Authenticating over HTTPS against git.wur.nl with two-factor

authentication enabled

We recommend to access your repository using a SSH key instead of username and password over
https. SSH keys are harder to guess than a password and can easily be revoked if they become
compromised.

AIf you have stored your personal access token in the remote url in the .git/config on a shared
filesystem, for example on the HPC or OneDrive shares, another user has access to your
repository with your credentials (spoofing).

Solution: Revoke this personal access token in WUR GitLab, remove the personal access token
from the remote url, create a new personal token and use the Git Credential Helper (see below).

If you want to authenticate over HTTPS, you have to authenticate with a personal access token in place
of your password when two-factor authentication is enabled.

Creating a personal access token

1. Navigate directly to User Settings > Access Tokens or by selecting the option Edit profile below
your avatar

Set status
Edit profile

Preferences
Get a free instance review

Sign out

Version 6 December 2021, page 1

https://git.wur.nl/-/profile
https://git.wur.nl/-/profile/personal_access_tokens
https://git.wur.nl/-/profile/personal_access_tokens
https://git.wur.nl/-/profile/personal_access_tokens

2. Click Access Tokens at the left side of the screen

ﬂ' User Settings

@ Profile

8% Account

a8 Applications

[Chat

& Access Tokens @
B3 Emails

£ Notifications

P SSH Keys

Version 6 December 2021, page 2

3. In the form Personal Access Tokens, fill in a token name and tick the boxes read_repository and
write_repository. Press the button Create personal access token.

Personal Access Tokens Add a personal access token
Enter the name of your application, and we'll return a unigue personal access token.

‘You can generate 3 personal access token for
each application you use that needs access to
the GitLab API.

Token name

| Windows laptop ‘

‘You can also use personal access tokens to
authenticate against Git over HTTP. They are the For example, the application using the token or the purpose of the token.
only accepted password when you have Two-
Factor Authentication (2FA) enabled.

Expiration date

YYYY-MM-DD B |

Select scopes
Scopes set the permission levels granted to the token. Learn more.

O api
Grants complete read/write access to the AP, including all groups and projects, the container
reqistry, and the package registry.

[read_user
Grants read-only access to the authenticated user's profile through the fuser APl endpoint, which
includes username, public email, and full name. Also grants access to read-only APl endpoints
under fusers.

[read_api
Grants read access to the API, including all groups and projects, the container registry, and the
package registry.

read_repository
Grants read-only access to repositories on private projects using Git-over-HTTP or the Repository
Files API.

write_repository
Grants read-write access to repositories on private projects using Git-over-HTTP (not using the
AP,

[read_registry
Grants read-only access to container registry images on private projects.

[write_registry
Grants write access to container registry images on private projects.

[sudo
Grants permission to perform API actions as any user in the system, when authenticated as an
admin user.

Create personal access token

4. Save your new personal access token at a secure location like a password manager.

User Settings » Access Tokens

(© Your new personal access token has been created. X

| Q Search settings

Personal Access Tokens Your new personal access token

You can generate a personal access token for

each application you use that needs access to

) Make sure you save it - you won't be able to access it again.
the GitLab API.

Version 6 December 2021, page 3

Using the Personal Access Token and Git Credential Helper at the CLI

By default git credentials are not cached at all. Every connection will prompt you for your username and
password (your personal access token when two-factor authentication is enabled).

Inputting the same credentials over and over again is annoying. This is where Git Credential helper
comes in place. Git credentials helper can cache credentials in memory (default for 15 minutes) or store
credentials in a file.

Store credentials in memory
When you execute the following command, your credentials are stored in memory for 15 minutes:

$ git config --global credential.helper cache

Or for 8 hours

$ git config --global credential.helper 'cache --timeout= 28800'

Store credentials in a file

When you execute the following command, your credentials will be stored unencrypted indefinitely on
disk, protected only by filesystem permissions. By default, the git credentials will be stored in the “.git-
credentials” file in the user’s home directory (~/.git-credentials).

$ git config --global credential.helper store

When you access the remote repository now, your credentials will be asked once:
$ git push http://example.com/repo.git

Username: <type your username>

Password: <type your personal access token>|

[several days later]
$ git push http://example.com/repo.git
[your credentials are used automatically]

Version 6 December 2021, page 4

