight
18.15 16.51 0.24  18.68 19.5  0.32  19.54 19.84 0.20
19.15 19.49 0.16  18.35 19.81 0.17  20.68 19.44 0.22
21.27 23.30 0.33  19.57 22.30 0.45  20.15 18.95 0.35
18.87 22.00 0.25  20.66 21.08 0.20  21.56 20.34 0.20
20.74 16.69 0.31  20.02 19.26 0.41  17.20 15.90 0.28
20.22 19.00 0.18  18.38 17.92 0.30  20.85 19.90 0.17 :
FPRODUCT FACTORS=!p(sex,temp) ; PRODUCT=sextemp
PRINT temp, 2(sex,sextemp) ; FIELD=4(9),15 ; FREP=levels, (levels,labels)2
FPRODUCT FACTORS=!p(sex,temp) ; PRODUCT=sextemp ;
FREPRESENTATION=!t(ord,lev) ; IDENTIFIER='yes'
PRINT temp, 2(sex,sextemp) ; FIELD=4(9),15 ; FREP=levels, (levels,labels)2
RESTRICT temp, sex, finalweight, initweight ; temp .NE. 20
FPRODUCT FACTORS=!p(sex,temp) ; PRODUCT=sextemp
PRINT temp, 2(sex,sextemp), initweight, finalweight ;
FIELD=4(9),15,2(11) ; FREP=levels, (levels,labels)2, *, *
COVARIATE initweight
TREATMENT sextemp
ANOVA [FPROBABILITY=yes] finalweight
REST temp, sex, finalweight, initweight
PRINT temp, 2(sex,sextemp), initweight, finalweight ;
FIELD=4(9),15,2(11) ; FREP=levels, (levels,labels)2, *, *
FACTOR [MODIFY=yes ; LABELS={M,F}] sex
FPRODUCT [SPACE=no] FACTORS=!p(sex,temp) ; PRODUCT=sextemp ;
IDENTIFIER='no'
PRINT temp, 2(sex,sextemp), initweight, finalweight ;
FIELD=4(9),15,2(11) ; FREP=levels, (levels,labels)2, *, *
PEN 1 ; SYMBOL=sextemp
DGRAPH finalweight ; initweight
```
FSUBFACTOR procedure

Forms a factor to index the units within another factor

Options

METHOD = string
How to index the levels of the factor (global, local). Setting local uses the order of the values of FACTOR; default global

Parameters

FACTOR = factors
Factor within whose levels the levels of SUBFACTOR are formed; must be set

SUBFACTOR = factors
To save the formed factor; must be set

GROUPS = factors
To save the factor of new groups if METHOD=local

Description

Procedure FSUBFACTOR can be used to index the units within the levels of the FACTOR parameter. The indexed units are saved in the factor specified by the SUBFACTOR parameter. The METHOD option defines how to index the levels of the factor. The default setting global takes each level of FACTOR in turn, and numbers the corresponding units of SUBFACTOR as 1 to the number of occurrences of that level. The setting local uses the order of the values of FACTOR. First a new factor, saved by the GROUPS parameter, is created which has a new level each time the value of FACTOR changes. The units are then indexed within the newly formed factor. The GROUPS parameter can only be saved for METHOD=local.

Method

FSUBFACTOR uses standard GenStat directives for data manipulation.

Action with RESTRICT

If the FACTOR parameter is restricted the SUBFACTOR and GROUPS factor are restricted in the same way. The indices of the SUBFACTOR and GROUPS parameter are determined by the levels of FACTOR not excluded by the restriction. SUBFACTOR and GROUPS values excluded by the restriction are set to missing.

References

None.

Procedures Used

None.

Similar Procedures

AFUNITS forms a factor to index the units of the final stratum of a design.

Example

CAPTION 'FSUBFACTOR example' ; STYLE=meta
FACTOR [LEVELS=3 ; VALUES=6(3,1,2)] Blocks
FACTOR [LEVELS=2 ; VALUES=3(1,2)2,3(2,1)] Plots
FPRODUCT !P(Blocks, Plots) ; BlockPlots
FSUBFACTOR Blocks ; WithinB
FSUBFACTOR BlockPlots ; WithinBP
PRINT Blocks, Plots, BlockPlots, WithinB, WithinBP
FACTOR [LEVELS=3 ; VALUES=2(1...3),1,4(2),6(3),1,2,3] factor
FSUBFACTOR [METHOD=local] FACTOR=factor ; SUBFACTOR=subfact ; GROUPS=groups
FSUBFACTOR FACTOR=groups ; SUBFACTOR=subfactnew
PRINT factor, groups, subfact, subfactnew
FUNIQUETEXT procedure

Forms a text with unique strings from another text

Options

PRINT = string
What to print (information); default information

STRING = text
Text structure of length 1 specifying the character(s) between the string of OLDTEXT and added number; default '_'

JUSTIFICATION = string
How to position the numbers within the field (right, left); default right

Parameters

OLDTEXT = texts
Text structure whose strings must be made unique; must be set

NEWTEXT = texts
To save the text with the newly formed unique strings

UNIQUESTRINGS = texts
To save the text with the unique strings of OLDTEXT

CHECK = scalars
To save whether OLDTEXT is already unique (1) or not (0)

Description

Procedure FUNIQUETEXT can be used to form a text structure NEWTEXT with unique strings from an existing text structure OLDTEXT. If the NEWTEXT parameter is not specified the OLDTEXT structure is overwritten by the new text structure. The non-unique strings of the OLDTEXT parameter are extended with numbers separated by the character(s) of the STRING option, so the lengths of NEWTEXT and OLDTEXT are equal. Before determining the unique strings leading and trailing spaces are removed. If the same string occurs in OLDTEXT more than 9 times, the added numbers can be right or left justified by setting the JUSTIFICATION option. The unique strings of OLDTEXT can be saved by the UNIQUESTRINGS parameter. The CHECK parameter saves whether the OLDTEXT parameter is already unique (1) or not (0).

The default setting information of the PRINT option prints a message in case there are no duplicate strings in the OLDTEXT parameter.

Method

The procedure uses directive CONCATENATE.

Action with RESTRICT

If the OLDTEXT parameter is restricted, the NEWTEXT parameter is restricted in the same way. Values in units excluded by the restriction are not altered if NEWTEXT is unset. If NEWTEXT is set the excluded units in NEWTEXT are empty.

References

None.

Procedures Used

None.

Similar Procedures

None.
Example

```
CAPTION   'FUNIQUETEXT example' ; STYLE=meta
TEXT      [VALUES=a,a,b,12(c),d,d,d,10(a)] letters
FUNIQUETEXT [JUSTIFICATION=right] OLDTEXT=letters ; NEWTEXT=newright
FUNIQUETEXT [JUSTIFICATION=left] OLDTEXT=letters ; NEWTEXT=newleft
FUNIQUETEXT [STRING='..'] OLDTEXT=letters ; NEWTEXT=newdots
FUNIQUETEXT [STRING=''] ; JUSTIFICATION=left] OLDTEXT=letters ; 
                 NEWTEXT=newnothing ; UNIQUESTRINGS=unique
PRINT      letters, newleft, newright, newdots, newnothing ; FIELD=12
PRINT      unique ; FIELD=12
```
GENBATCH procedure

Runs several GenStat programs simultaneously in batch

Options

- **PRINT = strings**
 - What to print (information, message); default information, message

- **MAXBATCHJOBS = scalar**
 - The maximum number of jobs that runs simultaneously; default 2

- **DIRECTORY = text**
 - In which directory to save all the output and intermediate files; default *, i.e. the current working directory

- **CLEARDIRECTORY = string**
 - Whether to delete all files in DIRECTORY before running the programs or not (yes, no). Only relevant when DIRECTORY is set; default no

- **WAITSECONDS = scalar**
 - The number of seconds to wait before a new job can be started; default 5

- **COLLECTRESULTS = string**
 - Whether results stored in individual batch jobs on backingstore channel 5 must be collected in a single backingstore file (yes, no). Only relevant when PROGRAM is set to a single-valued text; default no

- **DELETE = strings**
 - Which files to delete after completion of all batch jobs (input, output, backingstore); default *, i.e. none

- **NDIGITS = scalar**
 - Number of digits used for padding filenames with zeros; default 0, i.e. determined automatically

- **OUTPUTEXTENSION = text**
 - Which file extension to use for output files; default .lis

- **BACKINGSTOREEXTENSION = text**
 - Which file extension to use for backingstore files; default .bst

Parameters

- **PROGRAM = texts**
 - Programs to run in batch; these must refer to files in the working directory

- **DATA = variates, factors, texts or pointers**
 - Data to be passed when PROGRAM is set to a single-valued text

- **FILENAMENUMBERING = variates**
 - Numbering of output and intermediate files; default is to use 1,2… as numbering

- **BACKINGSTOREFILES = texts**
 - Saves the names of the individual backingstore files on channel 5; only relevant when PROGRAM is set to a single-valued text and COLLECTRESULTS=yes

- **COMPLETED = variates**
 - Saves whether programs are completed successfully (1) or not (0)

Description

Procedure GENBATCH can be used to run several GenStat programs simultaneously in batch. This is especially useful for running multiple programs on a PC with multiple cores and/or threads since GENBATCH is able to utilize all available resources. Consequently running time might be decreased considerably. It is advised to study and run the example program for a full understanding of the working of the procedure. Also some timing with different options, notably MAXBATCHJOBS and WAITSECONDS, is advised. There are two ways in which the procedure can be used.

The first and simplest way is when multiple GenStat programs must be run. Suppose that P1.gen and P2.gen are these multiple programs. The PROGRAM parameter can then be set to the text structure !t('P1.gen', 'P2.gen'). The procedure then creates intermediate GenStat files named P1_Batch.gen and P2_Batch.gen with the following extra program line at the end of the program:

```
CLOSE CHANNEL=6 ; FILETYPE=backingstore ; DELETE=yes
```

These programs are then started consecutively using a call to GenBatch.exe by means of the SUSPEND directive with the usual output file attached to output channel 1 and an intermediate backingstore file attached to the 6-th backingstore channel (see Genbatch documentation). When the number of running GenStat programs equals MAXBATCHJOBS the QTIMEDELAY procedure is used to wait for an output file.
which is no longer opened by GenBatch.exe. If the corresponding GenStat program was completed successfully, the corresponding intermediate backingstore file is deleted by the extra program line given above. In this way successful completion of every GenStat program is monitored. Since the procedure “knows” that a GenStat program is completed, the GenStat program next in line is invoked until all programs are completed.

The second way is when a single program must be called with different settings of one or more data structures, for example as in a simulation study. The PROGRAM parameter must then be set to this single program, say Simulation.gen, and the data structures must be defined by means of the DATA parameter. The procedure then creates a GenStat program Simulation_Batch.gen with the extra line given above at the end of the program. Moreover, the following two program lines are added to the start of the program:

```plaintext
RETRIEVE [CHANNEL=6] pointer
DUMMY DATA[] ; pointer[]
```

Then Simulation_Batch.gen is invoked, again by means of SUSPEND and GenBatch.exe, as many times as the number of settings, i.e. the length of the DATA structure(s). Each invocation creates an intermediate backingstore file attached to channel 6 with the current settings, i.e. the i-th invocation uses the i-th elements of the DATA structure(s). The added program lines at the start of the program then retrieve these settings as scalars or single-valued texts. When the COLLECTRESULTS option is set to yes an extra backingstore file is attached to channel 5 and this can be used to store results of each invocation. In the program itself there should then be a directive such as

```plaintext
STORE [CHANNEL=5 ; METHOD=replace] list of results to collect
```

When all GenStat programs are completed, the number of backingstore files with results equals the number of settings. These backingstore files are then traversed in a loop, only for programs which were successfully completed, and all results are saved in pointers in a single backingstore file with the same name as the simulation program. This single backingstore file is saved in the same directory as the program file. Note that the individual backingstore files should not contain pointers and that only structures in the default subfile are accumulated. The DATA parameter can be set to a variate, factor or text when there is only one data structure, or to a pointer when there are more than one structures. In the latter case the pointer should only contain variates, factors or texts. Note that the levels of factors are used.

The PRINT option can be used to display a message on screen which monitors the progress of the multiple jobs, and to print information about the running time of each job. The DIRECTORY option can be used to store all input, output and backingstore files in a separate directory and the CLEARDIRECTORY option can be set to yes to empty this directory before running the programs. The WAITSECONDS option specifies how many seconds to wait before it is checked whether an output file of the current running jobs is no longer opened by GenBatch.exe. The DELETE option can be used to delete input, output and backingstore files. Note that the backingstore file attached to channel 6 is always deleted. Finally the OUTPUTEXTENSION and BACKINGSTOREEXTENSION options can be used to specify the file extensions to use.

When a single program is run with different settings, the output is saved in files with the surname of the program appended with an underscore followed by the numbers 1, 2, etc. Alternatively, appending numbers can be specified by means of the FILENUMBERING parameter which must be set to a variate with unique positive integers which are ascending. By default these numbers are appended with zeros such that the number of digits equals the number of digits of the largest number. Option NDIGITS can be set to append the numbers with more digits than the default. The surnames of the backingstore files on channel 5, which are used when COLLECTRESULTS=yes, equal the surnames of the output files. The names of these backingstore files can be saved by using the BACKINGSTOREFILES parameter. Finally the COMPLETED parameter can be used to save whether each program is completed successfully (1) or not (0).

Method

The procedure uses the SUSPEND directive with option CONTINUE=yes to call GenBatch.exe repeatedly. When the number of running GenStat programs equals MAXBATCHJOBS the QTIMEDELAY procedure is used to wait for an output file which is no longer opened by GenBatch.exe. When the QTIMEDELAY procedure returns control to the GENBATCH procedure the next GenStat program in line is invoked.
Action with RESTRICT
The PROGRAM, DATA and FILENUMBERING parameters should not be set to restricted structures.

References
None

Procedures Used
The following procedures are used: BIOMETRIS, DIRLIST, QMESSAGE, QTIMEDELAY and SFFILENAME. The subsidiary procedures _QSTOPWATCHHLP, _GB1MESSAGE and _GB2MULTIPLE are also used.

Similar procedures
None.

Example
CAPTION !t('GENBATCH example1: ',
'Multiple GenStat programs.') ; STYLE=meta
TEXT Multiple1 ; !t(
'SCALAR seed,ntimes,nvalues,mean,var ; 84821,300,500000,0,1',
'VARIATE [NVALUES=ntimes] meanrandom',
'FOR [NVALUES=ntimes ; INDEX=ii],
' CALCULATE random = GRNORMAL(seed ; nvalues)',
' CALCULATE meanrandom[ii] = MEAN(random)',
'ENDFOR',
'PRINT meanrandom')
TEXT Multiple2 ; !t(
'SCALAR seed,ntimes,nvalues,mean,var ; 16523,10,500000,1,4',
'VARIATE [NVALUES=ntimes] meanrandom',
'FOR [NVALUES=ntimes ; INDEX=ii],
' CALCULATE random = GRNORMAL(seed ; nvalues)',
' CALCULATE meanrandom[ii] = MEAN(random)',
'ENDFOR',
'PRINT meanrandom')
TEXT Multiple3 ; !t(
'*** This program generates a fatal fault ***,
'SCALAR seed,ntimes,nvalues,mean,var ; 53139,10,500000,2,9',
'VARIATE [NVALUES=ntimes] meanrandom',
'FOR [NVALUES=ntimes ; INDEX=ii],
' CALCULATE random = GRNORMAL(seed ; nvalues)',
' CALCULATE meanrandom[ii] = MEAN(random)',
'ENDFOR',
'PRINT meanrandom',
'MODEL response')
FOR program=Multiple1, Multiple2, Multiple3
TXCONSTRU [TEXT=filename] %p(program), '.gen'
OPEN filename ; CHANNEL=2 ; FILETYPE=output
PRINT [CHANNEL=2 ; IPRINT=* ; SQUASH=yes] program ; JUSTIFICATION=left
CLOSE CHANNEL=2 ; FILETYPE=output
ENDFOR
TEXT programs ; !t('Multiple1.gen', 'Multiple2.gen', 'Multiple3.gen')
GENBATCH [DIRECTORY='Multiple'] programs
CAPTION !t('GENBATCH example2: ',
'A small simulation study with BetaBinomial data.') ; STYLE=meta
"GenStat program which performs a simulation for a single parameter set"

```
"CALCULATE init = URAND(seed ; 1), 
'VARIATE [NVALUES=nvalues] simbeta, yy', 
'VARIATE [NVALUES=ntimes] constant, phi', 
'FOR [NTIMES=ntimes ; INDEX=ii]', 
  'CALCULATE sbeta = GRBETA(nvalues ; alfa ; beta)', 
  'CALCULATE yy = 0', 
  'CALCULATE #nbin(yy) = yy + (URAND(#nbin(0);nvalues).LT.sbeta)', 
'MODEL [DISTRIBUTION=binomial] yy ; NBINOMIAL=nbin', 
'RBETABINO [PRINT=MONI ; ESTIMATES=esti ; PHI=sphi]', 
'CALCULATE (constant,phi)@[ii] = esti,sphi', 
'ENDFOR', 
'PRINT constant, phi', 
'STORE [CHANNEL=5 ; METHOD=replace] constant, phi')

OPEN 'Simulation.gen' ; CHANNEL=2 ; FILETYPE=output
PRINT [CHANNEL=2 ; IPRINT=* ; SQUASH=yes] simulation ; JUSTIFICATION=left
CLOSE CHANNEL=2 ; FILETYPE=output

"Settings for single simulations"

POINTER [VALUES=seed, nvalues, ntimes, alfa, beta, nbin] data
READ [SETNVALUES=yes] data[
873289321 50 10 0.2 0.2 3
783274921 50 10 0.2 0.5 3
087814312 50 10 0.2 1 3
519852382 50 10 0.2 2 3
149892344 50 10 0.5 1 3
628384124 50 10 0.5 2 3
098103811 50 10 1 1 3
132457923 50 10 1 2 3
236386543 50 10 2 2 3
]

GENBATCH [MAXBATCHJOBS=2 ; DIRECTORY='Simulation' ; COLLECTRESULTS=yes]

"Retrieve stored data and compare mean estimates with true values"

OPEN 'Simulation.bst' ; CHANNEL=2 ; FILETYPE=back
RETRIEVE [CHANNEL=2 ; SUBFILE=data] data
RETRIEVE [CHANNEL=2] constant, phi
CLOSE CHANNEL=2 ; FILETYPE=back
PRINT data[], completed ; FIELD=11
PRINT constant[
CALCULATE nconstant = NVALUES(constant)
POINTER [VALUES=nconstant] Sconstant, Sphi
CALCULATE Sconstant[] = MEAN(constant[])
CALCULATE Sphi[] = MEAN(phi[])
CALCULATE Econstant = LOGIT(100*alfa/(alfa+beta))
CALCULATE Ephi = 1/(1+alfa+beta)
PRINT alfa, beta, Econstant, Mconstant, Sphi, Mphi ; DEC(2(2),4(4))
```

Generates pseudo-random numbers from multivariate normal or Student’s t distribution

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT = string</td>
<td>Whether to print a summary (summary); default * prints no output</td>
</tr>
<tr>
<td>DISTRIBUTION = string</td>
<td>Type of distribution required (normal, student); default normal</td>
</tr>
<tr>
<td>NVALUES = scalar</td>
<td>Number of values to generate; default 1</td>
</tr>
<tr>
<td>MEANS = variate</td>
<td>The mean for the multivariate Normal or Student’s t distribution; default is a variate with values all equal to 0</td>
</tr>
<tr>
<td>VCOVARIANCE = diagonal or symmetric matrix</td>
<td>The variance-covariance matrix for the multivariate Normal or Student’s t-distribution; default is to use an identity matrix</td>
</tr>
<tr>
<td>DF = scalar</td>
<td>Number of degrees of freedom for Student’s t distribution; default *</td>
</tr>
<tr>
<td>SEED = scalar</td>
<td>Seed to generate the random numbers; default 0 continues an existing sequence or initialises the sequence automatically if no random numbers have been generated in this job</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBERS = pointers or matrices</td>
<td>Saves the random numbers as either a pointer to a set of variates or a matrix</td>
</tr>
</tbody>
</table>

Description

Procedure GMULTIVARIATE generates pseudo-random numbers from a multivariate Normal or from a multivariate Student’s t distribution. The type of distribution can be set by the DISTRIBUTION option. The mean μ is specified by the option MEANS as a variate of length p; the variance-covariance matrix Σ is specified by the option VCOVARIANCE as a diagonal or symmetric matrix with p rows and columns; and the option NVALUES specifies the number of values to be generated. Note that VCOVARIANCE must be positive semi-definite. The DF option must be used to specify the number of degrees of freedom for the Student distribution and must be at least 3.

The SEED option can be set to initialise the random-number generator, hence giving identical results if the procedure is called again with the same options. If SEED is not set, generation will continue from the previous sequence in the program, or, if this is the first generation, the generator will be initialised by CALCULATE.

The numbers can be saved using the NUMBERS parameter, in either a pointer to a set of variates, or a matrix. If the NUMBERS structure or structures are already declared, their dimensions must be compatible with the settings of the NVALUES, MEANS and VCOVARIANCE options. The dimensions are also used, if necessary, to set defaults for the options. By default, MEANS is taken to be a variate of zero values, and VCOVARIANCE is taken to be the identity matrix. If the setting of NUMBERS is not already declared, it will be defined as a pointer to a set of variates with dimensions deduced from the option settings.

Method

Pseudo-random numbers from a multivariate Normal distribution are generated by forming a matrix Y of columns of univariate Normal random numbers, using the Box-Muller method (Box & Muller 1958), followed by a linear transformation

$$X = A Y + \mu,$$

where A is calculated by a Choleski decomposition, $AA' = \Sigma$. See, for example, Johnson (1987, pages 52-55) or Tong (1990, pages 181-186). Pseudo-random numbers from the multivariate Student distribution are generated according to the definition of the multivariate Student distribution:

$$t(\mu, \Sigma, df) \sim \mu + MN(0, \Sigma) / \sqrt{\text{Chi-squared}(df)/df}$$

where $MN(0, \Sigma)$ is multivariate normal with mean 0 and variance-covariance Σ; and where the scalar Chi-squared(df) has a chi-square distribution with df degrees of freedom. See, for example, Box & Tiao (1973). Note that the variance-covariance matrix of the multivariate Student distribution equals $[df/(df-2)] \Sigma$.

[14th Edition]
Action with RESTRICT
VARIATES that have been restricted will receive output from GMULTIVARIATE only in those units that are not excluded by the restriction. Values in the excluded units remain unchanged. Note that the NVALUES option must equal the full size of the variates. Restrictions on the MEANS variate are ignored.

References

Procedures Used
None.

Similar Procedures
GRMULTINORMAL generates pseudo-random numbers from a multivariate normal distribution.

Example
CAPTION 'GMULTIVARIATE example' ; STYLE=meta
VARIATE [VALUES=1,2,3] mean
SYMMETRIC [ROWS=3 ; VALUES=1, 0,4, 1,3,9] vcov
GMULTIVARIATE [NVALUES=100 ; MEANS=mean ; VCOVARIANCE=vcov ; SEED=52] norm
GMULTIVARIATE [PRINT=summary ; DISTRIBUTION=student ; NVALUES=100 ; \MEANS=mean ; VCOVARIANCE=vcov ; DF=10 ; SEED=52] stud
DSCATTER norm[]
DSCATTER stud[]
GUNITCUBE procedure

M.J.W. Jansen, J.C.M. Withagen & J.T.N.M. Thissen

Generates pseudo-random numbers from a distribution with marginal uniform distributions

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVALUES = scalar</td>
<td>Number of values to generate; default 1 or deduced from the NUMBERS parameter</td>
</tr>
<tr>
<td>RCORRELATION = scalar or symmetric matrix</td>
<td>Required rank correlation matrix of multivariate distribution; default is the identity matrix</td>
</tr>
<tr>
<td>SEED = scalar</td>
<td>Seed to generate the random numbers; default 0 continues an existing sequence or initializes the sequence automatically if no random numbers have been generated in this job</td>
</tr>
<tr>
<td>STRATIFICATION = string</td>
<td>Stratification (none, latin); default none</td>
</tr>
<tr>
<td>METHOD = string</td>
<td>Method to achieve rank correlation (simple, iman); default simple</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBERS = pointers or matrices</td>
<td>Saves the random numbers as either a pointer to a set of variates or a matrix</td>
</tr>
</tbody>
</table>

Description

Procedure GUNITCUBE generates pseudo-random numbers from a multivariate distribution with marginal distributions that are uniform on the interval from 0 to 1, and with a given rank-correlation matrix RCORRELATION. The numbers can be saved using the NUMBERS parameter, in either a pointer to a set of variates, or a matrix. If the NUMBERS structures are already declared, their dimensions must be compatible with the settings of the NVALUES and RCORRELATION options. Otherwise the dimensions of the NUMBERS pointer are deduced from these options. The dimensions of NUMBERS are also used, if necessary, to set defaults for the options. If NUMBERS is not declared in advance, RCORRELATION must be set. By default RCORRELATION is taken to be the identity matrix. If the setting of NUMBERS is not already declared, it will be defined as a pointer to a set of variates with dimensions deduced from the option settings.

An ordinary random sample is obtained by the option settings STRATIFICATION=none and METHOD=simple. Option setting STRATIFICATION=latin can be used to obtain Latin-hypercube samples, with marginal sample distributions that are very nearly uniform, while option setting METHOD=iman imposes close resemblance between the sample correlation matrix and RCORRELATION. If RCORRELATION is set, the required rank correlation will be introduced according to the specified METHOD option (thus, METHOD has no effect if RCORRELATION is unset). The combination of RCORRELATION set to an identity matrix and METHOD=simple is stochastically equivalent to RCORRELATION unset.

To avoid values very close to 0 and 1, NUMBERS smaller than 0.000005 and larger than 0.999995 are set to these respective limits.

Method

The method to construct a latin hypercube sample stems from McKay et al (1979). The method to introduce the required rank correlation stems from Iman & Conover (1982).

Action with RESTRICT

Any restrictions on variates of the NUMBERS pointer will be cancelled and all units will be used.

References

Procedures Used

None.

Similar procedures

None.

Example

```
CAPTION 'GUNITCUBE example' ; STYLE=meta
SCALAR nvariates, nvalues, seed ; VALUE=3, 100, 93746
SYMMETRIC [ROWS=nvariates] corr
CALCULATE corr = DIAGONAL(!(#nvariates(1)))
CALCULATE corr[2,3;1] = -0.8, 0.4
GUNITCUBE [NVALUES=nvalues ; RCORRELATION=corr ; SEED=seed ; \ STRATIFICATION=latin ; METHOD=iman] uni
PRINT MEAN(uni[])
PRINT VARIANCE(uni[])
CORRELATE [PRINT=correlations] uni[]
CAPTION 'Marginal distributions are nearly uniform', ' '
GROUPS uni[1...3] ; funi[1...3] ; LIMITS=!(0.1,0.2...0.9)
TABULATE [CLASSIFICATION=funi[1] ; COUNT=count[1]]
TABULATE [CLASSIFICATION=funi[2] ; COUNT=count[2]]
TABULATE [CLASSIFICATION=funi[3] ; COUNT=count[3]]
PRINT [SERIAL=yes] count[]
DSCATTER uni[]
```
IRCLASS procedure

Fits a generalized linear mixed model to grouped response variables, e.g. to ordinal data

Options

PRINT = strings

Printed output required (model, components, effects, means, stratumvariances, monitoring, vcovariance, Waldtests, deviance); default components, effects, stratumvariances

UDISTRIBUTION = string

Underlying distribution (logistic, normal, evleft, evright, lognormal, student); default logistic

DF = scalar

Degrees of freedom for DISTRIBUTION=student; default * i.e. the number of degrees of freedom is estimated

CUTPOINTS = scalars

Fixed values for the cutpoints; default *

MULINK = string

Link function relating the mean of the underlying distribution to the linear predictor (identity, logarithm, power); default identity

EXPONENT = scalar

Exponent for power link; no default, i.e. must be set

UDISPERSON = scalar

Value of dispersion of the underlying distribution; default 1

INTERCEPT = string

How to treat constant (estimate, omit); default estimate

CADJUST = string

What adjustment to make to covariates before analysis (mean, none); default mean

FIXED = formula

Fixed effects model for the mean of the underlying distribution; default *

RANDOM = formula

Random effects model for the mean of the underlying distribution; default *

ABSORB = factor

Absorbing factor; default *

INITIAL = scalars

Initial values for variance components; default *

CONSTRAINTS = strings

How to constrain each variance component (positive, fixrelative, fixabsolute); default positive

FDISPERSON = formula

Fixed effects model for the logarithm of the standard deviation of the underlying distribution

RDISPERSON = formula

Random effects model (with fixed variance component) for the log standard deviation of the underlying distribution

IDISPERSON = scalars

Initial value for the variance of the parameters of RDISPERSON; default 0.1

PSE = string

Standard errors to be printed with tables of effects and means (differences, estimates, alldifferences, allestimate, none); default differences

VCCONVERGENC = scalar

Variance component for fixed non-linear effects to be used as a tool for improving convergence; default 1000

MAXITER = scalar

Maximum number of REML iterations; default 50

MAXCYCLE = scalar

Maximum number of cycles within each REML; default 5

Parameters

YCOUNTS = pointer

Pointer of variates with numbers of observations in each of the classes

YCLASS = variate

Response variate of observed class numbers for each unit

FITTEDVALUES = pointer

To save fitted frequencies in the different classes if YCOUNTS is set and expected class number if YCLASS is set

UMEANS = variate

To save estimated means of the underlying distribution

LINEARPREDICTOR = variate

To save the linear predictor, i.e. means at the link scale

VCOVARIANCE = symmetric matrix

To save the variance-covariance matrix for the estimates of the variance components

ALLVCOVARIANCE = symmetric matrix

To save the variance-covariance matrix for the full set of fixed and random effects not associated with the absorbing factor

PREDICTIONS = pointer

To save estimates of random effects
The underlying distribution is not restricted to the normal distribution. Underlying distributions allowed are the lognormal distribution. No link function is required for distributions defined on the whole positive axis. The power link is used for continuous distributions defined at the positive axis, like the lognormal distribution. No link function is required for distributions defined on the whole real axis. Underlying distributions allowed are the logistic, normal, evleft, evright, lognormal and the student distribution. Ev in evleft and evright stands for extremevalue, evleft with heavy left tail and evright with heavy right tail. The first three distributions are related to the logit, probit and complementary log-log link functions that can be specified with the LINK option of the MODEL directive. The standard deviations of the normal, logistic, extremevalue and the Student distribution with \(\text{DF} \geq 2 \) degrees of freedom equal 1, \(\pi / \sqrt{3} \), \(\pi / \sqrt{6} \) and \(\pi \sqrt{\text{DF} / (\text{DF} - 2)} \) respectively. For the student distribution with \(\text{DF} \) equal to 1 or 2 no standard deviation exists. \(\text{DF} \) for the student distribution can be fixed by option \(\text{DF} \). If this option is unset, \(\text{DF} \) is estimated. The model for the mean can be specified by means of options \text{INTERCEPT}, \text{CADJUST}, \text{FIXED}, \text{RANDOM}, \text{INITIAL} and \text{CONSTRAINTS}, as in \text{VCOMPONENTS} and \text{REML}. Option \text{INTERCEPT} replaces \text{CONSTANT}, to avoid confusion with \text{ CONSTRAINTS}, which has the first four characters in common. The setting \text{CONSTRAINTS}=\text{none} is not possible as it is in \text{VCOMPONENTS}. The default here for \text{CONSTRAINTS} is \text{positive}. \text{ABSORB} is as in \text{VCOMPONENTS}.

For ordinal data the cutpoints are unknown and have to be estimated. For grouped data cutpoints can be set by option \text{CUTPOINTS}. If cutpoints are known the dispersion of the underlying distribution is estimated.

\text{FDISPERSION}, \text{RDISPERSION} and \text{IDISPERSION} can be used to specify the linear model for the residual variance (dispersion) at the log scale, \text{FDISPERSION} for fixed effects, \text{RDISPERSION} for random effects. Only a list of factors is allowed for \text{FDISPERSION} and \text{RDISPERSION}. The scaling is such, that the dispersion for the first level of the factors in \text{FDISPERSION} or \text{RDISPERSION} is the basic dispersion, which can be set by \text{UDISPERSION}. The model can only be specified at the log scale. The random part of the model is meant to represent a relaxation of the assumption of constant dispersion and can only be specified with fixed variance components, which can be set by \text{IDISPERSION} with default value 0.1. Because for some combinations of factor levels the amount of information to estimate the specific dispersion can be very low, it is advised to use simple models for \text{FDISPERSION} only, e.g. just one factor, and to use it mainly to check constancy of dispersion. For the same reason it may be advantageous to specify \text{RDISPERSION} and not \text{FDISPERSION}, but note that fixed effects are identical to random effects with a very large component of variance. If \text{FDISPERSION} or \text{RDISPERSION} has been specified, estimates of the parameters involved, with standard errors, are reported. Also after the analysis with fixed dispersion and after the first iteration for the full model specified (including heterogeneity of dispersion), results are printed.

\text{MAXITER}, \text{MAXCYCLE} and \text{VCCONVERGENCE} can be used to guide the iteration process. However, this should hardly ever be necessary, because precautions have been taken to prevent convergence problems. \text{MAXITER} and \text{MAXCYCLE} restrict the number of REML analyses and the number of cycles within each REML analysis respectively. \text{VCCONVERGENCE} sets the component of variance used for estimating the
changes in the non-linear parameters (the cutpoints, DF or the parameters in FDISPERSION and/or RDISPERSION) during the iteration process.

The response can be specified in two ways: as a pointer of variates containing the frequencies in the different classes by parameter YCOUNTS, or as a variate containing the class numbers by parameter YCLASS. Note that this differs from the settings required for specifying a GLM for ordinal data with GenStat using MODEL and FIT.

Method
The algorithm is developed from considering the relationship between the observed multinomial distribution of counts and the underlying distribution as a generalized linear mixed model with a composite link function resulting from the choice of underlying distribution. In case of a GLM iterative reweighted least squares (IRLS) can be applied to the adjusted dependent variate. Because of the equivalence of the Poisson distribution conditional on the multinomial total and the multinomial distribution, Poisson weights can be used for the frequencies. This then results in maximum likelihood estimates of the parameters. The extension from GLM to GLMM has been described in Engel and Keen (1994), Schall (1991) and as PQL in Breslow and Clayton (1993). The method replaces IRLS by iterative reweighted REML. In this case, with grouped data, the composite link function involves non-linear parameters, namely the unknown cutpoints (for ordinal data, otherwise the dispersion), the degrees of freedom of the Student distribution and parameters of the model for the dispersion. These non-linear parameters are estimated essentially by the Gauss Newton method, as described by Pregibon (1980). In this way in fact they are treated as location parameters for the observed frequencies. So all parameters are estimated simultaneously, avoiding difficulties with conditional accuracy’s. This extension for ordinal data has been explained in Keen and Engel (1994). Within IRCLASS all non-linear parameters are considered as essentially random, with known variance component. They are updated in each step using the predictions of the differences with respect to the previous values. After convergence the value of the variance component (set by VCCONVERGENCE) is set to 1000, which means that effectively these non-linear parameters are considered as fixed effects. The random non-linear parameters in RDISPERSION are not updated, but they are just included in the model as linearized random deviations from the assumed average value. Their use is to improve the estimates of the fixed effects and their standard errors.

The algorithm involves two or three steps. In the first step the fixed effects model including only the unknown cutpoints as non-linear parameters to be estimated, is fitted using cumulative frequencies, assuming independent binomial distributions and omitting the last class. This preliminary analysis provides initial estimates of the linear predictor and the cutpoints. In the second step the GLMM in the mean of the underlying distribution is fitted with constant dispersion to the frequency data. If a model for the dispersion has been specified, it is fitted in the third step, extending the model used in the second step with the model for the heterogeneity of dispersion.

Action with RESTRICT
Restrictions on the response variates or the model terms are not allowed.

References

Procedures Used
None.
Similar Procedures

For ordinal data IRCLASS is an extension of a generalized linear model with the multinomial distribution. The way of extending a GLM to a GLMM is similar to procedures IRREML and GLMM, which are meant for other data types. For grouped data IRCLASS is an extension of the GenStat DISTRIBUTION directive.

Example

```
CAPTION 'IRCLASS example', !t('Data from Gilmour, Anderson and Rae', \ '(1985), Biometrika 72, 593-599'), ' ' ; STYLE=meta, 2/plain
UNIT [34]
READ yr, b1, b2, b3, k[1,2,3], tot
   1 1 0 0 52 25  0 77   1 1 0 0 49 17  1 67   1 1 0 0 50 13  1 64
   1 1 0 0 42  9  0 51   1 1 0 0 74 15  0 89   1 1 0 0 54  8  0 62
   1 -1 1 0 70 36  4 108  -1 -1 1 0 70 37  3 110  -1 -1 1 0 82 21  1 104
   1 -1 1 0 75 19  0 94   1 -1 -1 0 17 12  10 39  -1 -1 -1 0 13 23  3 39
   1 -1 -1 0 21 17  3 41   -1 0 0 1 37 41  23 101  -1 0 0 1 47 24  12 83
 -1 0 0 1 46 25  9 80   -1 0 0 1 79 32  11 122  -1 0 0 1 50 23  5 78
 -1 0 0 1 63 18  8 89   -1 0 0 1 30 20  9 59   -1 0 0 0 31 33  3 67
 -1 0 0 1 28 18  4 50   -1 0 0 1 42 27  4 73   -1 0 0 0 35 22  2 59
 -1 0 0 1 33 18  3 54   -1 0 0 1 35 17  4 56   -1 0 0 0 26 13  2 41
 -1 0 0 1 37 15  2 54   -1 0 0 1 36 14  1 51   -1 0 0 -1 63 20  3 86
 -1 0 0 -1 41  8  1 50 :
FACTOR [LEVELS=34 ; VALUES=1...34] sire
GROUPS yr ; FACTOR=factor ; LEVELS=levels
CALCULATE nlevels = NVALUES(levels)
VARIATE [MODIFY=yes ; VALUES=1...nlevels] levels
IRCLASS [UDISTRIBUTION= normal ; FIXED=yr + b1 + b2 + b3 ; RANDOM=sire ; \ FDISPERSION=factor ; ABSORB=sire] k ; VCOVARIANCE=vcov ; \ ALLVCOVARIANCE=all ; PREDICTIONS=trandom
PRINT vcov
PRINT trandom[]
PRINT all
```
IRREML procedure

Fits a generalized linear mixed model (GLMM)

Options

PRINT = strings

Printed output required (model, components, effects, means, stratumvariances, monitoring, vcovariance, waldtests, deviance, fullmonitoring); default model, comp, stra

DISTRIBUTION = string

'Residual' distribution of the response variate, i.e. distribution conditional on the random effects (normal, poisson, binomial, negativebinomial, gamma, inversenormal, lognormal); default norm

LINK = string

Link function (canonical, identity, logarithm, logit, probit, complementaryloglog, reciprocal, power, squareroot); default loga for DIST=logn or nega and cano for the other distributions, i.e. iden for DIST=norm, loga for DIST=pois, logit for DIST=bino, reci for DIST=gamm, powe for DIST=inde

EXponent = scalar

Exponent for power link; default -2

PROBMIN = scalar

Fixed lower bound for the binomial probability; default 0

DISPERSION = scalar

Value of dispersion parameter in calculation of s.e.s etc.; default * for DIST=norm, nega, gamm, inve and default 1 for DIST=pois, bino

WEIGHTS = variate

Variate of fixed prior weights for weighted regression (apart from the iterative weights resulting from the specified distribution and link function); default *

OFFSET = variate

Offset variate to be included in the linear predictor; default *

GLM = formula

Model for initial GLM, to obtain starting values for the linear predictor; default * i.e. the fixed effects as specified by the FIXED option.

STARTMEAN = variate

Initial fitted values to be used in the first step of the REML iterations; default *

FIXED = formula

Fixed effects; default *

RANDOM = formula

Random effects; default *

FACTORIAL = scalar

Limit on the number of factors or covariates in each fixed term; default 3

ABSORB = factor

Defines the absorbing factor; default * i.e. none

CONSTANT = string

How to treat the constant (estimate, omit); default esti

CADJUST = string

What adjustment to make to covariates before analysis (mean, none); default mean

RELATIONSHIP = matrix

Defines relationships constraining the values of the components; default *

INITIAL = scalars

Initial values for each variance component; default *

CONSTRAINTS = strings

How to constrain each variance component (positive, fixrelative, fixabsolute); default posi

PSE = string

Standard errors to be printed with tables of effects and means (none, differences, estimates, alldifferences, allestimates); default diff

RMETHOD = string

Whether to use all the random terms, just random terms in the final stratum or both when saving RESIDUALS (final, all, both); default final. Corresponding fitted values are produced, e.g. for final the fitted values are a combination of the estimated fixed effects and predicted random effects.

MAXITER = scalar

Maximum number of REML analyses; default 50

MAXCYCLE = scalar

Maximum number of iterations within each REML; default 10
DESIGN = string

Whether or not the design is balanced (balanced, unbalanced); default unbalanced

CONVERGENCE = scalar

Constant between 0 and 1 to use as fixed value in the update between REML analyses; default 1, and adaptation to lower values after a number of iterations, if necessary

CRITERION = scalar

Convergence criterion; the mean relative change in the linear predictor between successive fits, expressed as a percentage; default 0.01 (%)

ZWEIGHTS = string

Whether to fix weights to 1 in REML step (fix, free, no); default no

EPS = scalar

Value used to force the mean to keep clear from its limits; default 0.0001

CHECK = string

Whether the adequacy of the variance function has to be checked (yes, no); default no

METHOD = string

Indicates whether to use the standard Fisher scoring algorithm or the AI algorithm with sparse matrix methods (Fisher, AI); default AI

Parameters

- **Y = variates**
 Response variates
- **NBINOMIAL = variates or scalars**
 Total numbers for DIST=bino
- **ITERATIVEWEIGHTS = variates**
 To save iterative weights which are used at the lowest stratum in the final analysis
- **YADJUSTED = variates**
 To save the adjusted dependent variate for which the final analysis is carried out
- **LINEARPREDICTOR = variates**
 To save fitted values on the link scale
- **FITTEDVALUES = pointers or variates**
 To save fitted values on the original scale as specified by the RMETHOD option; pointers if RMETHOD=both and variates otherwise
- **RESIDUALS = pointers or variates**
 To save Pearson residuals on the original scale as specified by the RMETHOD option; pointers if RMETHOD=both and variates otherwise. The residuals are based on the means conditional upon the random effects, i.e. \((y - \mu)/\sqrt{w}\), where \(\mu\) is the conditional mean and \(w\) is the iterative weight (if specified, prior weights are included as well)

Description

Procedure IRREML fits a GLMM, applying iterative reweighted REML to the link adjusted dependent variate. A GLMM can be looked at in two different ways: as an extension of a linear mixed model (LMM), allowing the response variate to be non-normally distributed and specification of the LMM at another scale, or as an extension of a generalized linear model (GLM), allowing random terms to be added to the fixed terms in the linear predictor. The estimation procedure can be derived as an extension of the iterative re-weighted least squares algorithm for GLMs (Schall, 1991; Engel and Keen, 1994) replacing weighted least squares by weighted REML, or by approximation of the likelihood equations by iterative use of Laplace integration (penalized quasi-likelihood; Breslow and Clayton, 1993; Engel, 1997).

The options which will be most frequently used are DISTRIBUTION and LINK to specify the distribution of the response variate and the link function, and FIXED and RANDOM to specify the fixed and random part of the model. The response variate is specified by means of the **Y** parameter and, if DIST=binomial, binomial totals have to be specified by means of the **NBINOMIAL** parameter. The other parameters allow saving of results after the model has been fitted.

Most of the options of IRREML are similar to the options of GenStat directives MODEL, VCOMPONENTS and REML. Options DISTRIBUTION, LINK, EXPONENT, DISPERSION, OFFSET and WEIGHTS originate from the MODEL directive. Note that in the output the dispersion factor is presented in the form of a residual variance together with the variance components. However, the dispersion factor is part of the conditional variance, while the variance components involve the conditional mean. The lognormal distribution is added to IRREML. For the negative binomial distribution the default LINK is logarithm,
not canonical. An extra option related to the binomial distribution is PROBMIN, with which a fixed lower bound for the binomial probability can be set. The binomial link function is modified accordingly.

Options FIXED, ABSORB, CONSTANT, ADJUST, RELATIONSHIP, RANDOM, INITIAL and CONSTRAINTS originate from the VCOMPONENTS directive. The setting CONSTRAINTS=none is not possible as it is in VCOMPONENTS. Here the default is CONSTRAINTS=positive. The constraint for the residual variance must not be set with CONSTRAINTS, but with DISPERSION.

Options PRINT, FACTORIAL, PSE and RMETHOD originate from the REML directive. The PRINT option is extended with the fullmonitoring setting, which provides more detailed information about the fitting process. Also, RMETHOD is extended to save two kinds of residuals and fitted values: including and excluding predictions of random parameters. However, residuals saved with RMETHOD=all will probably be meaningless for non Normal distributions.

Options specific to IRREML are GLM, STARTMEAN, MAXITER, MAXCYCLE, DESIGN, CONVERGENCE, CRITERION, ZWEIGHTS, EPS and CHECK. The GLM option specifies a fixed effects model to be fitted in order to obtain starting values for the iterative REML. STARTMEAN can be used to specify fitted values which are used in the first REML step and can reduce computing time if a second analysis is required with a slightly modified model. MAXITER and MAXCYCLE restrict the number of REML analyses and the number of iterations within each REML analysis respectively. The CONVERGENCE option can be set to a smaller value if convergence is a problem, CRITERION can be used to set the convergence criterion and EPS specifies how close the linear predictor is allowed to approach its limits (see the Method section). Because suitable defaults have been chosen it will usually not be necessary to specify GLM, MAXITER, MAXCYCLE, CONVERGENCE, CRITERION and EPS. Only in situations with very little information in the data they might be useful. ZWEIGHTS can be used to define equal weights at the link scale. ZWEIGHTS overrules the weights set implicitly by DISTRIBUTION and LINK. DESIGN can be used to perform ANOVA in balanced designs with constant weights at the link scale instead of REML. CHECK performs a check on the adequacy of the variance function. The METHOD option determines which algorithm to use.

VKEEP can be used after IRREML in the usual way. Residuals and fitted values from VKEEP are obtained with RMETHOD=all. The PREDICT directive cannot be used.

Method
First a GLM is fitted with the model as set by the GLM option, or the FIXED model otherwise. Then, for estimating the variance components, weighted REML is carried out iteratively. Weights are the usual iterative weights of a GLM and are functions of the estimated conditional means μ_i, in which predicted random effects are included.

Numerical problems may arise if the mean μ_i of an observation is not estimable, e.g. for the binomial distribution if the binomial fraction equals 0 or 1, which corresponds with plus or minus infinity for $\text{logit} (\mu_i)$. In order to avoid these problems, the linear predictor is restricted such that means remain within a distance ε from their limits. A message is printed when these limits are reached.

Differences between successive fits in the iteration process are characterized by differences in the linear predictor. The mean relative change in the linear predictor, expressed as a percentage, is therefore used as convergence criterion. Convergence problems may occur if information about effects is poor, inducing large changes from one step to the next, possibly leading to a constant change between alternating estimates. This is remedied automatically, using a proportion α of the new linear predictor plus a proportion $(1-\alpha)$ of the previous linear predictor for the next step in case estimates tend to alternate. When the iteration process diverges, the iteration is restarted with a lower value for α. The CONVERGENCE option can be used to fix the value of α.

The extra parameter ϕ in the variance function of the negative binomial distribution $(\mu_i + \phi \mu_i^r)$ is estimated by extending Williams' method. This involves equating Pearson's Chisquare statistic to an approximate number of degrees of freedom. These degrees of freedom are obtained by subtracting approximate degrees of freedom for the random components from the total residual degrees of freedom after fitting the fixed effects. Approximate degrees of freedom for a random term are calculated as the ratio of the sum of squared predictions of the random effects and the corresponding estimated variance component, see also Engel et al. (1995).
The `CHECK` option produces a plot of absolute residuals to the power 2/3 against the linear predictor. Taking absolute values of residuals allows looking at a trend in means in stead of a trend in ranges. The power 2/3 has been chosen, because the distribution of the residuals is then more symmetric.

Action with RESTRICT

The response variates and variates and factors in `GLM`, `FIXED`, `RANDOM` and `Y` may be restricted. Restrictions on different structures must be in line. The analysis is restricted accordingly.

References

Procedures Used

None.

Similar Procedures

`GLMM` analyses a GLMM in essentially the same way and `VSEARCH` helps search through models for a GLMM. `IRCLASS` fits a generalized linear mixed model to ordinal data.

Example

```plaintext
CAPTION 'IRREML example', !t('Data from Engel (1986), Statistica', 
     'Neerlandica, 40, 21-33.'), ' ' ; STYLE=meta, 2(plain)
UNIT [60]
READ [SETVALUES=yes] y
3 7 3 6 7 1 8 3 6 7 8 7 12 9 14 7 8 5 9 1 3 1 8 18 5 3 17 7 11 12
9 3 4 7 3 13 5 5 6 4 15 16 11 8 10 3 2 4 9 22 6 7 11 8 12 9 4 7 :
FACTOR [LEVELS=3] Location
FACTOR [LEVELS=2] Method, Pattern
FACTOR [LEVELS=5] Replicat
GENERATE Method, Pattern, Location, Replicat
IRREML [PRINT=monitoring, effects, means, components, waldtest ;
     DISTRIBUTION=poisson ; FIXED=Location*Method*Pattern ;
     RANDOM=Location.Method.Replicat] Y=y ; FITTEDVALUES=Mu
IRREML [PRINT=monitoring, effects, means, components, waldtest ;
     DISTRIBUTION=gamma ; LINK=logarithm ;
     FIXED=Location*Method*Pattern ;
     RANDOM=Location.Method.Replicat] Y=y ; FITTEDVALUES=Mu
```


LRPAIR procedure

P.W. Goedhart

Gives (scaled) likelihood ratio tests for all pairwise differences of means from a regression or GLM

Options

PRINT = strings
What to print (teststatistics, probabilities); default test, prob

Parameters

TREATFACTOR = factors
Factors for which to perform tests of all pairwise differences

TESTSTATISTICS = symmetric matrices
To save the (scaled) likelihood ratio test statistics (missing values on the diagonal)

PROBABILITIES = symmetric matrices
To save the probabilities of the test statistics (missing values on the diagonal)

Description

When analysing a (generalized) linear model with the regression directives FIT, ADD etc., effects of factors in the model may be assessed from an analysis of variance (or deviance) table. With the PREDICT directive tables of estimated means and their standard errors can be obtained. The LRPAIR procedure provides additional information on such tables by calculating (scaled) likelihood ratio test statistics and corresponding probabilities for tests of all pairwise differences of means. This is similar to procedure RPAIR which calculates Wald test statistics instead of (scaled) likelihood ratio statistics. LRPAIR is especially useful for models in which parameter estimates are plus or minus infinity. This can e.g. happen in Poisson and binomial GLMs when some factor categories have zero counts only. Note that for ordinary regression RPAIR and LRPAIR are equivalent.

A call to LRPAIR must be preceded by fitting a (generalized) linear model. The TREATFACTOR parameter must be set to a factor for which all pairwise differences must be tested. This factor must be an additive term in the fitted model, so interactions with this factor are not allowed. In case the MODEL statement for the regression has defined multiple response variates, tests are only calculated for the first response variate.

The PRINT option controls the output. By default a symmetric matrix of pairwise test statistics is printed, as well as a symmetric matrix with corresponding probabilities. The TESTSTATISTICS and PROBABILITIES parameters can be used to save the output.

Method

Suppose the equality of the parameters associated with levels 1 and 2 of a factor must be tested. The (scaled) likelihood ratio test is then obtained by employing the deviance of the model with the factor itself, and the deviance of the model with a modified factor in which the levels 1 and 2 have been combined. Since there are in general multiple pairwise comparisons this is done in a loop. When the DISPERSION parameter of the MODEL statement is set to a fixed value, the test statistic is the difference between the two deviances scaled by the fixed dispersion, and probabilities are calculated by means of the Chi-squared distribution. In case DISPERSION=*, the deviance difference is scaled by the quotient of the deviance and the residual degrees of freedom of the full model, and the F distribution is used to calculate probabilities.

The procedure redefines the maximal model to the fitted model by means of the TERMS directive. This is due to a limitation of GenStat. This implies that the following two sets of statements produce a fault, since the maximal model after the call to LRPAIR only has terms Rows + Treatment.

MODEL response
TERMS Rows + Cols + Treatment
FIT Rows + Treatment
LRPAIR Treatment
FIT Rows + Cols + Treatment

This can be overcome by redefinition of the maximal model after the call to LRPAIR, or by repeating the MODEL statement.
Action with RESTRICT

TREATFACTOR must not be restricted, or it must have the same restriction as the response variate.

References

None.

Procedures Used

SUBSET.

Similar Procedures

Procedures RPAIR and PAIRTEST both produce a symmetric matrix of two-sided t-probabilities for tests of all pairwise differences of estimates. Procedure PPAIR displays results of tests for pairwise differences in compact diagrams.

Example

CAPTION 'LRPAIR example', !t('One of the Treatment categories has zero', 'counts only. The corresponding parameter in the Poisson', 'regression model is minus infinity. Pairwise testing by means', 'of the Wald statistic, using RPAIR, then fails. The likelihood', 'ratio test statistic, using LRPAIR, produces correct results.'),
ÜNIT
FACTOR [LEVELS=5] Block
FACTOR [LABELS=!T(K, M, N, O, P) ; LEVELS=!(11,13,14,15,16)] Treatment
GENERATE Block, Treatment
VARIATE [VALUES=0,4,0,2,8,1,6,0,4,6,1,3,0,3,1,5,1,0,2,2,8,0,1,6] Count
TABULATE [CLASS=Treatment ; PRINT=tot] Count
MODEL [DISTRIBUTION=poisson] Count
FIT Block + Treatment
LRPAIR Treatment
RPAIR [PRINT=*] !p(Treatment) ; DIFF=diff ; TVAL=tval ; TPROB=tprob
PRINT [RLWIDTH=2 ; SERIAL=yes] diff, tval, tprob ; FIELD=8 ; DECI=2,2,3
MATCHTARGET procedure

Expects units of a set of vectors by matching a target vector

Options

SORT = string
Whether the values of TARGETVECTOR should be sorted (yes, no); default no

DIRECTION = string
Order in which to sort (ascending, descending); default ascending

Parameters

OLDVECTORS = pointers
Set of vectors from which units are extracted; must be set

TARGETVECTOR = variates or texts
The target vector according to which units from OLDVECTORS are extracted; must be set

NEWVECTORS = pointers
Set of vectors to save the extracted units of OLDVECTORS; must be set

Description

MATCHTARGET extracts units of a set of vectors by matching a target vector and saves these units in a new set of vectors. MATCHTARGET gives control over the order of the extracted units, and is thus an alternative for the SUBSET procedure. The target vector specified by the TARGETVECTOR parameter must be a text structure or a variate with unique values. The first vector of the OLDVECTORS parameter must be of the same type as the TARGETVECTOR and must also have unique values. The other structures of OLDVECTORS can be factors, variates or text structures. The NEWVECTORS parameter saves all units of the OLDVECTORS structures for which the TARGETVECTOR equals the first vector of OLDVECTORS. In case an element of the target vector is not present in the first vector of OLDVECTORS, corresponding units in the NEWVECTORS are set to missing. The number of values of the NEWVECTORS structures is thus equal to the number of values of the TARGETVECTOR. The first structure of NEWVECTORS is always a copy of TARGETVECTOR.

By default the values of the NEWVECTORS structures are in the same order as the TARGETVECTOR. The SORT option can be used, in combination with option DIRECTION, to sort the TARGETVECTOR in ascending or descending order.

The difference with the SUBSET procedure is the order in which the units are saved, which is given by the TARGETVECTOR, and the inclusion of missing units which makes the length of the NEWVECTORS structures equal to the length of the TARGETVECTOR.

Method

The EQUATE directive, with proper specifications of the options OLDFORMAT and NEWFORMAT, is used to perform the extraction.

Action with RESTRICT

If the TARGETVECTOR is restricted, only the subset of values specified by the restriction will be included in the extraction. The OLDVECTORS structures must not be restricted.

References

None.

Procedures Used

SUBSET.

Similar Procedures

WEAVEVECTORS weaves two sets of vectors into a new set according to the first vector of both sets. SUBSET forms vectors containing subsets of the values in other vectors. JOIN joins or merges two sets of vectors together, based on the values of sets of classifying keys.
Example

CAPTION 'MATCHTARGET example' ; STYLE=meta
SCALAR nyear, nvariety; 7, 21
TEXT tvariety
READ [PRINT= d, e] nr, tvariety, stand, year[1...nyear]
 1 Ritmo 0 10.9 10.5 11.3 10.8 10.5 10.7 10.8
 2 Hereward 1 12.0 12.0 12.5 12.1 11.6 12.1 12.2
 3 Vivant 0 11.3 10.3 11.6 10.8 10.4 10.7 10.8
 4 Bercy 1 11.8 11.6 11.9 11.5 11.1 * *
 5 Versailles 0 10.8 11.1 11.3 10.6 10.6 * *
 6 Arnaut 1 12.0 12.2 12.0 12.0 11.7 11.4
 7 Tambor 1 12.0 11.9 12.1 11.9 12.2 * *
 8 Tower 0 11.6 11.6 11.8 11.6 11.4 + *
 9 Urban 0 * * 12.7 12.2 12.5 * *
 10 Residence 1 * * 11.8 11.5 11.2 11.3 *
 11 Harrier 0 * * 11.4 10.8 10.1 * *
 12 Riant 0 * * * * * 11.4 *
 13 Semper 1 * * * 11.3 11.8 12.2
 14 'PBIS 95/91' 0 * * * * 11.3 *
 15 'Ceb 9607' 0 * * * * 11.4 *
 16 'DI 304' 0 * * * * 11.7 *
 17 'NIC 92-3533a' 0 * * * * 11.5 11.6
 18 'DI 403' 0 * * * * * 11.9
 19 'DI 404' 0 * * * * * 12.3
 20 'VDH 1099-95' 0 * * * * * 11.6
 21 'NIC 94-3667B' 0 * * * * * 10.9

VARIATE [VALUES=6, 3, 24, 4] vtarget
MATCHTARGET [SORT=no] OLDVECTORS=p(nr, tvariety, year[1...nyear]) ;
 TARGETVECTOR=vtarget ; NEWVECTORS=p(n, vtvariety, vy[1...nyear])
PRINT n, vtvariety, vy[] ; FIELD=4, 13, #nyear(6) ;
 DECIMALS=0, *, #nyear(1) ; JUSTIFICATION=r ,l, #nyear(r)
TEXT [VALUES=Riant, Residence, Semper, A, Ritmo] ttarget
MATCHTARGET [SORT=y] OLDVECTORS=p(tvariety, year[1...nyear]) ;
 TARGETVECTOR=ttarget ; NEWVECTORS=p(ttvariety, ty[1...nyear])
PRINT ttvariety, ty[] ; FIELD=17, #nyear(6) ;
 DECIMALS=*, #nyear(1) ; JUSTIFICATION=left, #nyear(right)
MOSTSIMILAR procedure

Displays the most similar units for each candidate unit given a set of variates

Options

- **PRINT = string**
 - What to print (description); default description

- **METHOD = string**
 - Which distance metric to use (cityblock, euclidean); default cityblock

- **FIELDWIDTH = scalar**
 - Field width in which to print the results; default 10

- **DECIMALS = scalar**
 - Number of decimal places for printing the results; default *

Parameters

- **DATA = pointers**
 - Pointer to variates; must be set

- **UNITS = texts**
 - Text structure to identify the units; must be set

- **YARDSTICK = variates**
 - Yardsticks of the variates in DATA; must be set

- **GROUPS = factors**
 - Factor with 2 levels: level 1 for candidate units, level 2 for reference units; by default all units are candidate units

- **SINGULARUNITS = texts**
 - To save the singular units

Description

Procedure MOSTSIMILAR can be used to display the most similar units for each candidate unit given a set of variates as specified by the DATA pointer. The most similar units with METHOD=cityblock are the units with all absolute differences less than or equal to the corresponding value of the YARDSTICK parameter. With METHOD=euclidean the most similar units are the units within an ellipsoid around the candidate unit; the YARDSTICK parameter then defines the lengths of the axes of the ellipsoid. The length of the YARDSTICK variate must thus be equal to the number of DATA variates. The units must be identified by a text structure as specified by the UNITS parameter. The GROUPS parameter can be used to subdivide the units into candidate and reference units. The GROUPS factor must have the levels 1 and 2; level 1 for the candidate units and level 2 for the reference units. If the GROUPS factor is not set all units are considered candidate units. The set of candidate units that don’t have most similar units can be saved by the SINGULARUNITS parameter.

The PRINT option can be used to omit the description, and the FIELDWIDTH and DECIMALS options both operate in a straightforward way. If the setting of FIELDWIDTH is smaller than the longest structure name, the length of the longest structure name plus 1 is taken as field width. If not set the default value is 10. If the DECIMALS option is not set the number of decimals is determined by application of the DECIMALS procedure to the YARDSTICK variate.

Method

MOSTSIMILAR uses simple calculations.

Action with RESTRICT

Restrictions are not allowed.

References

None.

Procedures Used

VEQUATE, DECIMALS, SREPLACE and RENAMEPOINTER.

Similar Procedures

BKEY constructs an identification tree.
Example

CAPTION 'MOSTSIMILAR example 1', !t('Data taken from example 6.19.1', "of the HCLUSTER directive''), '' ; STYLE=meta, 2(plain)

TEXT Cars

POINTER [VALUES=CC, NCyl, Tank, Wt, Length, Width, Ht, WBase, TSpeed, StSt, Carb, Drive] Vars

READ Cars, Vars[]

```
<table>
<thead>
<tr>
<th>Cars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estate</td>
</tr>
<tr>
<td>Arna1_5</td>
</tr>
<tr>
<td>Alfa2_5</td>
</tr>
<tr>
<td>Mondialqc</td>
</tr>
<tr>
<td>Testarossa</td>
</tr>
<tr>
<td>Panda</td>
</tr>
<tr>
<td>Regatta</td>
</tr>
<tr>
<td>Regattad</td>
</tr>
<tr>
<td>Uno</td>
</tr>
<tr>
<td>X19</td>
</tr>
<tr>
<td>Contach</td>
</tr>
<tr>
<td>Delta</td>
</tr>
<tr>
<td>Thema</td>
</tr>
<tr>
<td>Y10</td>
</tr>
<tr>
<td>Spider</td>
</tr>
</tbody>
</table>
```

```
1490  4  50  966 141 133 245 177 10.9  1  2
1409  4  50  845 116  33 176  81  8.2  1  1
2492  6  49 1160 433 163 140 251 210  8.2  1  1
3185  8  87 1430 458 179 126 265 249  7.4  2  1
4924 12 120 1506 449 198 113 255 291  5.8  2  1
1995  4  70  960 450 176 143 266 209  7.8  2  2
 965  4  35  761 338 149 146 216 134 16.8  1  2
1585  4  55  970 426 165 141 244 180 10.0  1  2
1714  4  55  980 426 165 141 244 150 18.9  3  2
 999  4  42  720 364 155 143 236 145 16.2  1  2
1498  4  48  912 397 157 118 245 195  8.2  1  2
5167 12 120 1446 414 200 107 245 286  4.9  1  1
1585  4  45 1000 389 162 138 247 195  8.2  1  2
1995  4  70 1150 459 175 143 266 224  7.6  2  2
1049  4  47  800 339 151 143 216 179 11.8  1  2
1995  4  45 1050 414 162 125 228 190  9.0  2  1  
```

```
VARIATE [NVALUES=12] yardstick
CALCULATE yardstick$[1...12] = SQRT(VAR(Vars[1...12]))
```

MOSTSIMILAR [DECIMALS=1 ; METHOD=euclidean] DATA=Vars ; UNIT=Cars ; YARDSTICK=yardstick

CAPTION 'MOSTSIMILAR example 2', !t('Data taken from the BKEY example, 'i.e. common clinical yeasts'), ' ' ; STYLE=meta, 2(plain)

TEXT Yeasts

FACTOR [LABELS=!t('-','+')] C11 ; EXTRA='Maltose growth'

& C18 ; EXTRA='Lactose growth'

& C19 ; EXTRA='Raffinose growth'

& C36 ; EXTRA='D-Glucuronate growth'

& N1 ; EXTRA='Nitrate growth'

& V5 ; EXTRA='Growth w/o Thiamin'

& O2 ; EXTRA='0.1% Cycloheximide growth'

& E5 ; EXTRA='Splitting cells'

POINTER [VALUES=C11,C18,C19,C36,N1,V5,O2,E5] Factors

READ [PRINT=data,errors] Yeasts, Factors[] ; FREPRESENTATION=labels

```
'Candida albicans'  '+'  '-'  '-'  '-'  '-'  '+'  '+'  '-'
'Candida glabrata'  '-'  '-'  '-'  '-'  '-'  '+'  '-'  '-'
'Candida parapsilosis'  '+'  '-'  '-'  '-'  '-'  '+'  '-'  '-'
'Candida tropicalis'  '+'  '-'  '-'  '-'  '-'  '+'  '+'  '-'
'Cryptococcus albidus'  '+'  '+'  '+'  '+'  '+'  '-'  '-'  '-'
'Cryptococcus lauriei'  '+'  '+'  '+'  '+'  '+'  '+'  '-'  '-'
'Filobasidiella neoformans'  '+'  '+'  '+'  '+'  '+'  '+'  '+'  '-'
'Issatchenkia orientalis'  '-'  '-'  '-'  '-'  '-'  '-'  '-'  '-'
'Kluyveromyces marxianus'  '-'  '+'  '+'  '+'  '+'  '+'  '+'  '-'
'Pichia guilliermondii'  '-'  '-'  '-'  '-'  '-'  '-'  '-'  '-'
'Rhodotorula glutinis'  '+'  '-'  '+'  '+'  '+'  '+'  '+'  '+'
'Rhodotorula mucilaginosa'  '+'  '+'  '+'  '+'  '+'  '+'  '+'  '+'
'Trichosporon beigelii'  '+'  '+'  '+'  '+'  '+'  '+'  '+'  '+'
```

PRINT [MISSING='V'] Yeasts,Factors[] ; FIELDWIDTH=27,8(4) ; DECIMALS=0

FACTOR [MODIFY=yes ; LEVELS=!(0,1); LABELS=!t(negative,positive)] Factors[]

CALCULATE Variates[] = Factors[]

VARIATE [VALUES=8(0)] Yardstick

MOSTSIMILAR [DECIMALS=0] DATA=Variates ; UNITS=Yeasts ; YARDSTICK=Yardstick
OCATTRIBUTES procedure

Calculates operating characteristic curves for single and multiple acceptance sampling plans for attributes

Options

- **PRINT = string**

 What to print (probabilities); default probabilities

- **PLOT = string**

 What to plot (occurve); default occurve

- **TITLE = text**

 General title for plot; default *

- **DISTRIBUTION = string**

 Type of distribution (binomial, hypergeometric, poisson); default binomial

- **MAXPERCENTAGE = scalar**

 Maximum percentage of defectives for which acceptance probabilities are calculated; default 30

- **STEPLENGTH = scalar**

 Steplength between the percentages defectives for which acceptance probabilities are calculated; default 1

- **POPULATIONSIZE = scalar**

 Population size for DISTRIBUTION=hypergeometric; default 1000

Parameters

- **SAMPLESIZE = scalars or variates**

 Size of the sample(s); must be set

- **ACCEPTANCENUMBER = scalars or variates**

 Acceptance number(s); must be set

- **REJECTIONNUMBER = scalars or variates**

 Rejection number(s); must be set

- **PROBABILITYACCEPTANCE = variates**

 Saves the probabilities of acceptance

- **PERCENTAGEDEFECTIVE = variates**

 Saves the percentages defectives

- **AVERAGESAMPLENUMBER = variates**

 Saves the average sample numbers

Description

OCATTRIBUTES calculates operating characteristic (OC) curves for single and multiple acceptance sampling plans for attributes. The sampling plan is specified by the parameters SAMPLESIZE, ACCEPTANCENUMBER and REJECTIONNUMBER. The length of these parameters determines the number of stages of the plan. For a single sampling plan these parameters can also be set to scalars in which case REJECTIONNUMBER can be left unset. A negative ACCEPTANCENUMBER in stages before the last stage in a multiple sampling plan defines that the decision at the corresponding stage can only be to proceed or to reject. For the last stage in a multiple sampling plan the rejection number must be equal to the corresponding acceptance number + 1.

The type of distribution can be specified by the DISTRIBUTION option. The hypergeometric distribution is not available for multiple sampling plans. If DISTRIBUTION=hypergeometric the POPULATIONSIZE option must be set. The MAXPERCENTAGE option specifies the maximum percentage of defectives for which to calculate the probabilities of acceptance. For the binomial and poisson distribution, the step length between 0 and MAXPERCENTAGE can be supplied by the STEPLENGTH option.

By default OCATTRIBUTES plots an OC curve, but you can set PLOT=* to suppress this. The TITLE option allows you to supply a title for the graph. Also, unless you set option PRINT=*, OCATTRIBUTES prints the calculated acceptance probabilities and the average number of sample sizes.

The probabilities of acceptance can be saved by the PROBABILITYACCEPTANCE parameter, the percentages defectives by the PERCENTAGEDEFECTIVE parameter and the average sample numbers by the AVERAGESAMPLENUMBER parameter.
Method
The probability functions of GenStat are used to calculate the acceptance probabilities. For not too small sample sizes the Poisson distribution is a good approximation of the Binomial distribution with mean parameter (SampleSize * PercentageDefective). If the ratio between sample size and population size is small, the Binomial distribution is a good approximation of the Hypergeometric distribution.

Action with RESTRICT
Restrictions are not allowed.

References

Procedures Used
None.

Similar Procedures
OCPLAN finds a single acceptance sampling plan for attributes given two points on an OC curve.

Example
```
CAPTION 'OCATTRIBUTES example',
  !t('Comparison of different sampling plans.',
  'Data from Montgomery, page 654.', ''); STYLE=meta,plain
OCATTRIBUTES [PLOT=* ; DISTRIBUTION=binomial ; MAXPERCENTAGE=8; 
  STEPLENGTH=0.5] 
  SAMPLESIZE=50,100,200 ; ACCEPTANCENUMBER=1,2,4 ; 
  PROBABILITYACCEPTANCE= a[1...3] ; PERCENTAGEDEFECTIVE= p[1...3]
PEN 1...3; METHOD=mono; SYMBOLS=0
XAXIS 1; TITLE= 'Lot percentage defective'
YAXIS 1; TITLE= 'Probability of acceptance'
DGRAPH [TITLE= 'Figure 14-4 Montgomery'] Y=a[] ; X=p[] ; 
  DESCRIPTION='n=50, c=1', 'n=100, c=2', 'n=200, c=4'
OCATTRIBUTES [PLOT=* ; DISTRIBUTION=binomial ; MAXPERCENTAGE=8] 
  SAMPLESIZE=3(89) ; ACCEPTANCENUMBER=2,1,0 ; 
  PROBABILITYACCEPTANCE= a[1...3] ; PERCENTAGEDEFECTIVE= p[1...3]
DGRAPH [TITLE= 'Figure 14-5 Montgomery'] Y=a[] ; X=p[] ; 
  DESCRIPTION='n=89, c=2', 'n=89, c=1', 'n=89, c=0'
CAPTION !t('Comparison of 7 stage sampling plan from Duncan Chapter 9,',
  'and single sampling plan (found with OCPLAN).', ''); STYLE=plain
OCATTRIBUTES [DISTRIBUTION=binomial ; MAXPERCENTAGE=20] 
  SAMPLESIZE= 63,!(20,20,20,20,20,20,20) ; 
  ACCEPTANCENUMBER=5,!(0,1,3,5,8,9,10) ; 
  REJECTIONNUMBER= 6,!(4,5,6,8,10,11,11) ; 
  PROBABILITYACCEPTANCE= a[1...2] ; 
  PERCENTAGEDEFECTIVE= p[1...2]
PEN 1...2; METHOD=mono; SYMBOLS=0
XAXIS 1; TITLE= 'Lot percentage defective'
YAXIS 1; TITLE= 'Probability of acceptance'
DGRAPH Y=a[1,2]; X=p[1,2]; 
  DESCRIPTION='single sampling plan', '7-stage sampling plan'
```
OCPLAN procedure

Finds a single acceptance sampling plan for attributes given two points on an OC curve

Options

PRINT = string What to print (plan); default plan

Parameters

PERCENTAGEDEFECTIVE = variates Variate with two percentages defective; default !(1,10)
PROBABILITYACCEPTANCE = variates Variate with two probabilities of acceptance corresponding to the PERCENTAGEDEFECTIVE variate; default !(0.95,0.05)
SAMPLESIZE = scalars Saves the sample size
ACCEPTANCENUMBER = variates Saves the acceptance number

Description

OCPLAN finds a single acceptance sampling plan for attributes given two points on an operating characteristic (OC) curve. The two points are specified by the PERCENTAGEDEFECTIVE and PROBABILITYACCEPTANCE variates. The length of both variates is 2 with default settings PERCENTAGEDEFECTIVE=!(1,10) and PROBABILITYACCEPTANCE=!(0.95,0.05). The first percentage defective should be smaller than the second, whereas the first acceptance probability should at least 0.50 be greater than the second.

The sample size of the found single sampling plan can be saved by the SAMPLESIZE parameter and the acceptance number by the ACCEPTANCENUMBER parameter. The PRINT option prints the plan unless you set option PRINT=*

Method

The calculation is done using percentage points of a Chi-squared distribution. This means that the calculation, apart from a rounding error to an integer of the SAMPLESIZE, is exact if the probability distribution of the number of defectives in a sample is Poisson.

Action with RESTRICT

Restrictions are ignored.

References

Procedures Used

None.

Similar Procedures

OCATTRIBUTES calculates operating characteristic curves for single and multiple acceptance sampling plans for attributes.

Example

CAPTION 'OCPLAN example'; STYLE=meta
OCPLAN PERCENTAGEDEFECTIVE=!(5,16); PROBABILITYACCEPTANCE= !(0.90,0.05)
PER2MUTE procedure

Forms all possible permutations of a set of values

Options
None.

Parameters

- **STRUCTURE** = identifiers
 - Numerical structure (variate, table, matrix, symmetricmatrix, diagonalmatrix) whose values must be permuted

- **PERMUTATIONS** = pointers
 - Pointer to a set of variates storing the permutations; the length of each variate equals the number of values in **STRUCTURE**

- **NPERMUTATIONS** = scalars
 - To save the number of permutations

Description

PERMUTE forms all the permutations of the values in the **STRUCTURE** parameter. The input variate may contain multiple values. For example, the permutations of the numbers (1, 1, 2, 2) are as follows: (1, 1, 2, 2), (1, 2, 1, 2), (1, 2, 2, 1), (2, 1, 1, 2), (2, 1, 2, 1), and (2, 2, 1, 1). The permutations are saved, as a set of variates each of length equal to the number of values in **STRUCTURE**, in a pointer supplied by the **PERMUTATIONS** parameter. The number of permutations can be saved by setting the **NPERMUTATIONS** parameter. The number of decimals of the **STRUCTURE** parameter is copied to the permutation variates.

Method

The values are passed to an external Fortran program which employs Applied Statistics Algorithm AS 179 (Berry, 1982) to calculate the permutations. The algorithm takes account of multiple values.

Action with RESTRICT

If the **STRUCTURE** parameter is restricted, only the values in the restriction set are used to form the permutations. The length of the permutation variates will equal the length of the restricted **STRUCTURE**.

References

Procedures Used

The **BIOMETRIS** procedure is used to retrieve the filename of the external Fortran executable.

Similar Procedures

PERMUTE forms all possible permutations of the integers 1...n.

Example

```
CAPTION 'PER2MUTE example' ; STYLE=meta
VARIATE [VALUES=1, 1, 2, 2, 3] v1 ; DECIMALS=0
VARIATE [VALUES=1.1, 2.2, 3.3, 4.4] v2 ; DECIMALS=1
PER2MUTE v1, v2 ; p1, p2
PRINT p1[] ; FIELD=8
PRINT p2[] ; FIELD=8
```
PPAIR procedure

Displays results of t-tests for pairwise differences in compact diagrams

Options

- **PRINT = string**
 - What to print (items, groups); default groups

- **PROBABILITY = scalar or symmetric matrix**
 - Level of significance for t-tests of all pairwise comparisons, default 0.05

- **SORT = string**
 - Whether the diagrams are sorted according to the values of (the diagonal of) **DIFFERENCES** (yes, no); default no

- **DIRECTION = string**
 - Order in which to sort when **SORT=**yes (ascending, descending); default ascending

Parameters

- **TPROBABILITIES = symmetric matrices**
 - Probabilities of t-tests of pairwise comparisons; this parameter must be set

- **DIFFERENCES = symmetric matrices, variates or tables**
 - Defines the ordering of **TPROBABILITIES** for the groups diagram; must be set for a groups diagram

- **LABELS = texts**
 - Text vector labelling the output; if unset the row labels of **TPROBABILITIES** and the diagonal of **DIFFERENCES** are used

- **DIAGRAMS = pointers**
 - Pointer to save text structures containing the diagrams

Description

Procedures **RPAIR** and **PAIRTEST** produce a symmetric matrix of two-sided t-probabilities for tests of all pairwise differences. Procedure **PPAIR** displays this matrix at a specified level of significance in two compact diagrams. This is especially useful when the number of estimates is large.

Input to **PPAIR** is a symmetric matrix **TPROBABILITIES** containing probabilities of the set of pairwise comparisons. The level of significance can be set by the **PROBABILITY** option. A common level is specified by a scalar, while a symmetric matrix specifies a level for each comparison separately (which may be useful for some multiple comparison methods). Output is labelled by the row labels of **TPROBABILITIES**. If the **DIFFERENCES** parameter is set to a symmetric matrix, the diagonal of this matrix is printed alongside these labels. This is especially useful if **DIFFERENCES** is saved by **RPAIR** or **PAIRTEST** because it then contains the estimates on the diagonal. **DIFFERENCES** can also be set to a variate or table. Alternatively the output can be labelled by specifying parameter **LABELS**.

The **PRINT** option controls which diagram is printed. **PRINT=items** produces a diagram which should be read line by line. Each item (represented by a letter) is followed by those items (again represented by letters) not significantly different from that item. When there are more than 52 items, letters are repeated. **PRINT=groups** produces a diagram in which items followed by a common letter are not significantly different. Such items are said to form a homogeneous group. This is similar to common underlining of items with non-significantly different estimates. In constructing this diagram the philosophy of multistage testing is followed, see the Methods section. The **SORT** option controls whether the printed and saved diagrams are sorted according to the values of (the diagonal of) **DIFFERENCES**. The **DIRECTION** option defines the sorting order. Diagrams can be saved by means of the **DIAGRAMS** parameter.

Method

The construction of the diagram for **PRINT=groups** is as follows. First the matrix of **TPROBABILITIES** is sorted according to the values of (the diagonal of) **DIFFERENCES**. The difference between the first and last item of the complete set of \(n \) items is then checked for significance. Next the first and last item of all subsets of \(n-1 \) consecutive items are checked, followed by all subsets of \(n-2 \) items, and so on. If non-significance is found between the first and last item of a subset, all items of the subset are said to form a homogeneous group and they receive the same letter. Clearly this only makes sense when the **TPROBABILITIES** are sorted according to the estimates. The diagram only consists of homogeneous groups which are not a part of a larger group.
It is obvious that items in a homogeneous group can be significantly different. This is not displayed in
the diagram, although a message is printed if this occurs. If there are no significant differences within
homogenous groups, both diagrams essentially contain the same information; PRINT=groups then gives
a more concise representation.

Action with RESTRICT
Restrictions on DIFFERENCES and LABELS are ignored.

References
None.

Procedures Used
DECIMALS determines the number of decimals places of PROBABILITY if this is not defined at declaration.

Similar Procedures
Procedures RPAIR, LRPAIR and PAIRTEST produce a symmetric matrix of two-sided t-probabilities for
tests of all pairwise differences of estimates.

Example
CAPTION 'PPAIR example 1', !t('Data taken from Cochran, W.G. and Cox, ', \\
'page 406. There are no significant differences within', \
'homogenous groups'), ' ' ; STYLE=meta, 2(plain)
FACTOR [LEVELS=2 ; VALUES=25(1,2)] Rep
FACTOR [LEVELS=5 ; VALUES=5(1...5)] Block
FACTOR [LEVELS=25 ; VALUES=(1...25), (1,6...21), (2,7...22), (3,8...23), \
(4,9...24), (5,10...25)] Variety
VARIATE [VALUES= 6,7,5,8,6, 16,12,12,13,8, 17,7,9,14, 18,16,13,13,14, \
14,15,11,14,14, 24,13,24,11,8, 21,11,14,11,23, 16,4,12,12,12, \
17,10,30,9,23, 15,15,22,16,19] Yield
MODEL Yield
FIT [PRINT=accumulated] Rep/Block + Variety
RPAIR [PRINT=!*] !P(Variety) ; TPROBABILITIES=YieldPr ; DIFFERENCES=YieldDif
PRINT [RLWIDTH=3] YieldPr ; FIELDWIDTH=7 ; DECIMALS=3
PPAIR [PRINT=items,groups ; SORT=yes] YieldPr ; DIFFERENCES=YieldDif
CAPTION 'PPAIR example 2', !t('Comparison of unequally replicated', \\
'treatments with significant differences within homogenous', \
'groups'), ' ' ; STYLE=meta, 2(plain)
FACTOR [LABELS=!t(aap, noot, mies, wim, zus, jet, vuur, gijs) ; \
values=8(1), 4(2), 8(3), 7(4), 1(5), 2(6), 9(7), 9(8)] Label
VARIATE [VALUES=5.40, 6.09, 3.53, 5.77, 4.04, 4.18, 5.24, 6.56, 4.89, \
6.78, 6.00, 5.93, 7.90, 7.17, 5.58, 7.41, 7.79, 6.89, 6.14, \
5.50, 3.66, 4.05, 6.24, 5.70, 5.13, 5.65, 4.58, 6.30, 7.59, \
8.41, 5.26, 6.91, 5.86, 7.17, 6.87, 5.91, 5.22, 5.34, 7.25, \
6.58, 8.19, 7.95, 9.58, 7.38, 7.72, 8.00, 7.92, 8.17] Response
MODEL Response
FIT Label
RPAIR [PRINT=!*] !P(Label) ; TPROBABILITIES=LabelPr ; DIFFERENCES=LabelDif
PRINT LabelPr ; FIELDWIDTH=7 ; DECIMALS=3
PPAIR [PRINT=items,groups] LabelPr ; DIFFERENCES=LabelDif
PPAIR [PRINT=items,groups ; SORT=yes] LabelPr ; DIFFERENCES=LabelDif
QDIRECTORY procedure

Returns a directory selected by means of a directory browse dialog box on screen

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE = text</td>
<td>Single-valued text structure specifying the title of the directory</td>
</tr>
<tr>
<td>ROOT = text</td>
<td>Single-valued text structure which specifies the directory under which</td>
</tr>
<tr>
<td></td>
<td>the user can browse for directories. The user will not be able to browse</td>
</tr>
<tr>
<td></td>
<td>above this level. By default the entire file system (all drives,</td>
</tr>
<tr>
<td></td>
<td>directories, and network shares) can be browsed. Note that a setting of</td>
</tr>
<tr>
<td></td>
<td>C: is ignored, while C:/ or C:\ is not. Default *</td>
</tr>
<tr>
<td>STARTDIRECTORY = text</td>
<td>Single-valued text structure specifying the directory which will be</td>
</tr>
<tr>
<td></td>
<td>selected by default when the dialog box is initially displayed. By</td>
</tr>
<tr>
<td></td>
<td>default the top of the tree, as set by the ROOT option, will be selected.</td>
</tr>
<tr>
<td></td>
<td>Default *</td>
</tr>
<tr>
<td>EDITFIELDBOX = string</td>
<td>Whether to display an edit field in the dialog box, in which the user</td>
</tr>
<tr>
<td></td>
<td>can type the name of a directory (yes, no). This name will be relative</td>
</tr>
<tr>
<td></td>
<td>to the currently selected directory name in the browse list. This option</td>
</tr>
<tr>
<td></td>
<td>is not available for all Windows versions. Default no</td>
</tr>
<tr>
<td>CONFIRMPROMPT = string</td>
<td>Whether to display a confirmation message box in case the user types</td>
</tr>
<tr>
<td></td>
<td>a name, of a directory which does not exist, in the edit field (yes, no).</td>
</tr>
<tr>
<td></td>
<td>Default no</td>
</tr>
<tr>
<td>NEWINTERFACE = string</td>
<td>Which interface to use (yes, no). The new interface provides the user</td>
</tr>
<tr>
<td></td>
<td>with a larger dialog box that can be resized. Moreover the dialog box</td>
</tr>
<tr>
<td></td>
<td>has additional capabilities including: drag and drop within the dialog</td>
</tr>
<tr>
<td></td>
<td>box, reordering, shortcut menus, new folders, delete, and other</td>
</tr>
<tr>
<td></td>
<td>shortcut menu commands. The new interface is not available for all</td>
</tr>
<tr>
<td></td>
<td>Windows implementations. Default no</td>
</tr>
<tr>
<td>NEWFOLDERBUTTON = string</td>
<td>Whether to display a "New Folder" button in the browse dialog box (yes, no)</td>
</tr>
<tr>
<td></td>
<td>This option is not available for all Windows versions. Default no</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIRECTORY = variates</td>
<td>Saves the selected directory; must be set</td>
</tr>
</tbody>
</table>

Description

Procedure QDIRECTORY can be used to return a directory selected by means of a directory browse dialog box on screen. This procedure uses an external WinBatch program. The title of the dialog box must be specified by the TITLE parameter. The ROOT and STARTDIRECTORY options determine the initial state of the dialog box. The user will not be able to browse above the ROOT level. Additionally a "New Folder" button and an "Edit Field" can be displayed by specifying the NEWFOLDERBUTTON and the EDITFIELDBOX options. Setting the CONFIRMPROMPT option displays a warning message when the user types a directory which does not exist in the "Edit Field". A new interface with additional capabilities can be used by specifying the NEWINTERFACE option. Note that the some of the options are not available for all Windows implementations. The selected directory is saved by the DIRECTORY parameter.

Method

The SUSPEND [CONTINUE=no] directive is used to invoke an external WinBatch program. This procedure can therefore only be used with the Windows implementation of GenStat.

Action with RESTRICT

Not relevant.
References
None.

Procedures Used
The BIOMETRIS procedure is used to retrieve the filename of the external WinBatch executable.

Similar Procedures
DIRLIST provides details about (wildcarded) files in a specified directory. QFILENAME returns a single filename selected by means of a file open dialog box on screen. QMESSAGE displays a message on screen. QPICKLIST can be used to pick one or more items from a list presented on screen. QSTOPWATCH can be used to display timing information. QTEXT can be used to obtain string(s) of a text structure from screen. QYESNO can be used to choose between alternatives Yes, No and Cancel on screen.

Example
CAPTION 'QDIRECTORY example' ; STYLE=meta
QDIRECTORY [TITLE='Example 1 of Biometris procedure QDIRECTORY'] \ directory
PRINT [IPRINT=*] directory ; SKIP=2
QDIRECTORY [TITLE='Example 2 of Biometris procedure QDIRECTORY' ; \ ROOT='C:/Windows' ; STARTDIRECTORY='C:/Windows/System32'] directory
PRINT [IPRINT=*] directory ; SKIP=2
QFILENAME procedure

P.W.Goedhart

Returns a single filename selected by means of a file open dialog box on screen

Options

TITLE = text
 Single-valued text structure specifying the title of the file open box; must be set

DIRECTORY = text
 Single-valued text which specifies the default directory for the filename; default *, i.e. the current working directory

DEFAULTFILE = text
 Single-valued text which specifies the default filename or file mask; default '*'*, i.e. all files in the selected directory

FILETYPES = texts
 File type selection definitions as used in the "Files of type" section of the file open box. Each text must be single-valued and must contain a single description and a single file mask separated by a "|" symbol; default 'All Files (*.*)|*./*'

EXISTDIRECTORY = scalar
 Saves whether the default DIRECTORY exists (1) or not (0)

Parameters

FILENAME = texts
 Saves the name of the selected file including the full path

SAVEDIRECTORY = variates
 Saves the directory of the selected file

SURNAME = texts
 Saves the surname of the selected file, i.e. the name excluding the path, the period and the extension

EXTENSION = texts
 Saves the extension of the selected file, excluding the leading period

SELECTED = scalars
 Scalar to save whether a file is selected (1) or not (0)

Description

Procedure QFILENAME can be used to return a single filename selected by means of a file open dialog box on screen. This procedure uses an external WinBatch program. The title of the dialog box must be specified by the TITLE parameter. The default filename, which may be wildcarded, and the default directory can be set by means of the DEFAULTFILE and DIRECTORY options respectively. File type selection definitions, as highlighted in the "Files of type" section of the file open box, can be specified by means of the FILETYPES option. This option can be set to several single-valued texts, each of which must contain a single description and a single file mask separated by a "|" symbol. An illustration of the FILETYPES option is given in the example program. In case DEFAULTFILE is not defined as the first setting of the FILETYPES option, DEFAULTFILE is added as an extra file type.

The full name, including path, of the selected filename can be saved by means of the FILENAME parameter. Parts of the filename can be saved by means of parameters SAVEDIRECTORY, SURNAME, EXTENSION respectively. Note that only a single file can be selected. However when FILENAME is set to a list, for each element of the list a file open box is displayed. The SELECTED parameter saves whether a file is selected (1) or not (0). If no file is selected the FILENAME, SURNAME and EXTENSION parameters are set to the empty string ' '. The EXISTDIRECTORY option saves whether the default directory, as specified by the DIRECTORY option, exists (1) or not (0).

Method

The SUSPEND [CONTINUE=no] directive is used to invoke an external WinBatch program. This procedure can therefore only be used with the Windows implementation of GenStat.

Action with RESTRICT

Not relevant.

References

None.
Procedures Used
DIRLIST is used to save the full path of the current directory. The BIOMETRIS procedure is used to retrieve the filename of the External WinBatch executable.

Similar Procedures
DIRLIST provides details about (wildcarded) files in a specified directory. SFILENAME forms sub-strings of names of files opened by GenStat. QDIRECTORY returns a directory selected by means of a directory browse dialog box on screen. QMESSAGE displays a message on screen. QPICKLIST can be used to pick one or more items from a list presented on screen. QSTOPWATCH can be used to display timing information. QTEXT can be used to obtain string(s) of a text structure from screen. QYESNO can be used to choose between alternatives Yes, No and Cancel on screen.

Example

```
QFILENAME [TITLE='Example of Biometris procedure QFILENAME' ; FILETYPE=filetype[] ; DEFAULT='*.g*'] filename ; directory ; surname ; extension ; selected
IF selected
   PRINT [ORIENTATION=across] filename, directory, surname, extension ;
   JUSTIFICATION=left ; SKIP=3
ENDIF
```
QMESSAGE procedure

Displays a message on screen

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE = text</td>
<td>Single-valued text structure specifying the title of the message screen;</td>
</tr>
<tr>
<td></td>
<td>must be set</td>
</tr>
<tr>
<td>MESSAGE = text</td>
<td>Text structure specifying the message; default *</td>
</tr>
<tr>
<td>SECONDS = scalar</td>
<td>Number of seconds to display the message. For negative values of SECONDS,</td>
</tr>
<tr>
<td></td>
<td>the message will be displayed until the user responds by selecting the OK</td>
</tr>
<tr>
<td></td>
<td>button of the message; default -1</td>
</tr>
<tr>
<td>CONTINUE = string</td>
<td>Whether to continue execution of GenStat without waiting for the disappearance</td>
</tr>
<tr>
<td></td>
<td>of the displayed message (yes, no); default no</td>
</tr>
<tr>
<td>DELETEPREVIOUS = string</td>
<td>Whether to delete the previous message with the same title (yes, no);</td>
</tr>
<tr>
<td></td>
<td>default yes</td>
</tr>
</tbody>
</table>

Parameters

None.

Description

Procedure QMESSAGE can be used to display a message box on screen. This procedure uses an external WinBatch program. The title of the message box must be specified by the TITLE parameter, while the MESSAGE parameter specifies the message. The special strings @hrt and @tab in the MESSAGE parameter are translated into hard returns and tabs respectively. Note that separate lines in the MESSAGE parameter are displayed without hard returns unless the special string @hrt is used. However a line with spaces only is displayed as an empty line in the message box.

The SECONDS option can be used to specify the number of seconds the message will be displayed on screen, with a maximum of 3600 seconds. For negative values of SECONDS, the message will be displayed until the user responds by selecting the OK button of the message.

The CONTINUE option can be used to force GenStat to wait for the disappearance of the message. The DELETEPREVIOUS option enables automatic deletion of any windows with the same setting of the TITLE option.

Method

The SUSPEND [CONTINUE=no] directive is used to invoke an external WinBatch program. This procedure can therefore only be used with the Windows implementation of GenStat.

Action with RESTRICT

The MESSAGE parameter can be restricted.

References

None.

Procedures Used

The BIOMETRIS procedure is used to retrieve the filename of the External WinBatch executable.

Similar Procedures

QDIRECTORY returns a directory selected by means of a directory browse dialog box on screen. QFILENAME returns a filename selected by means of a file open box on screen. QPICKLIST can be used to pick one or more items from a list presented on screen. QSTOPWATCH can be used to display timing information. QTEXT can be used to obtain string(s) of a text structure from screen. QYESNO can be used to choose between alternatives Yes, No and Cancel on screen.
Example

CAPTION 'QMESSAGE example' ; STYLE=meta
QMESSAGE [TITLE='Example 1 of Biometris procedure QMESSAGE' ; \
 MESSAGE=!t('You can use formatting characters in the message:', \
 '@hrt@hrt1.@tabFirst item@hrt2.@tabSecond item'))
QMESSAGE [TITLE='Example 2 of Biometris procedure QMESSAGE' ; \
 MESSAGE='End of QMESSAGE example' ; SECONDS=10 ; CONTINUE=yes]
QPICKLIST procedure

Can be used to pick one or more items from a list presented on screen

Options

- **TITLE = text**
 - Single-valued text structure specifying the title of the screen box; must be set

- **SELECT = string**
 - Whether it is possible to pick single or multiple items from the list (single, multiple); default multiple

- **SORT = string**
 - Whether to display an alphabetic list or not (yes, no); default no

Parameters

- **LIST = texts**
 - Text structure with the items which can be picked; must be set

- **SELECTED = texts**
 - Saves selected items from the LIST parameter; must be set

- **VSELECTED = variates**
 - Saves a variate of the same length as the LIST parameter with elements 1 (selected) or 0 (not selected)

Description

Procedure QPICKLIST can be used to present a list of items on screen from which one or more items can be selected. This procedure employs an external WinBatch program. The items must be specified by the LIST parameter, and the selected strings are returned by means of the SELECTED parameter. Additionally, the VSELECTED parameter can be used to save a variate of the same length as the LIST parameter with elements 1 and 0, indicating whether an item is chosen (1) or not (0). The strings of the LIST parameter must be unique, i.e. duplication of strings is not allowed.

The title of the screen box can be specified by means of the TITLE option. Option SELECT can be used to limit the selection to one item (single) or to allow multiple selection (multiple). The SORT option specifies whether the list should be displayed alphabetically or not.

After selecting items, you can proceed by using the Enter key or by pressing the OK button. Alternatively you can use the "Select None" button, in which case no items are selected.

Method

The SUSPEND [CONTINUE=no] directive is used to invoke an external WinBatch program. This procedure can therefore only be used with Windows implementation of GenStat.

Action with RESTRICT

The LIST parameter can be restricted and only the strings included in the restriction set are displayed. Units of VSELECTED excluded by the restriction are set to missing.

References

None.

Procedures Used

The BIOMETRIS procedure is used to retrieve the filename of the External WinBatch executable.

Similar Procedures

QDIRECTORY returns a directory selected by means of a directory browse dialog box on screen. QFILENAME returns a filename selected by means of a file open box on screen. QMESSAGE displays a message on screen. QSTOPWATCH can be used to display timing information. QTEXT can be used to obtain string(s) of a text structure from screen. QYESNO can be used to choose between alternatives Yes, No and Cancel on screen.
Example

`CAPTION 'QPICKLIST example' ; STYLE=meta
TEXT [VALUES=Blue, Green, Red, Yellow, Purple] list
QPICKLIST [TITLE='Example of Biometris procedure QPICKLIST' ; SORT=yes ; \ SELECT=multiple] list ; SELECTED=select ; VSELECTED=vselect
PRINT list, vselect ; FIELDS=12
PRINT select ; FIELDS=12`
QSTOPWATCH procedure

Can be used to display timing information

Options

PRINT = strings
> Where to print timing information (output, screen); default output, screen.
NUMBER = scalar
> Specifies which of 10 stopwatches to use, must be set to an integer in the interval [0,9]; default 0
MODE = string
> What to do with the stopwatch (start, continue, stop); default continue, or start when the stopwatch is first used
NTIMES = scalar
> To display timing information specific to a FOR-loop: number of times the loop is executed; default *
INDEX = scalar
> To display timing information specific to a FOR-loop: number of the current time that the loop is being executed; default *
TITLE = text
> Single-valued text structure specifying the title of the message screen; default *
MESSAGE = text
> Text structure specifying the extra message; default *
SAVE = pointer
> Pointer to save the various elements which are displayed

Parameters

None.

Description

Procedure QSTOPWATCH can be used to display timing information. The PRINT option determines whether timing information is displayed in the output file or in a message box on screen. The latter uses an external WinBatch program. By specifying the NUMBER option, a total number of 10 different stopwatches is available. The MODE option determines whether a stopwatch is started, continued or stopped. Default is to continue the current stopwatch, or to start the stopwatch when it is called the first time.

Setting MODE=start will print or display the starting time. MODE=continue will print or display the time elapsed since the stopwatch was started, and will remove any timing messages from screen. When NTIMES and INDEX are specified in a FOR-loop, the index of the current loop is displayed, and also the time elapsed and an estimate of the remaining time necessary to finish the loop. The latter assumes that the stopwatch was started just before the FOR-loop was started, and that each loop takes the same amount of time. The MESSAGE option is always displayed in the message box, but only printed to output when NTIMES or INDEX are not set. The TITLE option can be used to specify the title of the message screen; this only takes effect when a stopwatch is started. The SAVE option can be used to save the starting time of the stopwatch, the elapsed time, and for use in a FOR-loop, the index of the current loop and an estimate for the time remaining to finish the loop.

Method

The timing functions of GenStat are used. The WORKSPACE directive is employed to store timing information between successive calls to QSTOPWATCH. The message box is displayed by the QMESSAGE procedure which activates an external WinBatch program by means of the SUSPEND [CONTINUE=no] directive. The message box can therefore only be used with the Windows implementation of GenStat.

Action with RESTRICT

Restriction on the MESSAGE parameter will be ignored.

References

None.
Procedures Used
QSTOPWATCH calls the subsidiary procedure _QSTOPWATCHHLP which converts the result of the NOW function to text structures containing the date and time. QMESSAGE displays the message on screen. The BIOMETRIS procedure is used to retrieve the filename of the External WinBatch executable.

Similar Procedures
None.

Example
CAPTION 'QSTOPWATCH example' ; STYLE=meta
QSTOPWATCH [PRINT=* ; MODE=start ; NUMBER=1 ; MESSAGE='Overall timing']
SCALAR ntimes, nmessage ; (5,1)*20000
QSTOPWATCH [MODE=start ; TITLE='Timing of loop']
FOR [NTIMES=ntimes ; INDEX=ii]
 IF (.NOT.MODULO(ii ; nmessage))
 QSTOPWATCH [INDEX=ii ; NTIMES=ntimes]
 ENDIF
ENDFOR
QSTOPWATCH [MODE=stop]
QSTOPWATCH [NUMBER=1 ; MESSAGE='Elapsed time since program was started']
QTEXT procedure

Can be used to obtain string(s) of a text structure from screen

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE = text</td>
<td>Single-valued text structure specifying the title of the screen box; must be set</td>
</tr>
<tr>
<td>MESSAGE = text</td>
<td>Single-valued text structure specifying an extra explanatory message; default *</td>
</tr>
<tr>
<td>DEFAULT = text</td>
<td>Default response; default *</td>
</tr>
<tr>
<td>NTIMES = scalar</td>
<td>The number of times an input string is prompted for; default 1</td>
</tr>
<tr>
<td>CASE = string</td>
<td>Case to use for letters (given, lower, upper, changed, title); default given leaves the case of each letter as given on screen</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEXT = texts</td>
<td>Text structure to save the response(s); must be set</td>
</tr>
<tr>
<td>CHECK = scalars</td>
<td>Scalar to save whether TEXT has at least one value (1) or whether it has only missing values (0)</td>
</tr>
<tr>
<td>VCHECK = variates</td>
<td>Saves a variate of the same length as the TEXT parameter with elements 1 (string present) or 0 (string missing)</td>
</tr>
</tbody>
</table>

Description

Procedure QTEXT can be used to obtain string(s) of the TEXT parameter from screen. This procedure uses an external WinBatch program. The NTIMES option specifies the number of strings which should be obtained from screen. If NTIMES is greater than 1, the strings of TEXT are obtained by repeatedly displaying a screen box until the text structure is fully filled, or until the Cancel button is pressed. The CHECK parameter saves whether the TEXT parameter has at least one value (1) or only missing values (0). The VCHECK parameter saves whether corresponding strings in the TEXT parameter are present (1) or not (0). In case no string is typed on screen, e.g. when just the OK button is pressed, the corresponding element of TEXT and VCHECK is set to missing and 0 respectively.

The title of the screen box can be specified by means of the TITLE option and an extra message is displayed when the MESSAGE option is set. The DEFAULT option can be used to set a default response. The CASE option can be used to change the case of the saved text. The title setting of CASE changes the case of all letters to lowercase, except the first letter which is changed to uppercase.

Method

The SUSPEND [CONTINUE=no] directive is used to invoke an external WinBatch program. This procedure can therefore only be used with Windows implementation of GenStat.

Action with RESTRICT

The TEXT parameter is redefined in the procedure, and so restrictions on TEXT are ignored.

References

None.

Procedures Used

The BIOMETRIS procedure is used to retrieve the filename of the External WinBatch executable.

Similar Procedures

QDIRECTORY returns a directory selected by means of a directory browse dialog box on screen. QFILENAME returns a filename selected by means of a file open box on screen. QMESSAGE displays a message on screen. QPICKLIST can be used to pick one or more items from a list presented on screen.
QSTOPWATCH can be used to display timing information. QYESNO can be used to choose between alternatives Yes, No and Cancel on screen.

Example

```
CAPTION 'QTEXT example' ; STYLE=meta
QTEXT [TITLE='Example 1 of Biometris procedure QTEXT'] text
PRINT text
QTEXT [TITLE='Example 2 of Biometris procedure QTEXT' ;
     MESSAGE='Input a string' ; DEFAULT='Type a string!' ; NTIMES=3] text
PRINT text
```
QTIMEDELAY procedure

Pauses execution for a specific amount of time or until a file is not opened by another application

Options

SECONDS = scalar Number of seconds to wait; default 5.
DIRECTORY = text Single-valued text which specifies the directory for the files; default *, i.e. the current working directory

Parameters

FILES = texts Files for which the “open” status must be checked
OPENSTATUS = variates Saves the “open” status of the files, i.e. -1 for a file that does not exist, 0 for a file that is not open by another application, and 1 for a file that is open by another application

Description

Procedure QTIMEDELAY can be used to pause execution of GenStat for a specific amount of time. When the FILES parameter is not set the SECONDS option determines how many seconds are paused. When the FILES parameter is set, execution is paused until at least one file is not open by another application. When all files are open by another application execution is paused for the specified number of seconds after which the open status of all files is determined once again. When at least one file is not open by another application the procedure is exited and the “open” status of all files can be saved by means of the OPENSTATUS parameter. The “open” status equals -1 for a file that does not exist, 0 for a file that is not open by another application, and 1 for a file that is open by another application.

Method

The SUSPEND [CONTINUE=no] directive is used to invoke an external WinBatch program. This procedure can therefore only be used with Windows implementation of GenStat.

Action with RESTRICT

Restriction on the FILES parameter will be ignored.

References

None.

Procedures Used

The BIOMETRIS procedure is used to retrieve the filename of the External WinBatch executable.

Similar Procedures

None.

Example

CAPTION 'QTIMEDELAY example' ; STYLE=meta
QTIMEDELAY [SECONDS=10]
QYESNO procedure

Can be used to choose between alternatives Yes, No and Cancel on screen

Options

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE = text</td>
<td>Single-valued text structure specifying the title of the screen box; must be set</td>
</tr>
<tr>
<td>MESSAGE = text</td>
<td>Text structure specifying a message or question; default *</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHOICE = scalar</td>
<td>Saves the selected button in a scalar with value 1 (Yes), 0 (No) or -1 (Cancel); must be set</td>
</tr>
</tbody>
</table>

Description

Procedure QYESNO can be used to choose between Yes, No and Cancel by means of a screen box. This procedure employs an external WinBatch program. The title of the screen box must be specified by the TITLE parameter, while the MESSAGE parameter can be used to specify an extra message or question. The special strings @hrt and @tab in the MESSAGE parameter are translated into hard returns and tabs respectively. The CHOICE parameter saves the selected button by means of a scalar with value 1 (Yes), 0 (No) and -1 (Cancel).

Method

The SUSPEND [CONTINUE=no] directive is used to invoke an external WinBatch program. This procedure can therefore only be used with Windows implementation of GenStat.

Action with RESTRICT

The MESSAGE option can be restricted.

References

None.

Procedures Used

The BIOMETRIS procedure is used to retrieve the filename of the External WinBatch executable.

Similar Procedures

QDIRECTORY returns a directory selected by means of a directory browse dialog box on screen. QFILENAME returns a filename selected by means of a file open box on screen. QMESSAGE displays a message on screen. QPICKLIST can be used to pick one or more items from a list presented on screen. QSTOPWATCH can be used to display timing information. QTEXT can be used to obtain string(s) of a text structure from screen.

Example

```
CAPTION   'QYESNO example' ; STYLE=meta
TEXT      title ; 'Example of Biometris procedure QYESNO'
TEXT      message ; VALUES=!t('Do you want to continue?', \
                     '@hrtYes@tabresults in choice = 1', \
                     '@hrtNo@tabresults in choice = 0', \
                     '@hrtCancel@tabresults in choice = -1')
QYESNO    [TITLE=title ; MESSAGE=message] choice
PRINT     choice
```
RBETABINOMIAL procedure

Fits the Beta-Binomial regression model to overdispersed proportions

Options

PRINT = strings
What to print (model, summary, estimates, correlations, monitoring); default model, summary, estimates

CONSTANT = string
How to treat the constant (estimate, omit); default estimate

FACTORIAL = scalar
Limit for expansion of model terms; default 3

NOMESSAGE = strings
Which warning messages to suppress (aliasing, marginality); default *

FULL = string
Whether to assign all possible parameters to factors and interactions (yes, no); default no

RESIDUALS = variate
Saves the Pearson residuals

FITTEDVALUES = variate
Saves the fitted values

LEVERAGEs = variate
Saves the leverages

ESTIMATES = variate
Saves the estimates of the regression parameters

SE = variate
Saves the standard errors of the regression estimates

VCOVARIANCE = symmetric matrix
Saves the variance-covariance matrix of the regression estimates

PHI = scalar
Saves the estimated overdispersion parameter \(\phi \)

SEPHI = scalar
Saves the standard error of the estimated overdispersion parameter \(\phi \)

FULLVCOVARIANCE = symmetric matrix
Saves the full variance-covariance matrix of all parameters, corrected for estimation of the overdispersion parameter \(\phi \)

_-2LOGLIKELIHOOD = scalar
Saves the value of -2 \(\times \) log-likelihood

DF = scalar
Saves the residual degrees of freedom

LINEARPREDICTOR = variate
Saves the linear predictor

SAVE = pointer
Saves additional structures

MAXCYCLE = scalar
Maximum number of iterations; default 30

TOLERANCE = scalar
Convergence criterion; default 0.0001

INITIAL = variate
Initial fitted values to start the iterative process

EXIT = scalar
Saves the number of iterations or, when non-convergence, the negative of the maximum number of iterations

Parameters

TERMS = formula
List of explanatory variates and factors, or model formula

Description

In binomial regression models, residual variability is often larger than would be expected if the data were indeed binomially distributed. This may be due to a few outliers or a poor choice of link function but often it simply indicates that the data are from a distribution more variable than the binomial. Such data are said to be "overdispersed" or to exhibit "extra-binomial variation". One way of dealing with binomial overdispersion is to assume that the data follow the Beta-Binomial distribution, see Crowder (1978) for an early reference. The Beta-Binomial distribution arises by assuming that the probability \(p \) of success follows a Beta(\(\alpha, \beta \)) distribution and that conditionally on \(p \) the data are binomially(\(n, p \)) distributed. The mean and variance of the Beta-Binomial are given by \(np \) and \(np(1-p)(1+\phi(n-1)) \) respectively with \(\pi = \alpha/(\alpha+\beta) \) and overdispersion parameter \(\phi = 1/(1+\alpha+\beta) \). The response probability \(\pi \) is then related to the model formula employing one of the standard binomial link functions. Maximum likelihood is used to estimate the regression parameters and the overdispersion parameter \(\phi \). Note that Williams (1982) model II, implemented by the EXTRABINOMIAL procedure, is similar in spirit but uses only the first two moments of the Beta-Binomial distribution to estimate the parameters.

A call to the RBETABINOMIAL procedure must be preceded by a MODEL statement with option setting DISTRIBUTION=binomial and LINK option set to either logit, probit or complementaryloglog. The user can also choose to set the WEIGHTS, OFFSET and GROUPS options of the MODEL directive.
The options and parameter of RBETABINOMIAL are similar in many ways to the standard regression directives. There is a single parameter TERMS to define the model terms to be fitted, and the first four options, PRINT, CONSTANT, FACTORIAL, and NOMESSAGE, all have the same syntax and purpose as in FIT. The FULL option has the same purpose as in TERMS.

The model is fitted by an iterative process using Newton-Raphson. The MAXCYCLE option specifies the number of iterations, and the TOLERANCE option defines the convergence criterion. The iteration stops when the maximum relative change in fitted values in successive iterations is less than the tolerance, or in case the iteration number exceeds 10, when the relative change in the value of minus twice the log-likelihood is less than the tolerance divided by 1000. The Newton-Raphson iteration starts with the overdispersion parameter \(\phi \) and fitted values obtained from a modified version of the EXTRABINOMIAL procedure. The PHI and INITIAL options can be set to specify an alternative starting point for the iterations. To improve convergence, the log-likelihood is optimized in terms of logit\((\phi) \) rather than \(\phi \). The iterative process can be monitored by specifying PRINT=monitoring; this will first display monitoring of the modified EXTRABINOMIAL procedure, and then monitoring of the Newton-Raphson iterations. The EXIT parameter can be used to save the number of Newton-Raphson iterations or, when non-convergence, the negative of the maximum number of iterations.

A large number of options can be used to save results from the fitted model, most of which are similar to the RKEEP directive. The ESTIMATES, SE and VCcovariance options save results for the regression parameters, while PHI and SEPHI save the estimate of the overdispersion parameter \(\phi \) and its standard error. Note that the standard errors thus saved are not corrected for the estimation of \(\phi \), i.e. it is assumed that the correlations between the regression parameters and \(\phi \) are zero. A corrected variance-covariance matrix, see Stirling (1984), can be saved by means of the FULLVCovariance option. The value of minus twice the maximized log-likelihood and the corresponding degrees of freedom can be saved by means of the _2LOGLikelihood and DF options. This may be useful to compare nested model employing a likelihood ratio test.

Additional results can be saved by setting the SAVE option. This will save, in a pointer, (1) logit\((\phi) \); (2) the standard error of logit\((\phi) \); (3) the iterative weights; (4) the adjusted response; (5) the standard errors of the fitted values; (6) the standard errors of the linear predictor; (7) the score with the first order derivative of the log-likelihood with respect to the linear predictor; (8) the contribution of each unit to the value of minus twice the maximized log-likelihood; (9) the value of the \(\alpha \) parameter for each unit; (10) the variance of the Beta-Binomial distribution for each unit.

Method

For a fixed overdispersion parameter \(\phi \), all parameters are linear and iteratively reweighted least squares using expected information can be used to maximize the log-likelihood (Stirling, 1984). The log-likelihood only employs the LNGamma functions and so the first and second order derivatives are calculate by means of the DIGamma and TRIGamma function. For a fixed set of fitted values, \(\phi \) can be estimated by using the Newton-Raphson method to solve the score equation for \(\phi \). Alternating between the two processes until convergence yields joint maximum likelihood estimates of \(\phi \) and the regression parameters. The estimate of \(\phi \) is not asymptotically independent of the regression parameters, and so a corrected variance-covariance matrix is calculated by means of the method outlined in Stirling (1984). In the experience of the author of this procedure, there are only minor differences between the uncorrected and corrected asymptotic variance-covariance matrices, as saved by the VCcovariance and FULLVCovariance options. The variance-covariance matrices, and standard errors, use observed rather than expected information as there is no closed form available for expected information.

The overdispersion parameter \(\phi \) is, by definition, in the interval \((0,1)\). Therefore the log-likelihood is optimized in terms of logit\((\phi) \), rather than \(\phi \) itself. A confidence interval for \(\phi \) can be calculated best on the logit scale, and therefore logit\((\phi) \) and its estimated standard error can be saved by means of the SAVE option.

Action with RESTRICT

Only the response variate can be restricted and the analysis is restricted accordingly.
References

Procedures Used
None.

Similar Procedures
EXTRABINOMIAL fits the models of Williams (1982) to overdispersed proportions. *BBINOMIAL* estimates the parameters of the beta binomial distribution for a single sample.

Example
CAPTION 'RBETABINOMIAL example', \ !t('A 2 x 2 factorial experiment comparing germination', \ 'of two types of seed and two root extracts (Crowder, M.J.,', \ '1978, *Applied Statistics*, 27, 34-37).') ; STYLE=meta,plain
FACTOR [LABELS=!T(O_75,O_73); VALUES=1,10(1,2)] Seed
FACTOR [LABELS=!T(Bean,Cucumber); VALUES=5(1,2),2,5(1,2)] Rtextrct
VARIATE NGerm,NSeeds ; VALUES=\ !(10,23,26,17,5,53,32,46,10,8,10,8,23,0,3,22,15,32,3), \ !(39,62,81,39,6,74,72,51,79,13,16,30,28,45,12,41,30,51,7)
MODEL [DISTRIBUTION=binomial; LINK=logit] NGerm; NBINOMIAL=NSeeds
RBETABINO [PRINT=#,monitoring] Seed*Rtextrct
CAPTION 'Show equivalence with BBINOMIAL for a single sample'; STYLE=meta
RBETABINO [PRINT=esti ; ESTIMATES=esti1 ; SE=se1 ; PHI=phi1 ; SEPHI=sephi1]
BBINOMIAL NGerm ; NBINOMIAL=NSeeds ; MU=mu ; THETA=theta ; \ SEMU=sem ; SETHETA=seth
CALCULATE esti2 = LOGIT(100*mu)
CALCULATE phi2 = theta/(1-theta)
CALCULATE sephi2 = seth/(1+theta)
PRINT [RLPRINT=*] esti1,esti2, phi1,phi2 ; DECIMALS=6
PRINT [RLPRINT=*] se1,se2, sephi1,sephi2 ; DECIMALS=6
RENAMEPOINTER procedure

Renames the structures of a pointer

Options

SCOPE = string

This allows pointer elements within a procedure to be set to point to structures in the program that called the procedure (SCOPE=external) or in the main program itself (SCOPE=global); default global

Parameters

POINTER = pointers

Pointer whose structures are to be renamed; must be set

NAME = texts

Text structure with new names for the structures of POINTER; must be set

Description

Procedure RENAMEPOINTER can be used to rename the structures of a pointer. This is especially useful when new names are read from file. The pointer and new names must be specified by means of the POINTER and NAME parameters. The length of NAME should be equal to the number of structures of POINTER. The SCOPE option is similar to that of the ASSIGN directive.

Method

Directive ASSIGN, with the SCOPE option set, is printed to a text structure and then executed.

Action with RESTRICT

Restrictions on the NAME parameter are ignored.

References

None.

Procedures Used

None.

Similar Procedures

FPOINTER forms a pointer from a text structure.

Example

CAPTION 'RENAMEPOINTER example' ; STYLE=meta
VARIATE [VALUES=1...4] x[1] ; DECIMALS=0
VARIATE [VALUES=5...8] x[2] ; DECIMALS=0
TEXT [VALUES=A, B, C, D] x[3]
FACTOR [LEVELS=2 ; VALUES=2{1,2}] x[4] ; DECIMALS=0
TEXT [VALUES=variate1, variate2, text, factor] newname
RENAMEPOINTER POINTER=x ; NAME=newname
PRINT x[] ; FIELD=12
RGDISPLAY procedure

Displays and stores the non-groups parameters of a within-groups regression

Options

PRINT = string

Printed output required (estimates); default estimates

Parameters

ESTIMATES = variate

To save estimates of the non-groups parameters of a within-groups regression

SE = variate

To save standard errors of the estimates of the non-groups parameters

VCOVARIANCE = symmetric matrix

To save the variance-covariance matrix of the estimates of the non-groups parameters

LABELS = text

To save labels of the estimates of the non-groups parameters

EGROUPS = variate

To save estimates of the groups parameters

SEGROUPS = variate

To save standard errors of the estimates of the groups parameters

Description

A within-groups regression model can be fitted by specifying the GROUPS option in the MODEL directive. Use of GROUPS gives less information than you would get if you included the grouping factor explicitly in the model, because leverages, predictions and some parameter correlations are not formed, but it saves space and time in fitting the model when the groups factor has many levels. After such a model is fitted, all the estimated groups parameters are standardly displayed and stored. However, these parameters are frequently of less interest. Procedure RGDISPLAY can be used to display and store the non-groups parameters only. The estimates, standard errors, variance-covariance matrix and labels can be saved by means of parameters ESTIMATES, SE, VCOVARIANCE and LABELS. The estimates of the groups parameters and their standard errors can be saved by means of EGROUPS and SEGROUPS. The PRINT option can be used to suppress printing of the estimates.

Method

The information about the GROUPS option of the MODEL directive is retrieved by means of the OMODEL option of RKEEP. The LABELS are retrieved from the special regression save structure.

Action with RESTRICT

Not relevant.

Procedures Used

None.

Similar Procedures

None.
Example

CAPTION 'RGDISPLAY example', !t('Trend analysis of Skylark counts', \ 'in the Netherlands'), ' ' ; STYLE=meta, 2(plain)

UNIT [202]
FACTOR site, time ; DECIMALS=0
FACTOR [LABELS=!t(Dunes, Heath)] habitat
READ count, site, time, habitat

11 1 12 2 8 1 12 2 5 1 12 2 4 1 12 2 1 12 2 10 1 12 2 15 1 2 12 2
9 2 2 7 2 2 7 2 8 2 2 7 2 6 2 2 7 2 2 1 2 2 6 2 4 1 2 2 9 1 2 3 2 2
36 3 3 2 37 3 3 2 49 3 3 2 74 3 3 2 68 3 3 2 97 3 3 2 11 3 3 2 4 1 2 3 2 2
11 4 2 6 4 2 11 4 2 11 4 2 17 4 2 22 4 2 22 4 2 28 4 2 36 4 2 36 4 2
1 5 3 1 1 5 3 1 1 5 3 1 15 6 1 15 6 1 16 6 1 14 6 1 12 6 1 12 6 1 12 6 1
13 6 1 12 6 1 11 6 1 11 6 1 11 7 1 11 7 1 9 7 2 2 7 7 2 4 7 2 4 7 2
5 7 2 7 7 2 10 7 2 10 7 2 1 8 1 1 4 9 1 1 1 10 1 2 3
23 11 1 2 16 11 1 2 40 11 1 2 35 11 1 2 28 11 1 2 21 11 1 2 31 11 1 2
18 11 8 2 25 11 8 2 12 11 8 2 12 11 8 2 12 11 8 2 15 12 8 2 17 12 8 2
2 13 3 2 2 13 3 2 1 13 3 2 1 13 3 2 1 13 3 2 4 14 1 2 4 14 1 2
4 14 3 2 7 14 3 2 6 14 3 2 8 14 3 2 8 14 3 2 7 15 1 2
5 15 3 2 4 15 3 2 5 15 3 2 1 16 3 2 1 16 3 2 1 16 3 2 2 17 1 1
1 17 4 1 1 17 4 1 1 17 4 1 5 20 1 1 5 20 1 1 3 21 1 1 3 21 1 1
2 21 5 1 2 21 5 1 2 21 5 1 1 22 1 1 1 22 1 1 1 22 1 1 1 23 2 1
3 23 6 1 3 23 6 1 3 23 6 1 5 24 1 1 5 24 1 1 3 24 1 1 3 24 1 1
2 24 7 1 2 24 7 1 6 25 1 1 6 25 1 1 4 25 1 1 2 25 1 1 2 25 1 1
1 25 6 1 1 25 6 1 1 25 6 1 1 25 6 1 1 25 6 1 4 27 2 2 4 27 2 2 6 27 2 2
7 27 6 2 7 27 6 2 14 28 2 2 14 28 2 2 1 30 1 1 1 30 1 1 1 30 1 1
1 31 4 1 1 31 4 1 1 31 4 1 2 32 3 2 2 32 3 2 2 32 3 2 1 32 3 2
4 33 2 2 4 33 2 2 6 33 2 2 7 33 2 2 5 33 2 2 3 33 2 2 3 33 2 2
1 35 3 2 1 35 3 2 2 35 3 2 2 35 3 2 2 35 3 2 2 35 3 2 1 36 3 1
1 36 4 1 1 36 4 1 1 36 4 1 5 37 3 2 5 37 3 2 6 37 3 2 5 37 3 2
8 38 4 1 5 38 4 1 10 38 4 1 5 38 4 1 6 38 4 1 1 38 4 1 1 88 4 1
80 40 4 2 108 40 4 2 104 40 4 2 131 40 4 2 113 40 4 2 113 40 4 2 6 41 4 1 3 41 5 1
4 41 6 1 1 41 6 1 1 41 6 1 1 41 6 1 14 5 2 8 44 6 2 16 5 4 2 3 46 4 1
4 46 5 1 2 46 5 1 2 46 5 1 2 46 5 1 2 46 5 1 2 46 5 1 1 47 1 1 1 47 1 1
3 47 4 1 1 47 4 1 1 47 4 1 1 47 4 1 1 47 4 1 1 48 7 1 2 49 1 2
2 49 7 2 2 49 7 2 2 49 7 2 2 49 7 2 2 49 7 2 2 50 6 1 1 50 6 1 1 50 6 1
1 53 7 2 1 53 7 2 1 53 7 2 1 53 7 2 1 53 7 2 1 53 7 2 1 53 7 2
CALCULATE timelin, timequad = time * (1, time)
MODEL [DISTRIBUTION=poisson ; GROUPS=site] count
TERMS (time + timelin + timequad)*habitat
SETOPTION [DIRECTIVE=ADD] NOMESSAGE ; !t(aliasing)
FIT [PRINT=*] timelin
ADD [PRINT=*] timequad
ADD [PRINT=*] time
ADD [PRINT=*] habitat
ADD [PRINT=*] timelin/habitat
ADD [PRINT=*] timequad/habitat
ADD [PRINT=*] time/habitat
RDDISPLAY [PRINT=accumulated ; FPROBABILITY=yes]
FIT [NOMESSAGE=residual,leverage] timelin/habitat + timequad
RGDISPLAY
RLMS procedure

Does regression by least median squares

Options

`PRINT = strings` Printed output required (model, estimates, fittedvalues);
default model, estimates

`CONSTANT = string` How to treat constant (estimate, omit); default estimate

`INDEXPLOT = strings` What to display in an indexplot (residuals, diagnostics); default *

`ALGORITHM = string` Which algorithm to use (extensive, quick); default extensive

`NOMESSAGE = string` Which warning messages to suppress (residuals); default *

Parameters

`X = pointers` Pointer containing the predictor variables to enter the LMS regression

`RESIDUALS = variates` To save the residuals of the LMS regression

`FITTEDVALUES = variates` To save the fitted values of the LMS regression

`DIAGNOSTICS = variates` To save the resistant diagnostics of the LMS regression

`ESTIMATES = variates` To save the estimated parameters of the LMS regression

`SCALE = scalars` To save the scale estimate of the LMS regression

Description

Classical least squares regression (LS) consists of minimizing the sum of squared residuals. Outliers, both in the response variable and in the predictor variables, may have a strong influence on the least squares estimates. Outliers can be identified by diagnostic techniques using residuals and leverages. However, even careful residual analysis may not always reveal (multiple) outliers. Moreover, the successful use of diagnostic procedures often requires abilities beyond those of a naive user of regression techniques.

To remedy these problems, robust regression methods have been developed that are not so easily affected by outliers. Observations far away from the robust fit are then identified by their large residuals from it. One such technique is least median squares (LMS) in which the median of the squared residuals is minimized, see Rousseeuw (1984) or Rousseeuw and Leroy (1987). In the special case of simple linear regression, LMS corresponds to finding the narrowest strip covering half of the observations.

A call to RLMS must be preceded by a MODEL statement in which the response variable is specified. Only the first response variable is analysed and the WEIGHTS, OFFSET and GROUPS options of MODEL are ignored for the LMS fit. Generalized linear models are not allowed. Parameter X specifies the set of predictors to enter the regression. The CONSTANT option controls whether the constant parameter should be included in the model. Residuals, fitted values and estimates of the least median squares regression can be saved using parameters RESIDUALS, FITTEDVALUES and ESTIMATES. DIAGNOSTICS saves the resistant diagnostic which aims at identifying all points that are either outliers or large leverage points. A resistant diagnostic exceeding 2.5 is considered to be large. SCALE saves a robust estimate of scale which is essentially the residual standard deviation of the units with small residuals. The resistant diagnostic and the scale estimate are fully defined in Rousseeuw and Leroy (1987, page 238 and 202). RKEEP can be used to store results of the ordinary least squares regression which is also performed in the procedure.

Output is controlled by the PRINT and INDEXPLOT options. The model and estimates settings of PRINT are default and give a description of the model and estimates of both the LMS and the ordinary LS regression along with estimates of scale. If the LS fit agrees closely with the LMS fit, the LS result can be trusted. The fittedvalues setting of PRINT gives a table of unit labels, response variate, fitted values, residuals (scaled by the estimate of scale) and resistant diagnostics. Option INDEXPLOT provides indexplots of residuals and diagnostics, which are displayed in the first graphical window using the first pen. The NOMESSAGE option controls printing of warning messages of units with residual larger than 2.0 or diagnostic larger than 2.5. No warnings are printed when PRINT is set to fittedvalues.

Computation of LMS is similar in spirit to the bootstrap. The ALGORITHM option controls the number of subsamples to be drawn for a given data set. In general the setting extensive is advised.
Method
The data are passed to the external Fortran program PROGRESS (Leroy and Rousseeuw, 1984). The Fortran algorithm is similar in spirit to the bootstrap. With p explanatory variables, it repeatedly draws subsamples of p different observations, determines the exact fitting regression surface through the p points and calculates the median of the squared residuals with respect to the whole data set. The subsample with minimal median is retained. This implies that different LMS estimates can be obtained by changing the order of the observations. The number of subsamples depends on the number of observations, the number of regressors and the setting of option ALGORITHM (Rousseeuw and Leroy, 1987).

Action with RESTRICT
Only the response variate can be restricted an the analysis is restricted accordingly. Parameters RESIDUALS, FITTEDVALUES and DIAGNOSTICS are not restricted on output.

References

Procedures Used
The BIOMETRIS procedure is used to retrieve the filename of the external Fortran executable.

Similar Procedures
None.

Example
CAPTION 'RLMS example: Analysis of the Stackloss Data.',
!t('Most statisticians that analysed these data concluded that',
'observations 1,3,4, and 21 are outliers and that observation',
'2 might be an outlier. The two calls to LMS illustrate the',
'possible differences between LMS estimates when different sets',
'of random subsamples are considered.');
!t('Comparison of the LS residuals and the LMS residuals reveals',
'that LMS immediately points at observations 1,2,3,4 and 21,',
'while the LS fit only points at 17 having a large leverage',
'and 21 having a large residual.'); ' '; STYLE=meta, 3/plain)
UNIT [21]
READ Unit, Rate, Temp, Acid, Stackloss
 1 80 27 89 42 2 80 27 88 37 3 75 25 90 37 4 62 24 87 28 5 62 22 87 18
 6 62 23 87 18 7 62 24 93 19 8 62 24 93 20 9 58 23 87 15 10 58 18 80 14
 11 58 18 89 14 12 58 17 88 13 13 58 18 82 11 14 58 19 93 12 15 50 18 89 8
 16 50 18 86 7 17 50 19 72 8 18 50 19 79 9 19 50 20 80 10 20 56 20 82 15
 21 70 20 91 15 ;
MODEL Stackloss
RLMS [ALGORITHM=quick] X=!P(Rate,Temp,Acid)
RLMS [ALGORITHM=extensive ; INDEXPLOT=residual] X=!P(Rate,Temp,Acid) ;
 RESIDUALS=reslms ; DIAGNOSTIC=diaglms
RKEEP RESIDUALS=residu ; LEVERAGES=leverage
PRINT Unit, reslms, diaglms, residu, leverage ; DECIMALS=0,2,2,2,3
RMLSTACK procedure

Stacks data to allow the fitting of a multinomial logistic regression model

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLDRESPONSE = factor or variates</td>
<td>Specifies the multinomial response, either as a list of variates or as a single factor for presence/absence data; must be set.</td>
</tr>
<tr>
<td>NEWRESPONSE = variate</td>
<td>Saves the multinomial response as a stacked variate; must be set</td>
</tr>
<tr>
<td>GROUPS = factor</td>
<td>Saves a stacked factor which corresponds to the original units; must be set</td>
</tr>
<tr>
<td>CATEGORY = factor</td>
<td>Saves a stacked factor which corresponds to the multinomial categories; must be set</td>
</tr>
<tr>
<td>IDUNITS = variate or text</td>
<td>Specifies the labels of the GROUPS factor</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLDEVECTORS = variates and/or factors</td>
<td>List of explanatory variates and/or factors which will be used in the multinomial logistic regression model</td>
</tr>
<tr>
<td>NEWVECTORS = variates and/or factors</td>
<td>Saves the stacked explanatory variates and/or factors</td>
</tr>
</tbody>
</table>

Description

The multinomial logistic regression model, see e.g. section 5.2.4 of McCullagh and Nelder (1989), can be fitted by employing a relation between the multinomial and Poisson likelihood. Suppose the multinomial responses are available as a set of variates, one variate for each category. Suppose further that there are a number of explanatory variates and/or factors. To fit the multinomial logistic regression model in the GLM Poisson framework, the set of response variates must first be stacked into a single variate. The explanatory vectors must also be stacked by repeating their values. Moreover a factor is needed which corresponds to the multinomial categories of the stacked response, as well as a groups factor defining the original units. The parameters of the multinomial logistic model can then be obtained by fitting interactions between the category factor and the explanatory vectors. The fitted model must contain in addition a parameter for each original unit, which can be handled by employing the GROUPS option of the MODEL directive.

The multinomial response must be specified by means of the OLDRESPONSE option. If OLDRESPONSE is set to a list of variates, NEWRESPONSE saves the stacked variates. Alternatively when OLDRESPONSE is set to a single factor, a set of variates is created internally, one for each factor level. Each variate contains presence (1) or absence (0) of the corresponding factor level, and NEWRESPONSE saves the stacked variates. The groups factor and multinomial categories factor must be saved by means of the options GROUPS and CATEGORY. The IDUNITS option can be set to specify the labels of the GROUPS factor. Labels of the CATEGORY factor are set to the names of the OLDRESPONSE variates or are duplicated from the OLDRESPONSE factor. The original explanatory vectors, which must all be of the same length as the OLDRESPONSE parameter, are specified by the OLDEVECTORS parameter and identifiers for the vectors to contain the stacked vectors are specified by the NEWVECTORS parameter. If NEWVECTORS is not set, the OLDEVECTORS vectors are redefined to store the stacked vectors instead of their original values. The multinomial logistic regression model can then be fitted as follows

```
RMLSTACK [OLDRESPONSE=y[1...3] ; NEWRESPONSE=ystack ; \
  GROUPS=group ; CATEGORY=cat] variate, factor ; vstack, fstack
MODEL [DISTRIBUTION=poisson ; GROUPS=group] ystack
FIT [NOMESSAGE=alias] cat/(fstack*vstack)
```

Method

The procedure uses standard GenStat directives for data manipulation.
Action with RESTRICT

The OLDRESPONSE variates or factor can be restricted. The number of values of the NEWRESPONSE variate is as if the OLDRESPONSE structures have not been restricted, but the NEWRESPONSE variate has missing values for units excluded by the restriction. Restrictions on the OLDVECTORS vectors are ignored.

References

Procedures Used

None.

Similar Procedures

Procedure RMLUNSTACK “unstacks” fittedvalues of a multinomial logistic regression model. Procedure RGDISPLAY displays and stores the non-groups parameters of a within-groups regression. Procedure STACK combines several data sets by "stacking" the corresponding vectors and procedure UNSTACK splits vectors into individual vectors according to levels of a factor.

Example

```
CAPTION 'RMLSTACK example', !t('Data taken from page 179 of McCullagh', \ 'and Nelder (1989). Generalized linear models, second edition.', \ 'Chapman and Hall.'), ' ' ; STYLE=meta,2(plain)
UNIT [8]
READ [PRINT=*] x, respons[1...3]
   5.8  98  0  0  15.0  51  2  1
   21.5 34  6  3  27.5 35  5  8
   33.5 32 10  9  39.5 23  7  8
   46.0 12  6 10  51.5  4  2  5 :
CALCULATE logx = log(x)
RMLSTACK [OLDRESPONSE=respons[] ; NEWRESPONSE=y ; GROUPS=groups ; \ CATEGORY=cat] logx ; logxstack
MODEL [DISTRIBUTION=poisson ; GROUPS=groups] y
TERMS cat/logxstack
SETOPTION [DIRECTIVE=ADD] NOMESSAGE ; !t(aliasing)
FIT [PRINT=*] cat
ADD [PRINT=accu,esti ; FPROBABILITY=yes] cat.logxstack
CAPTION 'A common slope for categories 2 and 3 can also be fitted:' ; \ STYLE=meta
VARIATE common ; (cat.IN.!(2,3)) * logxstack
TERMS cat/logxstack + common
FIT [PRINT=*] cat
ADD [PRINT=* ; FPROBABILITY=yes] common
ADD [PRINT=accu ; FPROBABILITY=yes] cat.logxstack
```
RMLUNSTACK procedure

Unstacks results of a multinomial logistic regression model

Options

GROUPS = factor
- Specifies the stacked groups factor which corresponds to the original units of the multinomial response; must be set

CATEGORY = factor
- Specifies the stacked factor which corresponds to the multinomial categories; must be set

CONDITION = expression
- Logical expression to define which units are to be included

Parameters

RESULTS = variates
- Specifies results (fitted values, residuals, leverages) of a multinomial logistic regression model

SRESULTS = pointers
- Saves results for each multinomial category

SPROBABILITIES = pointers
- Saves fitted probabilities for each multinomial category; only useful when RESULTS is set to fitted values

Description

Procedure RMLSTACK can be used to prepare multinomial data for the fitting of a multinomial logistic regression model. RMLUNSTACK can be used to convert the stacked results, such as fitted values or residuals, of such a model to a pointer of variates, one variate with results for each multinomial category. In addition, for fitted values, a pointer of fitted probabilities can be saved.

The GROUPS and CATEGORY options settings must be identical to those used in the RMLSTACK procedure. The results of the multinomial logistic regression model must be specified by the RESULTS parameter, and pointers to “unstacked” results and probabilities can be saved by means of SRESULTS and SPROBABILITIES. The CONDITION option can be used to save a limited number of units. The CONDITION expression must yield a variate with number of values equal to the number of levels of the GROUPS factor.

Method

The procedure uses standard GenStat directives for data manipulation. The fitted probabilities in the pointer SPROBABILITIES are obtained by dividing SRESULTS[] by the sum of SRESULTS[].

Action with RESTRICT

The GROUPS and CATEGORY options must not be restricted. Restrictions on the RESULTS parameter are ignored.

References

None.

Procedures Used

None.

Similar Procedures

Procedure RMLSTACK “stacks” data to allow the fitting of a multinomial logistic regression model. Procedure STACK combines several data sets by "stacking" the corresponding vectors and procedure UNSTACK splits vectors into individual vectors according to levels of a factor.
Example

CAPTION 'RMLUNSTACK example', !t('Data taken from page 179 of McCullagh',
'Chapman and Hall'), normal; STYLE=meta,2(plain)
UNIT [8]
READ [PRINT=*] x, respons[1...3]
5.8 98 0 0 15.0 51 2 1 21.5 34 6 3 27.5 35 5 8
33.5 32 10 9 39.5 23 7 8 46.0 12 6 10 51.5 4 2 5;
CALCULATE logx = log(x)
RMLSTACK [OLDRESPONSE=respons[] ; NEWRESPONSE=y ; GROUPS=groups ;
 CATEGORY=cat] logx ; logxstack
MODEL [DISTRIBUTION=poisson ; GROUPS=groups] y
TERMS cat/logxstack
FIT [PRINT=* ; NOMESSAGE=alias] cat
ADD [NOMESSAGE=alias] cat.logxstack
RKEEP FITTEDVALUES=fitted ; RESIDUAL=residual
RMLUNSTACK [GROUPS=groups ; CATEGORY=cat] RESULTS=fitted,residual ;
 RESULTS=fit,res ; SRESULTS=fit,res ; SPROBABILITIES=prob,*
PRINT x, fit[], prob[], res[] ; FIELD=8 ; DECIMALS=1,3(2,3,2)
CAPTION 'RMLUNSTACK can also be used to obtain predictions:' ; STYLE=meta
VARIATE xpredict ; !(5,10...60)
CALCULATE logxpredict = LOG(xpredict)
SCALAR missing
STACK xp, yp[1...3] ; V1=logx,respons[] ; V2=logxpredict,3(missing)
RMLSTACK [OLDRESPONSE=yp[] ; NEWRESPONSE=y ; GROUPS=groups ;
 CATEGORY=cat] xp ; xpstack
MODEL [DISTRIBUTION=poisson ; GROUPS=groups] y
FIT [PRINT=summary ; NOMESSAGE=alias] cat/xpstack
RKEEP FITTED=fitted
RMLUNSTACK [GROUPS=groups ; CATEGORY=cat ; CONDITION=yp[1].EQ.missing] \
 RESULTS=fitted ; SPROBABILITIES=prob
PRINT xpredict, prob[] ; FIELD=10 ; DECIMALS=0,3(3)
RPLS procedure

Does regression by partial least squares with leave-out options

Options

PRINT = string
Printed output required (press); default press

NPLS = scalar
The maximum number of PLS dimensions to be fitted; default 5 or the number of predictors if smaller than 5

LEAVE = scalar or factor
Determines leave-out groups. If a scalar is specified, groups of size LEAVE are formed in a systematic way. For LEAVE=0 no units are left out; default 0, i.e. no units are left out

STORE = scalar or variate
Defines dimensions for which results are stored. If STORE is set to a variate, it must contain increasing values. For STORE=0 results are stored for dimensions 1 ... NPLS. If STORE=NPLS then VARBETA is a variance-covariance matrix; default 0

Parameters

X = pointers
Pointer containing the predictor variables

RESIDUALS = pointers
Pointer to save variates with the residuals of the response variable for dimensions in STORE. Residuals are leave-out or resubstitution residuals depending on the way units are left out

PRESS = variates
To save the mean prediction sum of squares. PRESS is calculated over all units or, if LEAVE specifies two leave-out groups, over units in the second group

BETA = pointers
Pointer to save variates containing the regression coefficients or, if LEAVE specifies more than two leave-out groups, jackknife regression coefficients for dimensions in STORE

VARBETA = pointers
Pointer to save variates containing the jackknife variances of BETA or pointer to save a symmetric matrix containing the jackknife variance-covariance matrix of BETA, both for dimensions in STORE

CONSTANT = pointers
Pointer to save scalars containing the constant in the regression model for dimensions in STORE. BETA must be stored as well

COEFFICIENTS = pointers
Pointer to save variates containing the coefficients to calculate PLS-scores from the predictors, stored for dimensions 1 ... NPLS

MAHALANOBIS = variates
To save the Mahalanobis squared distance calculated with respect to NPLS scores. Distances are leave-out or resubstitution distances depending on the way units are left out

Description

Procedure RPLS does regression by partial least squares (PLS). PLS is useful in regression problems with many predictors or when predictors show high collinearity. These problems typically occur in observational studies and in multivariate calibration. PLS is an improvement over the earlier method of principal components regression (PCR). PCR is a two-stage method. At the first stage principal components of the predictor variables are formed to account for most of the variation in the predictors while at the second stage the response variable is regressed on these principal components. In PLS the two stages are combined so as to yield large predictive power with fewer dimensions than PCR. PLS sequentially forms orthogonal linear combinations of predictor variables with weights proportional to their covariance with the response variable when fitting the first dimension, and with the residual of the response variable when fitting subsequent dimensions. A description of the PLS algorithm and further references are given in Næs, Irgens & Martens (1986).

A call to RPLS must be preceded by a MODEL statement in which the response variable is specified. Only the first response variable is analysed and the WEIGHTS, OFFSET and GROUPS options of MODEL, if specified, are ignored for the LMS fit. Generalized models are not allowed. The number of PLS dimensions fitted is determined by option NPLS while the dimensions for which results are stored can be
controlled by the STORE option. Option LEAVE defines the leave-out groups. If LEAVE is set to a scalar, say \(m \), the first \(m \) units form the first group, the second \(m \) the second group, etc. LEAVE determines the way in which RESIDUALS, BETA, CONSTANT, MAHALANOBIS and PRESS are calculated. Three situations can be distinguished:

1. If \(\text{LEAVE}=0 \) PLS is performed for all units and BETA and CONSTANT are calculated accordingly. PRESS, RESIDUALS and MAHALANOBIS are calculated by resubstitution.

2. If \(\text{LEAVE} \) is set to a factor with two levels or set to a scalar which defines two groups, the first group is taken as training set and the second as evaluation set. BETA and CONSTANT are calculated for the training set. RESIDUALS and MAHALANOBIS are calculated by resubstitution for the training set and by leave-out for units in the evaluation set. PRESS is calculated over units in the evaluation set only.

3. If \(\text{LEAVE} \) is set to a factor with more than two levels or set to a scalar defining more than 2 groups, then all results are calculated by means of leave-out. Every group is subsequently left out from the analysis and leave-out RESIDUALS and MAHALANOBIS are calculated. PRESS is calculated over all leave-out residuals. BETA stores the jackknife regression coefficients while CONSTANT is set to missing values. In this case jackknife variances of BETA can be stored by means of VARBETA. A jackknife variance-covariance matrix of BETA can be stored by setting STORE equal to NPLS; the only dimension stored is then NPLS.

The COEFFICIENTS can be used to calculate PLS-scores from the predictor variables (see example 2). COEFFICIENTS are based on all units in situation 1 and 3, and in situation 2 based on the training set only. PRINT controls the printing of PRESS and of the square root of PRESS.

Method

The procedure passes the problem to a Fortran program. The PLS algorithm can be formulated in different ways. Næs et al. (1986) gives two algorithms, with and without orthogonal scores. However, both algorithms need a time consuming updating step. Wold et al. (1984) showed that PLS essentially is a conjugate gradient algorithm for linear least squares problems. From the available algorithms, reviewed by Paige and Saunders (1982), the CGLS algorithm appeared to be a good compromise between numerical accuracy and speed (required for leave-out methods). The CGLS algorithm is implemented in Fortran using double precision arithmetic throughout. Numerical inaccuracy is most likely to affect the statistically irrelevant dimensions only.

Variables are standardized to zero mean and unit sum of squares before calling CGLS; the results are backtransformed to the original scale. RPLS thus implements PLS with 'auto scaling' of the predictor variables (Wold et al., 1984). When units are left out, variables are re-standardized for the remaining units.

The calculation of scores from COEFFICIENTS in GenStat is numerically unstable, especially for higher dimensions. The computation can be checked by comparing the residuals of the regression of the response variable on the scores with the residuals produced by RPLS (see example 2).

The Fortran routine performs several checks. If one of these checks fails a fault code with an explanatory message is printed and the rest of the job will be ignored.

Action with RESTRICT

Only the response variate can be restricted. The analysis is restricted accordingly. The predictor variables and the leave-out factor must not be restricted. So if the leave-out factor only has two levels in the restricted set, the group with the first level is taken as the training set and the remaining units as the evaluation set. Parameters RESIDUALS and MAHALANOBIS are not restricted on output.

References

Procedures Used

The *BIOMETRIS* procedure is used to retrieve the filename of the external Fortran executable.

Similar Procedures

PLS fits a partial least squares regression model.

Example

```
CAPTION 'RPLS example 1', !t('Analysis of data from Næs (1985).', \ 'Perform leave-one-out on the samples in training and evaluation', \ 'set. Store the jackknife regression coefficients and variances', \ 'for PLS-dimensions 3-6 and calculate t-values. Also calculate', \ 'and print the jackknife variance-covariance matrix of the', \ 'jackknife regression coefficients for dimension 4.'), ' ' ; \ STYLE=meta, 2(plain)
UNIT [45]
FACTOR [LAB=!T(training,evaluation,outlier) ; VAL=20(1),18(2),7(3)] set
READ fat, nir[1...9]
30.4  1.1398 1.0568  .9092  .8779  .7183  .5810  .6195  .6472  .3779
41.8  1.4455 1.3258 1.1355 1.1067 .9213 .8363  .8611  .5015  
44.1  1.4606 1.3413 1.1519 1.1216 .9333 .7975  .8502  .8007  .5099
42.7  1.5637 1.4363 1.2334 1.2019 .9941 .8534  .9116  .9440  .5370
38.7  1.3597 1.2561 1.0818 1.0487 .8614 .7275  .7761  .8060  .4643
39.9  1.4400 1.3299 1.1479 1.1154 .9248 .7791  .8303  .8614  .5036
35.9  1.4534 1.3433 1.1603 1.1257 .9225 .7677  .8197  .8529  .4878
40.8  1.5675 1.4400 1.2434 1.2107 1.0182 .8651 .9202  .9517  .5644
38.6  1.3571 1.2475 1.0723 1.0409 .8595 .7180  .7663  .7964  .4619
41.6  1.4391 1.3160 1.1262 1.0979 .9297 .7696  .8197  .8529  .5036
44.8  1.5790 1.4431 1.2339 1.2049 1.0026 .8691 .9280  .9588  .5504
44.8  1.7891 1.6593 1.4526 1.4197 1.1967 1.0389 1.1035 1.1379  .6604
43.6  1.6179 1.4921 1.2910 1.2602 1.0570 .9143 .9739  .9056  .5815
43.1  1.5615 1.4343 1.2343 1.2027 1.0000 .8657 .9232  .9542  .5503
39.6  1.4028 1.2825 1.0944 1.0621 .8749 .7349  .7864  .8173  .4687
45.2  1.5438 1.4282 1.2416 1.2150 1.0290 .8966 .9520  .9811  .5822
41.8  1.5455 1.4256 1.2309 1.2018 .9986 .8554 .9121  .9432  .5461
43.3  1.6107 1.4851 1.2871 1.2569 1.0545 .9113 .9678  .9992  .5888
41.6  1.4498 1.3410 1.1650 1.1361 .9572 .8129 .8660  .8961  .5194
31.6  1.2834 1.1894 1.0246 .9894 .8034 .6483 .6926  .7240  .4122
43.0  1.4015 1.2830 1.0962 1.0678 .8795 .7597 .8109  .8394  .4808
35.9  1.3636 1.2630 1.0925 1.0618 .8868 .7313 .7790  .8089  .4773
36.0  1.3921 1.2863 1.1081 1.0751 .8876 .7384 .7868  .8173  .4782
42.3  1.4416 1.3211 1.1259 1.0938 .8945 .7651 .8186  .8492  .4808
43.3  1.4938 1.3744 1.1893 1.1612 .9882 .8375 .8912  .9206  .5466
45.4  1.4985 1.3670 1.1671 1.1399 .9500 .8224 .8765  .9059  .5264
40.7  1.6116 1.4886 1.2867 1.2518 1.0367 .8858 .9440 .9780  .5602
40.4  1.4787 1.3565 1.1679 1.1379 .9583 .8047 .8570  .8870  .5276
44.5  1.6614 1.5272 1.3242 1.2933 1.0961 .9508 1.0107 1.0412  .6116
46.3  1.5601 1.4348 1.2445 1.2186 1.0440 .9056 .9620  .9895  .5921
39.1  1.5353 1.4164 1.2241 1.1923 .9970 .8429 .8983  .9302  .5418
37.6  1.3876 1.2804 1.1012 1.0679 .8758 .7356 .7851  .8157  .4706
```
37.1 1.2840 1.1825 1.0131 .9828 .8000 .6708 .7160 .7450 .4277
39.4 1.4004 1.2862 1.1019 1.0696 .8826 .7444 .7951 .8252 .4733
41.6 1.5202 1.3938 1.1908 1.1568 .9555 .8088 .8641 .8956 .5139
36.3 1.3512 1.2504 1.0773 1.0444 .8573 .7090 .7580 .7891 .4472
48.7 2.2558 2.0819 1.8088 1.7601 1.4652 1.2189 1.3010 1.3441 .7453
42.7 2.0981 1.9512 1.7160 1.6776 1.4222 1.2142 1.2920 1.3301 .7602

RESTRICT fat ; set.NE.3
MODEL fat
RPLS [NPLS=6 ; LEAVE=1 ; STORE=!(3...6)] X=nir ; BETA=jackbeta ; \
 VARBETA=jackvar
CALCULATE tvalue[3...6] = jackbeta[]/SQRT(jackvar[])
PRINT jackbeta[]
PRINT tvalue[]
CAPTION 'RPLS example 2', !t('Calibrate on samples 1-20; evaluate on',
 'samples 21-38. Calculate PLS-scores and residuals (resB) from',
 'the regression of fat on the scores. Compare resB with',
 'the residuals (resA) obtained by RPLS. Note that the difference',
 'between resA and resB for dimension 6 is caused by collinearity',
 'among the predictors. '); STYLE=meta, 2(plain)
RPLS [NPLS=6 ; LEAVE=set] X=nir ; RESIDUALS=resA ; BETA=beta ; \
 COEFFICIENTS=coef
RESTRICT fat, nir[], set, resA[]
PRINT beta[]
PRINT coef[]
RESTRICT fat ; set.EQ.1
MODEL fat
FOR ii=1...6 ; iiplus=2...7
 CALCULATE dummy[1...9] = (s[1...9]=coef[ii]$$[1...9]) *nir[1...9]
 CALCULATE score[ii] = VSUM(dummy)
 FIT [PRINT=*] score[1...ii]
 RKEEP ESTIMATES=esti
 CALCULATE dummy[1...ii] = esti$$[2...iiplus] *score[1...ii]
 CALCULATE fitB[ii] = esti$[1] + VSUM(!P(dummy[1...ii]))
ENDFOR
RESTRICT fat
CALCULATE resB[1...6] = fat - fitB[]
PRINT set, resA[4...6], resB[4...6] ; FIELD=14,6(9) ; DECI=2
RSELECT procedure

Selects best subsets of predictor variables in regression

Options

- **CRITERION = string**
 - Criterion for selecting best subsets (r2, adjusted, cp); default r2
- **CONSTANT = string**
 - How to treat the constant (estimate, omit); default estimate
- **PENALTY = scalar**
 - Penalty in interval (0,∞) for Mallows C_p; default 2
- **NBESTMODELS = scalar**
 - Number of subsets desired for each size of subset when CRITERION=r2 (default 5), in total when CRITERION is set to adjusted or cp (default 30). The total number of subsets to be selected should not exceed 150
- **TOLERANCE = scalar**
 - Minimum tolerance in order to exclude subsets that are collinear. The default value is $k^2 \times 2^{*}(-28)$ where k is the total number of FREE and COVARIATES predictors. A value less than the default is replaced by the default. The tolerance should be in the interval [0,1)
- **NPRINT = scalar**
 - The maximum size of subsets for which output is printed; default 30
- **MEANSQUARE = scalar**
 - Mean square of residuals for calculation of C_p. A value smaller than or equal to 0 is replaced by the mean square residual of the full model; default 0
- **FORCED = formula**
 - Model formula that is fitted to the response variate before best subsets are selected
- **COVARIATES = variates**
 - Predictor variables that should be included in each model
- **RESULTS = pointer**
 - Pointer to save 5 variates containing the number of included predictors, the three criteria and the minimum tolerance for the selected subsets
- **TVALUES = pointer**
 - Pointer to save variates containing the t-values of regression coefficients for the selected subsets. A missing value indicates that the corresponding predictor is not in the selected subset
- **SUBSETS = pointer**
 - Pointer to save pointers with the selected subsets of predictor variables FREE and COVARIATES

Parameters

- **FREE = variates**
 - Predictor variables from which best subsets are selected

Description

There are various methods for choosing a regression model when there are many predictor variables, see e.g. Montgomery and Peck (1992). GenStat directive STEP, used in a FOR loop, provides forward selection, backward elimination and stepwise regression. However these methods result in only one model and alternative models, with an equivalent or even better fit, are easily overlooked. Moreover, in most applications the particular predictors that effect the response and the directions of their effects are of intrinsic interest and then selection of just one well-fitting model is unsatisfactory and possibly misleading. To overcome this, RSELECT evaluates all possible subsets of predictor variables and selects a small number of best subsets. RSELECT should be used with caution, especially when the number of predictors is large in comparison with the number of units. In this case uncritical use of RSELECT might lead to models which appear to have a lot of explanatory power, but contain noise variables only, see e.g. Flack and Chang (1987). Predictors should therefore not be selected on the basis of a statistical analysis alone.

Identification of the best subsets depends upon the criterion used for measuring goodness of fit. The three criteria employed in RSELECT are widely used and are defined as follows:

- $R^2 = 100 \times (1 - \text{RSS} / \text{SSY})$
- Adjusted $R^2 = 100 \times (1 - (n - 1) \times \text{RSS} / (\text{SSY} \times (n - p)))$
- Mallows $C_p = \text{RSS} / \text{RMSFULL} + 2p - n$
RSELECT

Biometris Procedure Library Manual

in which

- RSS is the residual sum of squares for the subset at hand;
- SSY is the sum of squares about the mean of the response variate;
- p is the number of fitted parameters (including the intercept);
- n is the number of units;
- RMSFULL is the residual mean square for the full model.

When R^2 is used as selection criterion, there is no penalty for adding a predictor. R^2 always improves with the addition of a predictor. When adjusted R^2 or C_p is employed, there is a penalty for adding a variable. Adjusted R^2 improves when the F-ratio due to the addition of the predictor is larger than 1, while C_p improves when the F-ratio is larger than 2. Clearly, C_p is the more conservative criterion and will tend to select smaller subsets as compared to R^2 and adjusted R^2. The definition of C_p can be altered by setting options PENALTY and MEANSQUARE, in which case

$$C_p = \frac{RSS}{MEANSQUARE + PENALTY \cdot p - n}.$$

In this case C_p improves when the F-ratio is larger than PENALTY.

An advantage of using R^2 as the selection criterion is that the best subsets within each size of subset are selected. In the case of adjusted R^2 or C_p best subsets are selected regardless of the subset size. The CRITERION option controls which of the three criteria is used. The number of selected subsets is defined by the NBESTMODELS option, while the NPRINT option controls the maximum size of subset for which output is produced. Default is to print all selected subsets. The printed output of RSELECT is adjusted to the width of the output file. Output might not be transparent if the output width is too small.

Best subsets are selected subject to an optional constraint, set by the TOLERANCE option, on the degree of correlation permitted among the predictor variables of a subset. For this purpose the minimum tolerance of a subset is used. This is defined as 1 minus the maximum of all the multiple correlations between individual predictors in the subset and the remaining predictors in that subset. The minimum tolerance is thus a measure of the degree of multicollinearity in the subset with small values indicating collinearity. If the minimum tolerance for a subset is smaller than the setting of TOLERANCE, that subset is omitted and a message is printed. Subsets with small tolerances are often unstable and may perform poorly when they are used for prediction purposes. Therefore, if RSELECT only selects subsets with small tolerances, a deeper search can be forced by specifying a larger value for TOLERANCE.

A call to RSELECT must be preceded by a MODEL statement which defines the response variate and, if required, a vector of weights and an offset. The MODEL directive should not specify the GROUPS option. Only the first response variate is analysed and generalized linear regression models are not allowed. The FREE parameter specifies the list of predictors from which best subsets are selected according to the chosen criterion. For each selected subset the three criteria are printed along with the minimum tolerance and t-values of regression coefficients of included predictors. Negative values for the criteria are not printed and C_p is truncated at 999.99. In order to keep output concise, t-values are also truncated.

It is sometimes desirable to include some predictors in each model and to investigate whether other predictors should be added to the model. Predictors that must be included in each model can be specified by means of the FORCED or the COVARIATES option. The COVARIATES option should be set to a list of variates and t-values are printed for these predictors. Alternatively, the FORCED option can be set to any formula, FORCED may thus contain factors and interactions as well as variates. The FORCED formula is fitted first to the response variate and to the FREE and COVARIATES predictors and the procedure continues with the residuals from these regressions. Consequently, the minimum tolerance is calculated for predictor variables allowing for the FORCED formula. This implies that the minimum tolerance depends on whether a FORCED formula is used or not. Moreover, t-values for the parameters associated with the FORCED formula are not printed. Note that if NPRINT is smaller than or equal to the number of COVARIATES variates, no output is produced.

The FREE and COVARIATES list of variates and the FORCED formula should be mutually exclusive. The total number of FREE and COVARIATES predictors should not exceed 30. The CONSTANT option controls whether the constant parameter is included in the model.

Cases with one or more missing values in the response variate, weight vector or any term in the full model are excluded from the analysis. This implies that, when terms have missing values for different units, FIT used on a subset of terms may give different results than RSELECT.
Options `RESULTS`, `TVALUES` and `SUBSETS` allow saving of the output. The `RESULTS` option saves a pointer with 5 variates, containing the number of included predictors, the three criteria and the minimum tolerance for the selected subsets. The t-values of regression coefficients and the formulae of the selected subsets can be saved by means of parameters `TVALUES` and `SUBSETS` respectively. All selected models are saved regardless of the setting of `NPRINT`. The saved criteria and t-values are not truncated.

Method

If a `FORCED` formula is specified, the response variate and `FREE` and `COVARIATES` predictors are regressed on the `FORCED` formula and the response variate and predictors are replaced by the residuals of these regressions. The full model, including all `COVARIATES` and `FREE` predictors, is then fitted in order to exclude aliased predictors from the analysis. The double precision regression work structure is saved using the `FSSPM` directive and passed to an external Fortran program which calls subroutine Screen (Ter Braak and Groeneveld, 1982).

Screen is the 1981 double precision version of a branch and bound algorithm for subset selection developed by Furnival and Wilson. They claim that this version is twice as fast as the 1974 version (Furnival and Wilson, 1974), requires much less storage and handles problems with rank deficient data in a more satisfactory manner. The algorithm stores the largest discrepancy observed in the value of the selection criterion for a number of numerical consistency checks. `RSELECT` prints this discrepancy as an indication of the numerical accuracy of the algorithm. The criteria, minimum tolerance and t-values are returned to GenStat. If necessary, the criteria and t-values are adjusted to incorporate effects of the fitting of a `FORCED` formula, the minimum tolerance is not adjusted. The procedure itself deals mainly with checking of options and parameters and with input and output of the Fortran program.

Action with RESTRICT

Only the response variate can be restricted. The analysis is restricted accordingly. The vector of weights, the offset and terms in `FREE`, `FORCED` and `COVARIATES` must not be restricted.

References

Procedures Used

The `BIOMETRIS` procedure is used to retrieve the filename of the external Fortran executable. The `VEQUATE` procedure is used when the `SUBSETS` option is set.

Similar Procedures

`RSCREEN` performs screening tests for generalized or multivariate linear models with many predictors. `RSEARCH` helps search through models for a regression or generalized linear model. `VSEARCH` helps search through models for a generalized linear mixed model (GLMM).
Example
CAPTION 'RSELECT example 1', !t('Data taken from Montgomery and Peck',
'(1992), page 277.'), ; STYLE=meta, 2(plain)
UNIT [13]
READ x1, x2, x3, x4, response
7 26 6 60 78.5 1 29 15 52 74.3 11 56 8 20 104.3
11 31 8 47 87.6 7 52 6 33 95.9 11 55 9 22 109.2
3 71 17 6 102.7 1 31 22 44 72.5 2 54 18 22 93.1
21 47 4 26 115.9 1 40 23 34 83.8 11 66 9 12 113.3
10 68 8 12 109.4 :
MODEL response
RSELECT x1, x2, x3, x4
CAPTION 'RSELECT example 2', !t('Shows the difference in using the FORCED',
'or COVARIATES option for predictors that should be included in',
'each model'), ; STYLE=meta, 2(plain)
RSELECT [FORCED=x4] FREE=x1,x2,x3
RSELECT [COVARIATES=x4] FREE=x1,x2,x3
CAPTION 'RSELECT example 3', !t('Shows how the RESULTS and SUBSETS',
'options can be used to FIT all selected models',
'with 2 predictors'), ; STYLE=meta, 2(plain)
RSELECT [NPRINT=* ; RESULTS=results ; SUBSETS=subsets] x1,x2,x3,x4
RESTRICT results[1] ; CONDITION=results[1].EQ.2 ; SAVESET=saveset
FOR ii=#saveset
FIT subsets[ii][]
ENDFOR
CAPTION 'RSELECT example 4', !t('Shows that when the number of predictors',
'is large compared with the number of units, models with noise',
'veARIABLES only may appear to have a lot of explanatory power.'), ;
STYLE=meta, 2(plain)
VARIATE [NVALUES=12] y, noise[1...10]
CALCULATE y, noise[] = URAND(912439,10(0) ; 12)
MODEL y
RSELECT noise[]
RUNCERTAINTY procedure

Calculates contributions of model inputs to the variance of a model output

Options

PRINT = *strings*
What to print (fullmodel, uncertainty); default fullmodel, uncertainty.

PLOT = *string*
Graphical output required (histogram); default *

CURVE = *string*
Type of curve to be fitted (linear, spline); default linear

ESTIMATES = *variate*
To save regression coefficients of all X variates (for CURVE=linear)

BOTTOM% = *variate*
To save bottom marginal variances as percentage of the variance of the model output. Increase of percentage variance accounted for when an X structure is last to be added.

TOP% = *variate*
To save top marginal variances as percentage of variance of the variance of the model output. Percentage variance accounted for when an X structure is the only one to be fitted.

ADJUSTEDR2 = *scalar*
To save adjusted percentage of variance accounted for by all X variates

Parameters

X = *pointers or variates*
Set of model inputs for which uncertainty contributions are to be calculated. If a pointer is specified it must only point to variates

DF = *scalars*
Effective degrees of freedom of the smoothing splines to fit for each X structure; default 2

FITTEDVALUES = *variates*
Variates to store the fitted values for each X structure when that input is the only one to be fitted

Description

Procedure RUNCERTAINTY performs uncertainty analysis given (1) a sample of model inputs from a joint distribution representing the uncertainty about these inputs and (2) a corresponding sample of the model output studied. The model output, given its inputs, may have been produced by specialised modelling software. The procedure calculates the contributions to the variance of the model output from individual or pooled model inputs by means of regression. These contributions are expressed as percentages of the variance of the model output. The top marginal variance of a model input is calculated as the percentage of variance accounted for when that input is the only one to be fitted; it is an approximation of the correlation ratio. The bottom marginal variance of an input is calculated as the increase of variance accounted for when that input is the last to be added to all other inputs. The calculation is successful if the percentage of variance accounted for by all inputs is close to 100, since the analysis only accounts for that part of the variance of the output that is explained by the regression (thus interactions between inputs are not considered). See Jansen et al (2002) and Saltelli et al (2000) for a detailed account of uncertainty analysis.

A call to RUNCERTAINTY must be preceded by a MODEL statement which defines the response variate with the model outputs. Only the first response variate is analysed and options other than WEIGHTS should not be set in the MODEL statement. Generalized linear models are not allowed. The model inputs are specified by the X parameter that can consist of variates or pointers to one or more variates. If a pointer is specified the total contribution of the variates of the pointer is calculated. The calculation applies multiple linear regression or spline regression of Y on the X structures plus a constant term. The choice between linear and spline regression can be made by means of the CURVE option. When using CURVE=spline, the degrees of freedom of the smoothing spline can be set separately for each X structure by means of the DF parameter. On output the full model has been fitted, and RKEEP and RDISPLAY can be used to further store and display the fit of the full model.

Cases with one or more missing values in the response variate, weight vector or any term in the full model are excluded from the analysis. This implies that, when terms have missing values for different units, FIT used on a subset of model inputs may give different results than RUNCERTAINTY.
The option setting PRINT=fullmodel prints the fit of the full model while suppressing all warning messages. Setting PRINT=uncertainty prints the top and bottom marginal %variances of the X structures and, in case CURVE=linear, the parameter estimates of the full model. The option setting PLOT=histogram option draws a histogram of the top and bottom marginal %variances side by side for each of the X structures. The results of the uncertainty analysis can be saved by means of options ESTIMATES (in case CURVE=linear), BOTTOM%, TOP% and ADJUSTEDR2. The fitted values of the models with individual X structures only (pointers and/or variates) can be saved by means of the FITTEDVALUES parameter. These fitted values correspond to the top marginal %variances.

Method
The procedure calculates the percentage of variance accounted for the relevant regressions. The top marginal %variance for an input X is calculated as 100(vary-rmstop)/vary, where vary is the variance of the response and rmstop is the residual mean square of the model with only input X. The bottom marginal %variance for an input X equals 100(rmsbottom-rmsall)/vary, where rmsall is the residual mean square of the full model with all inputs, and rmsbottom is the residual mean square of the full model without input X. A TERMS statement in the procedure deals with missing values in the X variates.

Action with RESTRICT
Only the response variate can be restricted. The analysis is restricted accordingly. Restrictions on the X structures are not allowed. The saved FITTEDVALUES variates will be unrestricted, but only units not excluded by the restriction will have values.

References

Procedures Used
FEXPAND.

Similar procedures
GMULTIVARIATE and GUNITCUBE can be used to generate random inputs. RSELECT selects best subsets of predictor variables in regression. RSSCREEN performs screening tests for generalised or multivariate linear models. RSEARCH helps search through models for a regression or generalised linear model.

Example
CAPTION 'RUNCERTAINTY example'; STYLE=meta
POINTER par; !p(a0, a1, a2)
POINTER soil; !p(ph, cd)
READ par[1...3], esp, soil[1,2], lcdp; DECIMALS=1
 59 42 43 69 59 66 2199 55 39 48 52 57 54 1726 60 59 50 46 58 43 1631
 53 43 49 53 50 30 1134 49 48 71 52 29 73 1292 64 52 44 55 51 43 1411
 67 67 32 64 62 53 2042 51 49 52 51 47 44 1224 47 33 54 48 30 51 1043
 44 45 48 52 34 42 870 43 44 54 59 64 66 2028 55 40 38 59 46 62 1435
 50 50 48 42 56 47 1374 64 69 54 55 61 50 2004 47 55 57 46 59 40 1405
 39 62 58 53 68 50 1894 61 39 59 47 35 47 948 73 37 52 41 45 38 992
 40 61 50 64 58 49 1616 44 55 56 51 52 50 1388 48 50 41 35 42 60 1167
 51 48 44 58 45 54 1147 76 49 48 48 50 37 1190 47 51 46 28 66 64 1973
 53 44 47 65 44 64 1354;
MODEL lcdp
RUNCERTAINTY [CURVE=linear] x=par, esp, soil
RUNCERTAINTY [CURVE=spline] x=par, esp, soil; DF=1,1,2
SFILLENNAME procedure

Splits a filename, which is opened by GenStat or not, into substrings

Options

INPUTNAME = text
Filename to split into substrings; default is to use the CHANNEL and FILETYPE parameters

Parameters

CHANNEL = scalars
Channel numbers for which the filenames must be retrieved; default 1

FILETYPE = strings
Type of each file (input, output, unformatted, backingstore, procedurelibrary, graphics); default input

OPEN = scalars
To indicate whether or not the corresponding channels are currently open (0=closed, 1=open)

NAME = texts
Saves the full name of the file, including the directory

DIRECTORY = texts
Saves the directory of the file, including the trailing slash

FILENAME = texts
Saves the name of the file, excluding the directory

SURNAME = texts
Saves the surname of the file, i.e. the name excluding the path, the period and the extension

EXTENSION = texts
Saves the extension of the file, excluding the leading period

Description

Procedure SFILLENNAME can be used in two different ways. The first use is to ascertain whether a particular channel is already in use and, if so, the name of the attached file is split into substrings. The channel for which substrings of filenames are required must be specified by means of the parameters CHANNEL and FILETYPE; the other parameters save the required information in data structures of the appropriate type. Text structures are only saved when the channel is open.

The second use is to split the setting of the INPUTNAME option; in that case the NAME parameter equals INPUTNAME and the OPEN parameter is set to missing.

Method

The ENQUIRE directive is used to retrieve the OPEN and NAME parameters. The substrings are formed by text manipulation using CONCATENATE.

Action with RESTRICT

Not relevant.

References

None.

Procedures Used

None.

Similar Procedures

QFILENAME returns a single filename selected by means of a file open box on screen.
Example

CAPTION 'SFILENAME example'; STYLE=meta
SFILENAME CHANNEL=1,1; FILETYPE=input, output; OPEN=open[1,2];
NAME=name[1,2]; DIRECTORY=dir[1,2]; SURNAME=sur[1,2];
EXTENSION=ex[1,2]
FOR [NTIMES=2; INDEX=ii]
 IF open[ii]
 PRINT [ORIENTATION=across] name[ii], dir[ii], sur[ii], ex[ii];
 JUSTIFICATION=left; SKIP=3
 ENDIF
ENDFOR
TEXT filename; 'C:/Windows/System32/*.dll'
SFILENAME [filename] DIRECTORY=dirfile; SURNAME=surfile; EXTENSION=exfile
PRINT [ORIENTATION=across] filename, dirfile, surfile, exfile;
 JUSTIFICATION=left; SKIP=3
SPECIALFUNCTION procedure

Calculates a number of special mathematical functions

Options
None.

Parameters

- X = numerical structure Argument of special function
- J0BESSEL = numerical structure Saves the Bessel function of order 0 for arguments in X
- J1BESSEL = numerical structure Saves the Bessel function of order 1 for arguments in X
- I0BESSEL = numerical structure Saves the modified Bessel function of order 0 for arguments in X
- I1BESSEL = numerical structure Saves the modified Bessel function of order 1 for arguments in X
- A1 = numerical structure Saves the function A1(x) for arguments in X
- A1INVERSE = numeric. structure Saves the inverse of the function A1(x) for arguments in X
- A1DERIVATIVE = numerical structure Saves the first order derivative of the function A1(x) for arguments in X

Description

Procedure SPECIALFUNCTION can be used to calculate the following special mathematical functions:
- the Bessel functions of order 0 and 1, notated by J0(x) and J1(x) respectively;
- the modified Bessel functions of order 0 and 1, notated by I0(x) and I1(x) respectively;
- the function A1(x) = I1(x) / I0(x), its inverse and its first order derivative.

The argument for the Bessel functions and for A1(x) and its derivative must not be negative, while the argument for the inverse of A1(x) must be in the interval [0,1). For more information about the Bessel functions, see e.g. Abramowitz and Stegun (1964). The function A1(x) is especially useful in the analysis of circular data, see Fisher (1993).

The parameter X of the SPECIALFUNCTION procedure defines the arguments of the functions, using the notation given above. The function values can be saved by means of the other parameters; these are redefined to match the size and type of X.

All parameters must be either scalars, variates, matrices, symmetric matrices, diagonal matrices or tables. Parameters must also have the same type.

Method

The (modified) Bessel functions employ algorithms described in Press et al (1992). The inverse of A1(x) is calculated by means of linear interpolation by calculating A1(x) for a suitable range of values x and using the fact that Logi(A1(x)) is almost linear in Log(x).

Action with RESTRICT

The arguments X can be restricted. The function values are restricted accordingly with missing values for units excluded by the restriction.

References

Procedures Used
None.
Similar Procedures
None.

Example

```
CAPTION 'SPECIALFUNCTION example 1', !t('(Modified) Bessel functions', \ 'function of order 0 and 1 can be compared with Abramowitz', \ 'and Stegun (1964) pp 390 and 416'), ' ' ; STYLE=meta,2[plain]
VARIATE [VALUES=0, 0.5 ... 5.0] x
SPECIALFUNCTION X=x ; J0BESSEL=j0 ; J1BESSEL=j1 ; I0BESSEL=i0 ; I1BESSEL=i1
CALCULATE ei0, ei1 = EXP(-x)*i0,i1
PRINT     x,j0,j1,ei0,ei1 ; FIELD=5,4(15) ; DECIMALS=1,4(8)
CAPTION   'SPECIALFUNCTION example 2', !t('The A1 function can be compared', \ 'with Fisher (1993), pp 225'), ' ' ; STYLE=meta,2[plain]
VARIATE   [VALUES=0.05,0.1...1.0,1.5,2...10,20,30...100] x
SPECIALFUNCTION X=x ; A1=a1
SPECIALFUNCTION X=a1 ; A1INVERSE=copyx
CALCULATE maxreldiff = MAX(ABS(x-copyx)/x)
PRINT     x,copyx,a1 ; FIELD=12 ; DECIMALS=2,4,4
PRINT     maxreldiff ; FIELD=-10 ; DECI=2
```
SREPLACE procedure

Replaces (or removes) substrings from each string of a text structure

Options

REMOVE = text
Text structure with substrings to be removed from each string of the OLDTEXT parameter; default a single space ‘ ’

REPLACE = text
Text structure with substrings to be replaced in the positions of the substrings of the REMOVE text structure; default ‘ ’

CASE = string
Whether lower and upper case letters are to be regarded as identical when removing substrings (significant, ignored); default significant

CHANGE = string
Whether the first or all occurrences must be replaced in each string (first, global); default global

Parameters

OLDTEXT = texts
Text structure from which substrings will be replaced; must be set

NEWTEXT = texts
To save the modified text structure

Description

Procedure SREPLACE can be used to replace or remove substrings from the strings of the OLDTEXT parameter. The modified text structure can be saved by means of the NEWTEXT parameter, or if NEWTEXT is not set the OLDTEXT structure will be overwritten by the modified one. The substrings to be removed from each string of OLDTEXT can be specified by the REMOVE option and the substrings to be replaced by the REPLACE option. If the REPLACE option is not set the substrings of REMOVE are removed and not replaced. The lengths of the REMOVE and REPLACE structures should be the same. The first value of REMOVE is replaced by the first value of REPLACE and so on. There is one exception: a vector-valued REMOVE text can be combined with a single-valued REPLACE text. Then each value of REMOVE is replaced by the value of REPLACE. The default settings of REMOVE and REPLACE are such that all spaces are removed from the strings of the OLDTEXT text structure.

The CASE option specifies whether lower and upper case letters are regarded as identical when replacing substrings. The CHANGE option specifies whether only the first occurrence in each string must be replaced or whether all occurrences must be replaced.

Method

Directives TXPOSITION and CONCATENATE are used in a loop.

Action with RESTRICT

If the OLDTEXT parameter is restricted, the NEWTEXT parameter is restricted in the same way. Values in units excluded by the restriction are not altered. Restrictions on REMOVE and REPLACE are ignored.

References

None.

Procedures Used

None.

Similar Procedures

None.
Example

CAPTION 'SREPLACE example' ; STYLE=meta
TEXT text ; VALUES=!t('Drs. Paul Keizer', 'Ir. Jac Thissen')
SREPLACE text ; new
PRINT text, new ; FIELD=20,23
SREPLACE [CHANGE=first] text ; new
PRINT text, new ; FIELD=20,23
SREPLACE [REMOVE=!t(Paul, Jac) ; REPLACE=!t('L.C.P.', 'J.T.N.M.')] text ; new
PRINT text, new ; FIELD=20,23
SREPLACE [REMOVE=!t('drs.', 'ir.') ; CASE=ignore] text ; new
PRINT text, new ; FIELD=20,23
SREPLACE [REMOVE=!t(a,e,i,u)] text ; new
PRINT text, new ; FIELD=20,23
SREPLACE [REMOVE=!t(r,s) ; CHANGE=first] text ; new
PRINT text, new ; FIELD=20,23
SUMMARIZE procedure

Prints summary statistics for variates

Options

PRINT = strings
What characteristics to print (mean, sd, %cv, median, min, max,
nmv, nvalues, quantiles); default mean, sd, median, nmv,
nvalues.

PROPORTIONS = numbers
Proportions at which to calculate quantiles; default .10, .25, .50, .75,
.90

REPRESENTATION = string
Representation of values of summary statistics (exponential,
standard); default exponential

Parameters

DATA = variates
Data to summarize; must be set

Description

Procedure SUMMARIZE calculates summary statistics for values stored in a variate as specified by the DATA
parameter. The statistics to be calculated are indicated by the PRINT option. The summary is printed in a
table with variate identifiers as rows and names of the summary statistics as columns. If
PRINT=quantiles quantiles are calculated at the proportions specified by the PROPORTIONS option and
printed in a separate table. By default values are presented in E-format. They can be presented in standard
output format by the setting the REPRESENTATION option to standard.

Method

The procedure uses standard GenStat directives.

Action with RESTRICT

Any restriction on the data will be applied to all calculations.

References

None.

Procedures Used

None.

Similar procedures

DESCRIBE saves and/or prints summary statistics for variates, but in a different format.

Example

CAPTION 'SUMMARIZE example' ; STYLE=meta
CALCULATE data[1...5] = URAND(50697.4(0) ; 100)
SUMMARIZE [PRINT=#,quantiles ; REPRESENTATION=standard] data[]
TPOWER procedure

Calculates the power of Student’s t-test and plots power curves

Options

PRINT = strings
What to print (description, power); default description, power

POWERCURVE = strings
Power curve to plot (none, effect, nreplicates); default none

DESIGN = string
Designed experiment for which power must be calculated (random, block, latinsquare, onesample, general); default random

VARIANCE = scalar
Estimate of unit variance; default 1

NTREATMENTS = scalar
Number of treatments in a designed experiment; default 2

METHOD = string
Type of test required (onesided, twosided); default twosided

PROBABILITY = scalar
Significance level at which the effect is required to be detected; default 0.05

ADFCONSTANT = scalar
Constant for residual degrees of freedom of a general design; default *

BDFCONSTANT = scalar
Constant for residual degrees of freedom of a general design; default *

CVAREFFECT = scalar
Constant for the variance of the effect for a general design; default *

DVARCONSTANT = scalar
Constant for the variance of the effect for a general design; default 0

ANNOTATION = strings
Defines the annotation of the power curves (description, curves, lines); default description, curves, lines

LINESATPOWER = scalars
Power values for which horizontal lines are added to the plotted power curves, along with vertical lines at intersections with the power curves; default 0.9

WINDOW = scalars
Window numbers for the power curves for effect and/or nreplicates respectively; default * uses a full screen window

SCREEN = string
Whether to clear the screen before plotting both power curves or to continue plotting on the old screen (clear, keep); default clear

TITLE = texts
General titles of the power curves for effect and/or nreplicates respectively; default * uses default titles

YTITLE = texts
Titles for the y-axis of the power curves for effect and/or nreplicates respectively; default ‘Power’

XTITLE = texts
Titles for the x-axis of the power curves for effect and/or nreplicates respectively; default * uses default titles

Parameters

EFFECTS = variates or scalars
Effects for which the power has to be calculated; must be set

NREPLICATES = variates or scalars
Number of replicates for which the power must be calculated; must be set

POWER = tables
Saves the power of Student’s t-test

Description

Procedure TPOWER can be used to calculate the power of Student’s t-test for some standard experimental designs and also in the general case. The EFFECTS and NREPLICATES parameters specify the effects and the number of replicates for which the power must be calculated. The procedure calculates the power for all combinations of the values in EFFECTS and NREPLICATES. The two-way table with power values can be printed by setting the PRINT option, or saved by means of the POWER parameter. Graphs with power curves can be requested by setting the POWERCURVE option.

The DESIGN option specifies which experimental design is used. The following designs are available:

- random a completely randomized experiment with equally replicated treatments; the values in NREPLICATES are the number of replications of each treatment;
- block a randomized complete block experiment; the values in NREPLICATES are the number of blocks;
- latinsquare a set of latin squares; the values in NREPLICATES are the number of squares;
- onesample a random sample with only one treatment; the values in NREPLICATES are the sample sizes;
- general general design; see below.

The VARIANCE option must be set to the variability of units with the same treatment; this will in general be set to the residual mean square of a previous analysis of the same kind. The NTREATMENTS option specifies the number of treatments for the random, block and latinsquare designs. By default the number of treatments is set to two, which gives a two-sample t-test for DESIGN=random, a pairwise t-test for DESIGN=block and 2 x 2 latin squares for DESIGN=latinsquare. The METHOD option specifies whether the t-test is one-sided or two-sided. For a one-sided test the null hypothesis is that the effect is less than or equal to zero. For a two-sided test the null hypothesis is that the effect equals zero. The significance level at which an effect is required to be detected must be specified by the PROBABILITY option.

The power for more general setups can be obtained by specifying DESIGN=general, in which case the ADFCONSTANT, BDFCONSTANT, CVAREFFECT and DVARCONSTANT options define the properties of the t-test. The degrees of freedom (dfresidual) of the residual variance, and the variance (vareffect) of the estimated effects are then defined by:

\[
\text{dfresidual} = \text{ADFCONSTANT} \times \text{NREPLICATES} - \text{BDFCONSTANT}. \\
\text{vareffect} = \text{DVARCONSTANT} + \text{CVAREFFECT} \times \text{VARIANCE} / \text{NREPLICATES}
\]

For the standard designs the baseline variance DVARCONSTANT equals zero and the other constants are defined as follows, where \(k \) is the number of treatments:

- random \(\text{ADFCONSTANT}=k; \) \(\text{BDFCONSTANT}=k; \) \(\text{CVAREFFECT}=2 \)
- block \(\text{ADFCONSTANT}=(k-1); \) \(\text{BDFCONSTANT}=(k-1); \) \(\text{CVAREFFECT}=2 \)
- latinsquare \(\text{ADFCONSTANT}=(k-1) \times (k-1); \) \(\text{BDFCONSTANT}=(k-1); \) \(\text{CVAREFFECT}=2/k \)
- onesample \(\text{ADFCONSTANT}=1; \) \(\text{BDFCONSTANT}=1; \) \(\text{CVAREFFECT}=1 \)

Note that the interpretation of the NREPLICATES values depends on the settings of the design constants. The setting of the NTREATMENTS option is discarded for the general case. The example program lists a number of general designs.

The POWERCURVE option can be set to request two types of powercurves. This is only useful for small number of values in the EFFECTS and NREPLICATES parameters. POWERCURVE=effect produces a graph with power curves as a function of the required effect, separately for every value in the NREPLICATES parameter. The effect ranges from the minimum to the maximum of the EFFECTS parameter, with a zero effect added. POWERCURVE=nreplicates plots power curves as a function of the number of replicates, now separately for every positive value in the EFFECTS parameter. The replicates ranges from the minumum to the maximum of the NREPLICATES parameter. The ANNOTATION option defines the annotation of the powercurves: description displays an informative box, curves adds annotation to the curves and lines displays horizontal (and accompanying vertical lines) at power values specified by the LINESATPOWER option. Window settings and titles for both graphs, i.e. for effect and/or replicates power curves respectively, can be specified by setting options WINDOW, SCREEN, TITLE, YTITLE and XTITLE. These options can be set to two values, the first setting is for the effect curve, the second for the replicates curve. Pen number 1 is used for the curves, pen 33 for the description and the almost black pen 60 for annotation of the curve. Pen numbers 2,3… are used for the lines as specified by the LINESATPOWER option. The axis labels and titles and the general title can be controled by the default negative pen numbers.

Method

The TPOWER procedure employs the non-central t-distribution. The basic calculations are as follows:

\[
\text{CALCULATE dfresidual} = \text{ADFCONSTANT} \times \text{NREPLICATES} - \text{BDFCONSTANT} \\
\text{CALCULATE vareffect} = \text{DVARCONSTANT} + \text{CVAREFFECT} \times \text{VARIANCE} / \text{NREPLICATES} \\
\text{CALCULATE tvalue} = \text{EDT} \left(\text{PROBABILITY} ; \text{dfresidual} \right) \\
\text{CALCULATE noncentral} = \text{EFFECTS} / \sqrt{\text{vareffect}} \\
\text{IF (METHOD.EQS.'onesided')} \\
\text{CALCULATE POWER} = \text{CUT} \left(\text{tvalue} ; \text{df} ; \text{noncentral} \right)
\]
\[
\text{ELSE} \quad \text{CALCULATE} \quad \text{POWER} = \text{CUT}(\text{ABS}(t\text{value}) \; ; \; \text{df} \; ; \; \text{ABS}(ext{noncentral})) + \text{CLT}(-\text{ABS}(t\text{value}) \; ; \; \text{df} \; ; \; \text{ABS}(ext{noncentral}))
\]

\text{ENDIF}

Notably for small number of replicates the calculation of the tail probabilities of the non-central t-distribution may not converge, and the \text{CUT} and \text{CLT} functions return a zero value. Non convergence results in a fault code CA 58, in which case all zero power values are replaced by missing values. Power curves with one or more missing values, again due to non convergence, are not plotted.

\textbf{Action with RESTRICT}

Restrictions on the \text{EFFECTS} and \text{NREPLICATES} parameters are taken into account.

\textbf{References}

None.

\textbf{Procedures Used}

\text{DECIMALS}, \text{FTEXT}, \text{SUBSET} and \text{VEQUATE}.

\textbf{Similar Procedures}

\text{Procedures} \text{ASAMPLESIZE}, \text{APOWER}, \text{RPOWER}, \text{XOPower}, \text{STTETS}, \text{SBTEST}, \text{SCORRELATION}, \text{SSIGNTEST}, \text{SMANNWHITNEY}, \text{SMCNEMAR} and \text{SLCONCORDANCE} calculate power and sample sizes for various statistical tests.

\textbf{Example}

\text{CAPTION} 'TPOWER example 1', !t('A completely randomized experiment', \ 'with two treatments'), ' ' ; \text{STYLE}=\text{meta},2(\text{plain})

\text{VARIATE} [\text{VALUES}=0.50, 0.75 \ldots 1.50] \text{effect}

\text{VARIATE} [\text{VALUES}=3 \ldots 20] \text{nrep}

\text{TPower} \text{effect} \; ; \text{nrep}

\text{TPower} [\text{PRINT}=\text{*} \; ; \text{POWERCURVE}=\text{effect},\text{nreplicates}] \text{effect} \; ; !(5,10,20,30)

\text{CAPTION} 'TPower example 2', !t('A balanced incomplete block experiment', \ 'with three treatments. Each replicate consists of three blocks'), ' ' ; \text{STYLE}=\text{meta},2(\text{plain})

\text{FACTOR} [\text{LEVELS}=3] \text{treatment}, \text{block} ; !(1,2,1,3,2,3), !(1,1,2,2,3,3)

\text{BLOCK} \text{block}

\text{ANOVA} [\text{PRINT}=\text{*}] \text{URAND}(7474 ; \text{NVALUES}(.\text{treatment}))

\text{AKEEP} \text{treatment} ; \text{EFFICIENCY}=\text{efficiency} ; \text{REPLICATION}=\text{replication}

\text{SCALAR} a, b ; 3, 2

\text{SCALAR} c ; 2/(\text{replication}\!\times\text{efficiency})

\text{TPower} [\text{DESIGN}=\text{general} ; \text{ADF}=a ; \text{BDF}=b ; \text{CVAR}=c] \text{effect} \; ; \text{nrep}

\text{CAPTION} 'TPower example 3', !t('A block experiment in which 6 treatments', \ 'are all compared with an added control which is replicated four', \ 'times in each block. The number of replicates equals the number', \ 'of blocks'), ' ' ; \text{STYLE}=\text{meta},2(\text{plain})

\text{SCALAR} a, b, c ; 9, 6, 1.25

\text{TPower} [\text{DESIGN}=\text{general} ; \text{ADF}=a ; \text{BDF}=b ; \text{CVAR}=c] \text{effect} \; ; \text{nrep}

\text{TPower} [\text{DESIGN}=\text{general} ; \text{ADF}=a ; \text{BDF}=b ; \text{CVAR}=c] \text{effect} \; ; \text{nrep}

\text{CAPTION} 'TPower example 4', !t('Testing beta=0 in simple linear', \ 'regression. The number of replicates is the number of times', \ 'the regressor x is repeated'), ' ' ; \text{STYLE}=\text{meta},2(\text{plain})

\text{VARIA} \text{ete} x, y ; !(0,1,2,3)

\text{MODEL} [\text{DISPERSION}=1] \text{y}

\text{FIT} [\text{PRINT}=\text{*}] \text{x}

\text{RKKEEP} \text{SE}=\text{sebeta}

\text{SCALAR} a ; \text{NVALUES}(x)

\text{SCALAR} b ; 2

\text{SCALAR} c ; \text{sebeta}2

\text{TPower} [\text{DESIGN}=\text{general} ; \text{ADF}=a ; \text{BDF}=b ; \text{CVAR}=c ; \text{VARIANCE}=4 \; ; \text{METHOD}=\text{onesided} ; \text{PROBABILITY}=0.01] \text{effect} \; ; \text{nrep}
TSQUEEZE procedure

Squeezes a table to fewer levels of the classifying factors

Options

PRINT = string
What information to print (newtable); default *

MINIMUM = scalar
Minimum value for the values of TABLE; default 0

MAXIMUM = scalar
Maximum value for the values of TABLE; default *

Parameters

TABLE = tables
Table without margins which should be squeezed; must be set

NEWTABLE = tables
To save the squeezed TABLE

SIMILARTABLES = pointers
Tables, which should be squeezed in the same way as TABLE

NEWSIMILARTABLES = pointers
To save the squeezed SIMILARTABLES

Description

Procedure TSQUEEZE can be used to display or save a table with fewer levels of the classifying factors. The table should not have margins. By default those levels of the classifying factors of the TABLE parameter are removed that only have missing values or values less than or equal to zero in all corresponding cells. The MINIMUM and MAXIMUM options can be used to reduce or expand the range of values. Levels of factors with all values in the TABLE parameter less than or equal to MINIMUM or all values greater than MAXIMUM are then removed.

The squeezed table can be saved in the NEWTABLE parameter. When there are more tables that must be squeezed in the same way as TABLE they can be set by the SIMILARTABLES parameter. The new squeezed tables can be saved then in the NEWSIMILARTABLES pointer. The setting PRINT=newtable prints the squeezed table. The names of the classifying factors of the squeezed tables are formed from those of the original tables; For example, if the original table has a classifying factor “name”, the squeezed table has a classifying factor “_name_”.

Method

The COMBINE directive is used to squeeze the tables.

Action with RESTRICT

Not relevant.

References

None.

Procedures Used

SUBSET and FPOINTER.

Similar Procedures

None.
Example

CAPTION 'TSQUEEZE example' ; STYLE=meta
FACTOR [NVALUES=100 ; LEVELS=4] f1
FACTOR [NVALUES=100 ; LEVELS=5] f2
GENERATE f1, 5, f2
CALCULATE initialize = URAND(90124 ; 1)
CALCULATE x = GRNORMAL(100 ; 10 ; 8)
TABULATE [CLASSIFICATION=f1, f2] x ; MEAN=mean ; VARIANCE=var
PRINT [SERIAL=yes] mean, var
TSQUEEZE [MINIMUM=11] TABLE=mean ; NEWTABLE=newmean ;
SIMILAR=!p(var) ; NEWSIMILAR=!p(newvar)
PRINT [SERIAL=yes] newmean, newvar
V2TABLE [CLASSIFICATION=newf1,newf2] newmean,newvar ; VARIATE=vmean,vvar
PRINT newf1, newf2, vmean, vvar
V2TABLE procedure

Forms a variate and a set of classifying factors from a table

Options

CLASSIFICATION = factors
Whether to save the (ordered) classifying set of the table; default *

MODIFY = string
Whether to modify the classifying factors of the table (no, yes); MODIFY is only relevant when the CLASSIFICATION option is unset; default no

Parameters

TABLE = tables
Tables to be copied

VARIATE = variates
To save the body of each table

Description

Procedure V2TABLE can be used to store the body of a table in a variate and obtain a set of factors to represent the way in which the data are arranged in the table. These factors are then of the same length as the newly formed variate and classify the variate in the same way as in the table. Margins of the table are ignored.

The tables to be copied are specified by the TABLE parameter, the variates to receive the body of the tables must be specified by means the VARIATE parameter. The tables should have the same classifying factors. The DECIMALS and EXTRA attributes of the tables are transferred to the variates.

The CLASSIFICATION option can be used to obtain the (ordered) classifying factors of the first table. The newly formed factors have the same attributes as the classifying factors of the table. Alternatively, if the CLASSIFICATION option is unset or set to *, the option setting MODIFY=yes can be used to shorten the classifying factors of the table so that they classify the newly formed variate.

Note that the order in which the factors are obtained can be unexpected for implicitly declared tables. To avoid confusion, the list of factors as specified by the CLASSIFICATION option, is compared with the list of ordered classifying factors of the table. If one or more factors in the ordered classifying list are in the CLASSIFICATION list, there position in these lists should be the same. If this is not the case a fault is generated. For example, the following lines will produce a fault message:

```
TABLE   [CLASSIFICATION=f1, f2 ; VALUES=1,2,3,4] table
V2TABLE [CLASSIFICATION=f2, f1] table ; variate
```

Method

To ensure that all tables have the same ordered classifying set, the tables are first copied to tables with the ordered classifying set of the first table. Margins of the table are then deleted by the MARGIN directive and the tables are equated to variates. The initial declarations of the new factors are done with DUPLICATE. Factor values are produced by GENERATE.

Action with RESTRICT

Not relevant.

References

None.

Procedures Used

V2TABLE calls the subsidiary procedure _V2TABLECHECK which checks that the tables have the same classifying factors.
Similar Procedures

`V2TABLE` from the official GenStat Procedure Library can be used for tables with different classification sets.

Example

```plaintext
CAPTION 'V2TABLE example' ; STYLE=meta
FACTOR [LEVELS=4 ; VALUES=12(1),15(2),13(3),14(4)] Block
FACTOR [LABELS=!T('Nitrogen+','Nitrogen0','Nitrogen-') ; VALUES=4(1,2,3), 5(1,2,3), 4(1,2,3),3, 5(1,2),4(3)] Diet
VARIATE [NVALUES=54] Milk
READ      Milk ; DECIMALS=1
312 330 300 287         294 291 303 289         275 282 281 290
278 284 281 263 289     294 283 281 274 298     264 270 288 285 248
290 256 265 243         270 261 256 279         253 259 268 240 242
276 243 233 238 259     245 241 227 255 222     235 227 227 247 :
TABULATE [CLASSIFICATION=Block,Diet] Milk ; MEAN=MeanMilk ; NOBSERVATION=NobsMilk
V2TABLE [CLASSIFICATION=NewBlock, NewDiet] TABLE=NobsMilk ; VARIATE=Nobs
PRINT NobsMilk
PRINT NewBlock,NewDiet, Nobs
V2TABLE [MODIFY=yes] TABLE=MeanMilk ; VARIATE=Milk
PRINT MeanMilk
PRINT Block, Diet, Milk
```

VSEARCH procedure

P.W. Goedhart

Helps search through models for a generalized linear mixed model (GLMM)

Options

PRINT = strings

What output to display (terms, details, changes, model, components, waldtests); default details, changes, model, components, waldtests

DISTRIBUTION = string

Error distribution (normal, binomial, poisson, gamma, negativebinomial); default normal

LINK = string

Link function (identity, logarithm, logit, reciprocal, probit, complementaryloglog, logratio); default * gives the canonical link

DISPERSION = scalar

Value at which to fix the residual variance, if missing the variance is estimated; default 1

RANDOM = formula

Random model excluding bottom stratum; this must be set

FREE = formula

Model formula specifying the candidate fixed model terms; this must be set

STARTFREE = formula

Model formula specifying the candidate fixed model terms with which to start the stepwise procedure; default * starts with an empty model

FORCED = formula

Fixed model formula to include in each model; default *

ADDPROBABILITY = scalar

p-value of significance test for adding candidate model terms; default 0.05

DROPPROBABILITY = scalar

p-value of significance test for dropping of candidate model terms; default 0.05

MAXSTEPS = scalar

Number of times the main stepwise loop is executed; default 1000

REPEAT = string

Whether to repeat dropping or adding model terms within the main stepwise loop (drop, add); default * does not repeat either

PMETHOD = string

How p values are calculated (chisquared, fdistribution); default fdistribution

SELECTEDMODEL = formula

Saves the selected model

GLMMINITIAL = string

Whether to use initial fitted values from a previous model fit in the model sequence or not (yes, no); default yes

CONSTANT = string

Whether to estimate or omit the constant term in the fixed model (omit, estimate); default estimate

FACTORIAL = scalar

Limit for expansion of fixed model terms; default 3

MAXCYCLE = scalar

Maximum number of iterations of the GLMM algorithm; default 20

TOLERANCE = scalar

Convergence criterion for the iterative GLMM algorithm; default 0.0001

FMETHOD = string

Specifies fitting method (all, fixed); all indicates the method of Schall (1991); fixed indicates the marginal method of Breslow & Clayton (1993); default all

OFFSET = variate

Offset variate to be included in the fixed model; default *

CADJUST = string

What adjustment to make to covariates for the REML analysis (mean, none); default mean

AGGREGATION = scalar

Fixed parameter for negative binomial distribution (parameter k as in variance function \(\text{var} = \mu + \mu^2/k \)); default 1

KLOGRATIO = scalar

Parameter k for logratio link, in form \(\log(\mu / (\mu + k)) \); default as set in AGGREGATION option

OWNDIST = text

For non-standard distributions: text specifying the variance function to be used with dummy variable DUM, e.g. \text{OWNDIST} = 'DUM'

OWNLINK = text

For non-standard link functions: text specifying 3 functions using dummy variable DUM - the link function, its inverse and its derivative,
e.g. OWNLINK = !T('log(DUM)','','exp(DUM)','','1/DUM')

Statements to execute to define correlation models; default * i.e. none

Data structures involved in the correlation models

Number of blocks of internal memory to be set up for use by the REML algorithm; default 1

Parameters
Y = variates
Response variates

NBINOMIAL = scalars or variates
Number of binomial trials for each unit (must be set if DISTRIBUTION=binomial)

Description
VSEARCH can be used to perform stepwise selection of fixed model terms in a generalized linear mixed model by employing the GLMM procedure. Most of the options and parameters of the VSEARCH procedure originate form the GLMM procedure. The options specific to VSEARCH are FREE, STARTFREE, FORCED, ADDPROBABILITY, DROPPROBABILITY, MAXSTEPS, REPEAT, PMETHOD, SELECTEDMODEL and GLMINITIAL.

The FREE option specifies the candidate model terms. These may include variates, factors and interactions. It is sometimes desirable to include specific terms in each model. Such terms may be specified by means of the FORCED option. If the FREE formula specifies a main effects model, i.e. a model without interactions, all main effects are the candidate terms. When the FREE formula contains interactions, first all terms marginal to an interaction are dropped from the FREE formula and are added to the FORCED formula. This ensures that the principle of marginality is never violated when the candidate terms are fitted in turn. The STARTFREE option specifies the candidate model terms with which to start the selection procedure.

Each iteration of the stepwise procedure consists of two parts. In the first part it is tested whether any of the current model terms can be dropped. This is done by fitting the current model and obtaining significance tests for all candidate terms in the current model. If the maximum p-value of these significance tests exceeds the value of the DROPPROBABILITY option, then the corresponding model term is dropped from the current model. In the second part it is tested whether any of the candidate model terms which are not in the current model can be added. This is done by adding these terms to the current model and obtaining a significance test. Note that these are single additions to the current model. If the minimum p-value of these tests is smaller than the value of the ADDPROBABILITY option, then the corresponding model term is added to the current model. After these two parts, the next iteration of the stepwise procedure starts. By specifying REPEAT=drop the first part itself is executed in a loop until no further terms can be dropped; after this loop the second part is executed. Likewise REPEAT=add involves repeated addition of model terms in the second part before any terms can be dropped.

Note that forward selection, i.e. no terms are ever dropped from the model, can be requested by setting the DROPPROBABILITY option to 1. Likewise backward elimination, i.e. no terms are ever added to the model, is obtained by specifying ADDPROBABILITY=0. In the latter case the STARTFREE and FREE options should be set to the same model formula.

The PMETHOD option controls how p-values are calculated for the significance tests. The significance test is always based on the Wald statistic. PMETHOD=chisquared calculates the p-value according to the chi-squared distribution. Alternatively PMETHOD=fdistribution employs the F statistic, which is the Wald statistic divided by its degrees of freedom. The p-value is then calculated with the F distribution with approximate denominator degrees of freedom as obtained by setting PMETHOD=auto of VKEEP. In case the denominator degrees of freedom is not available the chi-squared distribution is used. Note that in both cases the F statistic is printed.

The GLMINITIAL option controls whether the INITIALVALUES parameter of the GLMM procedure is set to fitted values from a previous model fit. Setting this option to yes reduces running time but can occasionally result in a failure of the GLMM algorithm to reach convergence.

Output is controlled by the PRINT option. The changes setting lists all the changes made to the model, while the details setting prints the sorted significance tests in each step of the stepwise procedure. Note that estimates and standard errors are printed for effects with one degree of freedom;
these should be interpreted with care as they are specific for the model that is current. The terms setting prints the forced and free terms which are used in the stepwise selection. The other PRINT settings, i.e. model, components and waldtests, can be used to display results for the selected model. VDISPLAY and VKEEP can also be used after procedure VSEARCH to redisplay or store other results for the selected model.

The response variate is specified using the Y parameter. The NBINOMIAL parameter must be set when DISTRIBUTION=binomial to specify the total number of trials on each unit, as a variate if the number varies from unit to unit or as a scalar if it is constant over all the units.

All other options are directly passed to the GLMM procedure; consult the description of GLMM for a full explanation. The DISTRIBUTION option sets the error distribution; the default is to assume a normal distribution but the binomial, poisson, gamma and negative-binomial distributions are also available. The link can be set using the LINK option; the default takes the canonical link. Other distributions and links can be employed by setting the OWNDIST and OWNLINK options. The AGGREGATION option supplies the aggregation parameter for the negative-binomial distribution, which is 1 by default. The KLOGRATIO option supplies the parameter k to be used in the logratio link, and takes its default from AGGREGATION.

The random model is specified by the RANDOM option. The dispersion parameter is assumed to be 1 unless otherwise specified by the DISPERSION option. Setting DISPERSION=* requests that the dispersion parameter be estimated. It is also possible to define correlation models on the random terms, although the results should be used with caution as their properties are not yet well understood. To do this, you should set the CDEFINITIONS and CVECTORS options as is explained in the description of the GLMM procedure.

The number of identifiers in free and forced terms can be limited using the FACTORIAL option. By default, a constant term is included in the model; this can be suppressed by setting option CONSTANT=omit. An offset can be included in the linear predictor by setting option OFFSET. By default all covariates are centred by subtracting their means, weighted according to the iterative weights of the generalized linear model. You can set option CADJUST=none to request that the uncentred covariates are used instead.

The FMETHOD option specifies the method used to form the fitted values and therefore determines the fitting method to be used. The default setting all specifies the penalized quasi likelihood method which is a subject specific model (Schall, 1991), while setting fixed requestst the marginal quasi likelihood method; see Breslow & Clayton (1993). Some control over the iterative GLMM algorithm is provided by option MAXCYCLE which sets the maximum number of iterations (default 20), and by option TOLERANCE which specifies the criterion for determining convergence of the algorithm (default 0.0001). The WORKSPACE option (default 1) specifies the number of blocks of internal memory to be allocated by the REML directive.

Method

VSEARCH repeatedly calls the GLMM procedure to obtain significance tests for fixed terms to drop or add. Any warning or message diagnostics produced by the GLMM procedure are suppressed, except when fitting the selected model. The stepwise selection process can result in an indefinite loop, e.g. when a term has a p-value of 0.07 with ADDPROBABILITY=0.10 and DROPPROBABILITY=0.05. This is detected by the procedure in which case the main loop is exited.

Action with RESTRICT

Only the response variate can be restricted. The analysis is restricted accordingly. Identifiers in the fixed and random formulae must not be restricted and must not contain missing values.

References

Procedures Used
The subsidiary procedure _RSEARCHCHECK checks all the identifiers which are involved in the model. The generalized linear mixed models are fitted using the GLMM procedure and test statistics are obtained with the VWALD procedure.

Similar Procedures
RSEARCH helps search through models for a regression or generalized linear model. RSELECT selects best predictor variables in ordinary linear regression.

Example
CAPTION 'VSEARCH example'; STYLE=meta
BIOMETRIS 'VSEARCH'; DATA=DataVsearch
EXECUTE DataVsearch
POINTER [VALUES=age, xero, cosine, sine, female, height, stunted] free
VSEARCH [DISTRIBUTION=binomial ; RANDOM=child ; FREE=free[]] \
 resp ; NBINOMIAL=1
VSEARCH [DISTRIBUTION=binomial ; RANDOM=child ; FREE=free[] ; \
 STARTFREE=free[] ; REPEAT=drop] resp ; NBINOMIAL=1
VSEARCH [DISTRIBUTION=binomial ; RANDOM=child ; FACTORIAL=2 ; \
 FREE=free[] + age*cosine*sine*height*stunted] resp ; NBINOMIAL=1
VWALD procedure

P.W. Goedhart, W.G. Buist & B. Engel

Saves non-hierarchical Wald tests for fixed terms in a REML analysis

Options

PRINT = string

Whether to print the test statistics and associated probabilities and
degrees of freedom (test); default test

SORT = string

Whether to sort the results of the tests into ascending order according
to the probabilities (yes, no); default no

PMETHOD = string

Controls which distribution to use for calculating p values
(chisquared, fdistribution); default fdistribution

WMETHOD = string

Controls which Wald statistics are saved (add, drop); default drop

Parameters

RESULTS = pointer

Pointer to save the tested terms and the test results

ADDLAST = pointer

Pointer to save results of the last model term in the FIXED formula as
specified by means of VCOMPONENTS

DROPFIRST = pointer

Pointer to save results of the model term with the largest P value

Description

A linear mixed model can be analysed by Restricted Maximum Likelihood (REML), as explained by e.g. Engel (1990). The REML directive implements REML, and significance (Wald) tests for fixed effects can be obtained with PRINT=waldtest. Two sets of Wald tests are then printed; these are named "Sequentially adding terms to fixed model" and "Dropping individual terms from full fixed model". This procedure can be used to save (and print) the latter Wald tests. Only tests for terms which are not marginal to a higher order interaction are produced.

The PMETHOD option controls how p-values are calculated for the significance tests. The significance test is always based on the Wald statistic. PMETHOD=chisquared calculates the p-value according to the chi-squared distribution. Alternatively PMETHOD=fdistribution employs the F statistic, which is the Wald statistic divided by its degrees of freedom. The p-value is then calculated by means of the F distribution with approximate denominator degrees of freedom as obtained by setting PMETHOD=auto of VKEEP. In case the denominator degrees of freedom is not available the chi-squared distribution is used. Note that in both cases the F statistic is printed. The denominator degrees of freedom is set to missing when the chi-squared distribution is used. The WMETHOD option controls whether the test statistics are for all terms which are added sequentially to the model, or only for those terms that can be dropped from the model. In the former case the principle of marginality might be violated.

The PRINT option controls the output of VWALD. For each term the F statistic (Fvalue) is printed along with its numerator (Ndf) and denominator (Ddf) degrees of freedom and the associated P value (Pvalue). For terms with a single degree of freedom the estimated effect and its standard error are also printed. The SORT option can be used to sort the results of the tests into ascending order according to the pvalue of the Wald tests. The RESULTS parameter can be used to save the tested terms and the test results. The ADDLAST and DROPFIRST parameters can be used to save results of specific terms of the FIXED model formula. ADDLAST and DROPFIRST can be used to implement model selection by means of forward selection, backward elimination or stepwise selection.

Method

The fixed model formula is broken up into individual terms and for each term the Wald statistic is basically calculated as follows:

```plaintext
VKEEP 
[PMETHOD=auto] TERMS=term ;  
WALD=wald ; PSTATISTIC=fstat ; NDF=ndf ; DDF=ddf 
IF (PMETHOD.EQS.'CHISQUARED') .OR. (ddf.EQ.C('*')) 
    CALCULATE ddf = missing 
    CALCULATE pvalue = CUCHI(wald ; ndf) 
ELSE 
```

Note: The code snippet is an example of how the Wald statistic might be calculated in a programming context, and is not part of the natural text. The actual implementation details and syntax may vary depending on the software or programming language used.
CALCULATE pvalue = CUF(fstat ; ndf ; ddf)
ENDIF

Note that only the F statistic is printed as the Wald statistic equals the F statistic times its (numerator) degrees of freedom. When the constant is omitted from the model it is included into the effects of the first term including a factor of the fixed model. The calculated statistic for this term can therefore be misleading and VWALD will print a warning message.

Action with RESTRICT
Not relevant.

References

Procedures Used
None.

Similar Procedures
None.

Example
CAPTION 'VWALD example' ; STYLE=meta
BIOMETRIS 'VWALD' ; DATA=DataVwald
EXECUTE DataVwald
VCOMPONENTS [FIXED=dose + sex + littersz] RANDOM=dam + pups
REML [PRINT=components,waldtest] weight
VWALD
WEAVEVECTORS procedure

Weaves two sets of vectors into a new set according to the first vector of both sets

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SORT = string</td>
<td>Whether to sort the target vector (yes, no); default no</td>
</tr>
<tr>
<td>DIRECTION = string</td>
<td>Order in which to sort the target vector (ascending, descending); default ascending</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRSTSET = pointers</td>
<td>First set of vectors to interweave; must be set</td>
</tr>
<tr>
<td>SECONDSET = pointers</td>
<td>Second set of vectors to interweave; must be set</td>
</tr>
<tr>
<td>COMBINATION = pointers</td>
<td>To save the combined sets of vectors; must be set</td>
</tr>
</tbody>
</table>

Description

Procedure WEAVEVECTORS can be used to weave two sets of vectors into a new set of vectors according to the first vector of both sets. WEAVEVECTORS is especially useful when combining two data sets with a common target vector. The two sets are specified by parameters FIRSTSET and SECONDSET. The type of the first vector in both sets must be the same, either a variate or a text. Each of the first vectors must have unique values. The weaving goes as follows: take all the elements of the first vector of FIRSTSET and add those elements of the first vector of SECONDSET not equal to any element of the first vector in FIRSTSET. The result of the weaving is a target vector according to which both sets of vectors are combined. The target vector is the first vector of the COMBINATION pointer with which the result must be saved. The other vectors of COMBINATION are then subsequently the other modified vectors of FIRSTSET and the other modified vectors of SECONDSET.

Option SORT can be used, in combination with the DIRECTION option, to sort the target vector in ascending or descending order. If SORT=no the elements of the target vector are the elements of the first vector in FIRSTSET supplemented by the elements of the first vector in SECONDSET not equal to the elements of the first vector in FIRSTSET.

Method

The weaving is done with directive EQUATE and proper specifications of the options OLDFORMAT and NEWFORMAT.

Action with RESTRICT

The vectors in FIRSTSET and SECONDSET must not be restricted.

References

None.

Procedures Used

None.

Similar Procedures

MATCHTARGET extracts units of a set of vectors according to a target vector. JOIN joins or merges two sets of vectors together, based on the values of sets of classifying keys.
Example

CAPTION 'WEAVEVECTORS example' ; STYLE=meta
TEXT tvariety1, tvariety2
READ [PRINT=data,errors] nr1, tvariety1, loc[1...3]
 1 Ritmo 10.5 10.7 10.8
 2 Hereward 11.6 12.1 12.2
 3 Vivant 10.4 10.7 10.8
 4 Bercy 11.1 * *
 5 Versailles 10.6 * *
 6 Arnaut 12.0 11.7 11.4
 7 Tambor 12.2 * *
 8 Tower 11.4 * *
 9 Urban 12.5 * *
 10 Residence 11.2 11.3 *

READ [PRINT=data,errors] nr2, tvariety2, loc[4...7]
 1 Ritmo 11.3 10.8 10.5 10.7
 4 Bercy 11.9 11.5 11.1 *
 5 Versailles 11.3 10.6 10.6 *
 10 Residence 11.8 11.5 11.2 11.3
 12 Riant * 11.4 * 11.2
 13 Semper 11.3 11.8 12.2 10.9
 14 'PBIS 95/91' * 11.3 * 11.5
 15 'Ceb 9607' * 11.4 * 11.2

WEAVEVECTORS FIRSTSET=!p(nr1, tvariety1, loc[1...3]) ; /
 SECONDSET=!p(nr2, tvariety2, loc[4...7]) ; /
 COMBINATION=!p(nr, variety1, new[1...3], variety2, new[4...7])
PRINT nr, variety1, new[1...3], variety2, new[4...7] ; /
 FIELD=5,13,3(7),13,4(7) ; DECIMALS=0,8(1)