

Botrytis suppression in Grapes: high CO2 versus SO2

The growth of the fungus *Botrytis cinerea* is a key post-harvest challenge for the grape industry. Although SO_2 treatment is effective, it has several downsides. Substituting 12% CO_2 (for SO_2) appears promising, considering SO_2 treatment might soon be prohibited. This is the outcome of a research project, by Wageningen Food & Biobased Research, conducted within the GreenCHAINge project.

The growth of *Botrytis cinerea* in table grapes is a significant post-harvest issue. SO_2 is a very effective fungicide and slow-release SO_2 systems are routinely used in reefer-container grape transport. However, the negatives of SO_2 as a fungicide are serious: it accelerates corrosion, bleaches the fruit and certain consumers are allergic to the sulphite deposits. Crucially, SO_2 is legally forbidden for transport of organic grapes; good reason to search for alternatives. Explored within GreenCHAINge, an atmosphere of 12% CO_2 seems the most promising alternative to SO_2 . Transport under higher CO_2 percentages would further suppress *Botrytis* growth, but would also increase the risk of adverse effects on quality such as off-tastes and browning.

Effects on grape quality

Wageningen scientists performed repeated lab experiments and field trials transporting grapes from South Africa to the Netherlands to determine if 12% CO_2 could be a viable alternative to SO_2 . It is, and caused no damage or offtastes.

Dry ice for atmosphere regulation

Controlled Atmosphere units cannot supply CO_2 , and grape-respiration rates are low. So the container must be air-tight, or an additional source of CO_2 provided. Experiments proved that dry ice is a suitable source of CO_2 . A patent application on this innovation has been filed.

Future perspective

The first commercial high- CO_2 shipments of organic grapes have occurred. For non-organic grapes SO_2 remains financially more attractive than CO_2 . However, it is expected that measures will be taken to discourage, or even ban, the use of SO_2 as a (transport) fungicide. That would open a much broader application area for the use of dry ice as a source of CO_2 to prevent *Botrytis* growth during longer-duration grape transport.

Example of dry ice as a source of CO₂.

Assessing quality of grapes after transport from South Africa to the Netherlands (upon arrival at WFBR).

For detailed information about this project result please visit www.wur.eu/greenchainge.

Information

Eelke Westra T +31 (0)317 48 02 08 E eelke.westra@wur.nl www.wur.eu/greenchainge