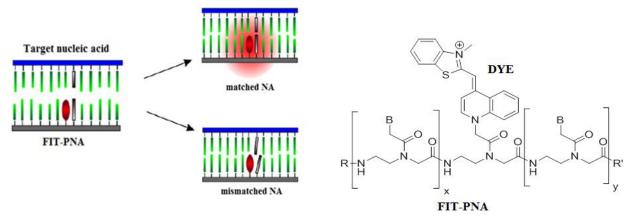

Digvijay Gahtory

Supervisor(s)	Dr. Tom Wennekes, Dr. Maarten Smulders, Prof. Dr. Han Zuilhof
Project	PNA based sensors for SNP detection in malaria
Fields of interest	Surface chemistry, Synthetic organic chemistry, Biological chemistry
E-mail	Digvijay.gahtory@wur.nl
Telephone	+31 317 482369


Introduction

Peptide nucleic acids (PNAs) are nucleic acid surrogates that consist of a deoxyribose phosphate backbone replaced by a pseudo peptide backbone. Forced intercalation (FIT)' peptide nucleic acids consist of a dye molecule incorporated as a DNA base replacement in the PNA chain. FIT-PNAs have the ability to selectively distinguish between a complementary and non-complementary DNA/RNA based on the increase/decrease in the fluorescence of the dye upon hybridization. The emergence of drug-resistant malaria cases worldwide is a major concern for the efforts to control human malaria. A major cause for such drug resistance is the emergence of single nucleotide polymorphisms (SNPs) in the P. falciparum genome. Detection of such SNPs is an important scientific challenge. FIT-PNAs offer an exciting avenue in this regard. Their ability to selectively distinguish match v/s mismatch upon hybridization with a DNA/RNA sequence provides an interesting approach for DNA/RNA bio-sensing and SNP detection.

Goal

To develop a ON/OFF sensor for single nucleotide polymorphism detection in malaria strains based on FIT-PNA.

Acknowledgements

NanoNextNL, Lionix, Ostendum.