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1 Introduction  

 

1.1 The cook and the scientist 

 

A cook and a scientist sit down for a chat about food. It soon transpires that they are both talking a 

completely different language. The words dishes, food, measuring equipment, structures, recipes, 

taste, cooking, molecules and ingredients are thrown about. They are both passionate about their 

trade, but if they can’t understand each other, they will never be able to work together. How can 

they interconnect this muddle of words so that they can understand each other? The following 

diagram may help. 

 

 
Figure 1 How the cook and the scientist look at food. 

Figure 1 is the ‘framework' for this module. It shows that the food scientist and the cook take a 

different view on the same food. This diagram will be deconstructed during the module. 

 

Ask an Italian to name a recipe and he will probably say pasta. For example, pasta with sun-dried 

tomato and a pesto and crème fraiche sauce. This dish contains pasta, pesto, crème fraiche, sun-

dried tomatoes, leeks, mushrooms and onion. A cheese sandwich is also a dish. It consists of bread 

spread with butter and filled with cheese. Butter, bread and cheese are called foods.  

The ingredients of a dish are foods. Foods are in turn made up of ingredients. 
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You have probably already noticed from Assignment 1 that it is not easy to describe the taste of a 

dish. On the one hand, the term ‘taste’ refers to the five basic tastes of sweet, sour, salty, bitter and 

umami (we will come back to the meaning of umami later). This definition of ‘taste’ is directly related 

to one sense: that of taste.  

However, the word ‘taste' is also used more broadly, as in the sentence: ‘That is a tasty snack’. Here 

the word ‘flavour’ is more applicable because it infers both taste and the smell and texture of a dish. 

The appearance of the dish is also important. This module deals with ‘taste’ as defined in the second, 

broader meaning.  

 

 

What is the secret of a good cook? The cook makes a dish using food, the ingredients. For this 

purpose he performs the following basic actions:  

• Cutting 

• Mixing  

• Heating (or cooling)  

• Separating  

• Concentrating 

A good cook knows precisely how much of each ingredient and each action to use. Too much salt will 

spoil the taste of potatoes. When you puree green paprika, the result is a greyish mush with the taste 

of paprika: the ‘taste’ may be the same, but the ‘flavour’ certainly isn't. 

  

Ingredients  

The ingredients for a cheese sandwich are bread, butter and cheese. Bread itself is composed of five 

ingredients: flour, water, butter, salt and air. The baker knows how much of each ingredient and 

action is required. 

And what about the butter? Does this contain yet more ingredients? Yes it does. Butter is made by 

‘’churning” (milk) fat, water, air and salt together.  

If you go right down to the molecular level, you arrive at the five basic components of all foods:  

 

• Fats 

• Proteins 

• Carbohydrates 

• Water 

• Air 

 

Added to this there are various flavourings: substances that play a major role in small quantities: 

salts, acids, alcohol, etc. 

 

Assignment 1 

1. Think of your favourite dish, or a dish that you have recently eaten and liked. 

2. Try and describe the taste of this dish. 

3. Now try and describe why you like it.  

Assignment 2 

Which senses can you use to determine the flavour of a dish?  

Give an example for each sense. 
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Like the cook, the scientist thinks about which combinations of which ingredients under which 

actions lead to a certain result: the product. Both cook and scientist are puzzle solvers. They just use 

a different vocabulary. 

The scientist calls bread a foam, butter an emulsion and cheese a gel: see figure 1. 

In this module you will become familiar with the terms used by the scientist. You will discover that 

butter, cheese and bread are molecular puzzles that have things in common.  

  

Studying this module won’t instantly turn you into a good cook. But it will teach you why knowledge 

about the ingredients and the processing of food can help someone become a good cook.  

Good luck with the puzzle. 
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1.2 Molecular gastronomy 

“Molecular gastronomy is a branch of science concerned with the study of physical and chemical 

transformations of edible materials during cooking, and the sensory phenomena associated with their 

consumption”.  

 

The kitchen and science are thus united in molecular gastronomy. This module will deal not with the 

biological function of food, but the background to the production of a dish or food. This will involve 

taking a look at chemistry and physics.  

 

Hervé This (see box below) further refined the definition of molecular gastronomy. In his definition 

he distinguishes between molecular gastronomy, the study of the processes during cooking, and 

molecular cuisine, the application of this in recipes and food preparation. The first is science, the 

second technology. Molecular gastronomy is therefore situated on the interface between science 

and application.  

The scientific aim is: 

• to study recipes, cooking habits and cooking wisdom; 

• to explain the chemical and physical processes that take place during cooking.  

The application-oriented aim is: 

• to use the knowledge about the physical and chemical processes of cooking in order to 

develop new cooking instruments and ingredients, 

• to design and invent new dishes with the help of the acquired knowledge about food and 

cooking processes. In this way, the cook no longer innovates by trial and error but on the 

basis of scientific knowledge. 

 

The last point concerns molecular gastronomical dishes. These are dishes that are innovated by 

applying knowledge about molecular gastronomy, thus providing us with a fresh outlook on eating 

and gastronomy. 

 

 

 

 

 

 

 

The emergence of molecular gastronomy as a science 

 

Brillat Savarin (1755-1826) was a French politician and judge. He became most famous as a 

philosopher and gastronome. A gastronome is a connoisseur, someone who has made a study of 

anything to do with food and culture. In 1825 Savarin wrote a book entitled “La Physiologie du goût” 

(the physiology of taste). This almost encyclopaedic work describes all manner of subjects related to 

food. For instance, he writes about the causes of obesity, the five senses, the history of food and how 

to make coffee. His book is full of adventures that he experienced during his countless journeys. The 

following quote from Savarin illustrates why he so enjoyed conducting gastronomical research:  

 

“The discovery of a new dish does more for the happiness of mankind than the discovery of a new 

star.” 

 
 
Figure 2 Brillat Savarin and the title page of his book “La Physiologie du goût” 

  



 

Molecular Gastronomy, June 2010. -8-

In 1984 Harold McGee wrote the seminal book ‘On Food and Cooking’. You could say that McGee 

continued and updated the work of Savarin. His book provides a complete overview of hundreds of 

products and their physical, chemical and biological background. In 1969, Nicholas Kurti, a physicist 

from the University of Oxford and a passionate amateur cook, gave a presentation for the BBC entitled 

‘The Physicist in the Kitchen’. Here is a famous quote from this presentation: 

 

 “I think it is a sad reflection on our civilization that while we can and do measure the temperature in 

the atmosphere of Venus we do not know what goes on inside our soufflés” 

Hervé This and Nicholas Kurti met each other at a congress. At that time Hervé This was writing his 

thesis "La gastronomie moléculaire et physique” (Physical and molecular gastronomy). They got 

talking and decided to team together to give workshops. In 1998 they jointly defined the term 

molecular gastronomy as “the chemistry and physics behind the preparation of every dish”. And so 

Molecular Gastronomy was born. From 1992 This and Kurti gave presentations to chefs and scientists, 

so bringing these two professions together.  

Hervé This has written a great many books, the most famous of which is “Molecular Gastronomy, 

exploring the science of flavour”. In this book he investigates the truths and untruths in the culinary 

world. Did you know, for example, that you can make several cubic metres of foam with one egg? He 

also describes a method for making meat much more tender. In addition, there are several chapters on 

learning how to taste and the author gives a few suggestions for new equipment in the kitchen. 

 

    
Figure 3 Hervé This 

 

The following example is ideal for giving you an idea of the sort of things you can investigate. The 

English physicist Charles Williams attached such importance to a well-cooked soft-boiled egg that he 

decided to find out whether he could work out the perfect cooking time with a formula. The result of 

this research is the following formula. 

 

 

where ρ is density, c the specific heat capacity, and K thermal conductivity of 'egg'. According to this formula, a medium egg 

(M~57 g) straight from the fridge (Tegg=4°C) takes four and a half minutes to cook, but the same egg would take three and a half 

minutes if it had been stored at room temperature (Tegg=21°C). If all the eggs are stored in the fridge, then a small (size 6, 47 g) 

egg will require four minutes to cook, and a large egg (size 2, 67 g) will take five minutes 

As you can see, science can surface in the most unexpected places in the kitchen. 

 

Finally, another quote which represents the essence of molecular gastronomy:  

“Molecular gastronomy is the science of deliciousness” 
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1.3 Structure of the module  

 

In this module it’s your turn to be the molecular gastronomist! You will work on the two main aims of 

molecular gastronomy: the study of the processes that take place during cooking and the application 

of these in recipes and food preparation.  
 

When you have completed this module, you will be able to translate information from cookbooks 

into molecular interactions. You will be able to make a model of dishes and, using this knowledge, 

invent your own molecular gastronomical dishes! 
 

During the theoretical part, you will be attempting to convert recipes from cookbooks into models. 

For this you will use the Figure 1: the basic components of water, fats, proteins, carbohydrates and 

air are the pieces of the puzzle that form the structures of emulsions and foams. Gels are also 

mentioned in Figure 1, but will not be discussed again in the module.  

Using these puzzle pieces you will build a model of these structures. When you understand this 

model, you will be able to apply it to an existing example of foams or emulsions, and ultimately you 

will also be able to use it to design new dishes and recipes.  
 

The module consists of three chapters and a practical course. In the practical course you will use the 

knowledge from the chapters on emulsions and foams and even make molecular gastronomical 

dishes yourself. The chapters contain assignments and tasks; assignments are theoretical and tasks 

are practical in nature.  Each chapter will contain a number of different learning goals. The boxed and 

italic texts are optional reading and offer more in-depth or comprehensive information. You will also 

come across a number of profession boxes in this module. These blocks are designed to give you an 

idea of the various people that are involved on a daily basis with food and technology. The first block 

is situated below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Profession box 1 

Hi everyone,  

 

My name is Ties and I am a 3
rd

 year student of food technology at Wageningen University. Molecular 

gastronomy is one of the modules within this degree course. At this point in my studies I would really 

like to know what I am going to do after I graduate. One of the nice things about the food technology 

course is the freedom of choice. The course begins in a very broad way and only specialises later. I’ve 

been told that I could get a job in any number of places with my degree. But where? In order to find 

out, I went looking for various people who work with food on a daily basis. I interviewed these people. 

You will find my interviews throughout this module. Hopefully, they will give you, as they did me, an 

idea of what life could be like after graduation. 
 

Best wishes, 
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The content of the chapters is summarised below: 
 

Chapter 2  

This chapter forms the basis of the module. It will teach you to look at food from a scientific 

perspective. You will learn how the gastronomical value of a dish can be translated into interactions 

that occur on a molecular level. In this chapter you will go step by step through the diagram in figure 

1. 
 

Chapter 3 

This chapter is about emulsions. What are emulsions? What is the role of the basic components in an 

emulsion? In addition, you will discover and understand some new emulsions developed on the basis 

of molecular gastronomy. 
 

Chapter 4 

This chapter is about foams. In this chapter you will learn what a foam is, and what role the 

molecular interactions of proteins and carbohydrates play in the formation of a foam. You will also 

become acquainted with molecular gastronomical foams. 
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2 The basis 

In Chapter 1 you discovered what a molecular gastronomist does. This chapter forms the basis of this 

module. You will work through the following diagram – identical to figure 1 – so as to become 

familiar with the terminology used by a molecular gastronomist.  

 

 
 

We will begin this chapter with the concept of flavour. The various components that go to make up 

flavour are explained, and a few of the important concepts of flavour are described. 

 

The aspects of flavour are ‘translated’ into product characteristics, which in contrast to flavour can 

be measured objectively. You are going to look at various methods for measuring product 

characteristics. In addition, you will take a look at sensory tests. Both sets of data can be used to 

improve the flavour of dishes. 

 

Once you have translated the aspects of flavour into objective characteristics, you will look at various 

dishes and/or foods and see how these can be categorised. This will provide you with a better 

understanding of dishes. This classification takes place on the basis of structure. Structures, which 

are often visible to the naked eye, are in turn built up of molecules. The five basic components are 

water, carbohydrates, proteins, air and fats. Four of these will be dealt with in detail. Air also plays a 

key role in structures, but will not be expanded upon in this chapter because it has very little 

interaction with the other basic components. In the later chapters, there will be a more in-depth 

explanation of two of these structures, namely emulsions and foams. In these latter two chapters the 

knowledge acquired in this chapter will be applied in practice. 

 

Here is an assignment to give you an idea of what a cook can do with molecular gastronomical 

knowledge. 
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Newspaper Article 1 
 

 
 12 January 2008 

Dining with a short circuit 
text by MAC VAN DINTHER 

In a corner of the kitchen at Brouwerskolkje restaurant there stands an appliance that looks as 
though it’s straight out of a chemistry laboratory. On one side is a water basin in which a flask 
filled with brown liquid is revolving. The flask is attached at the top with a transparent tube. 
Under this tube is another flask. A colourless liquid is dripping into this flask. It is all attached 
to a motor block on which digital figures are flashing. 

That, says Moshik Roth, is a Rotaval, an appliance which can distil substances in a vacuum. The 
brown slurry that is revolving around inside is composed of soil, leaves and moss from the forest 
around his restaurant, mixed with a little water. He is distilling his country tea, which he serves with 
baked foie gras and which can only be described as having the taste of liquid forest earth. ‘This is my 
land,' says Roth, triumphantly holding aloft the glass flask of clear liquid. Literally. 

There are only four Rotavals in the world. Three of them are in Spain, the fourth here in the 
Overveen forest. It is just one of the hypermodern gadgets in the Brouwerskolkje kitchen, where 
nothing is what it seems. For instance, the large pan in which bacon appears to be cooking is in fact a 
Gastrovac, a kettle containing bacon in oil under very low pressure. “This helps draw out the 
flavours of the bacon and then I get delicious bacon oil." Roth uses the same process for his home-
made truffle oil from fresh truffle. 

In a reservoir there are pieces of fantastic Wagyu meat cooking at 45.6 degrees. Not a half degree 
higher, says Roth, who with his imposing figure (1 metre 94, 135 kg) is much too big for the small 
kitchen where five other cooks are standing working. “Above 46 degrees, the enzymes that break 
down proteins become active.” That spoils the taste. 

The ice-cream that goes into the egg cup is frozen omelette in powder form. And the yellow foam 
biscuits that are carefully placed by a cook in a sweet box are not petit fours but foam biscuits made 
of sauerkraut. Roth smiles and adjusts his horn spectacles. ‘I make this by preparing a pan of 
sauerkraut according to the original Elzasser recipe. I then distil it in the Rotaval, and make the 
biscuits with the distillate." The biscuits are spread with mustard cream. A more intense flavour than 
sauerkraut with mustard is hard to find. 

 

Assignment 1 

Read Newspaper Article 1 “Dining with a short circuit”. Watch the following film clip as well (URL-1 (in the 

URL list at the end of this module)) to get a better understanding of what molecular gastronomy is about. 

1. Name three molecular gastronomic dishes mentioned in this article. Explain why, in your opinion, 

they relate to molecular gastronomy. 

2. Name two physical techniques that Moshik Roth uses in his kitchen, explain why it is a physical 

technique and name a product to go with every technique.  

3. How are the foam biscuits with mustard made? Explain in particular what happens in the 

distillation stage. On the basis of which physical property are substances separated during 

distillation? 
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So this is Moshik Roth, the most molecular chef in the Netherlands, our very own version of Heston 
Blumenthal, the British 3 Michelin star chef who is world renowned for his ham and eggs ice-cream 
and snail porridge. A chef who brings science into the kitchen with distillation equipment, hot water 
baths, thermomixers and liquid nitrogen at 196 degrees below zero. Roth is dismissive. "When 
people talk about molecular cuisine, they always emphasise the technology, but for me it’s all about 
the flavour.” 

"I can affect flavour in two ways: with the product and with the cooking technique. I take the finest 
ingredients and try to get the best out of them. You can call it technical, but so is cooking fish. The 
term molecular cuisine is a load of nonsense, because everything is molecular.” His words are all a 
little stilted, because his Dutch is not yet fluent. 

Seven years ago Moshik Roth exploded into the world of Dutch gastronomy. He was born in Haifa, 
Israel, 35 years ago. His mother was Russian, his father, a professional soldier, had Dutch roots. He 
had a liberal Jewish upbringing. “I go to the synagogue on feast days, but I drive a car on Saturdays 
and I eat everything.” 

After high school Moshik, like every young Israeli, had to do national service. He was three years in 
the Lebanon, from 1989 to 1992. “During the First Gulf War.” He doesn’t want to talk about it. 
Suffice to say, he saw enough blood to put him off his dream carer of being a neurosurgeon. Roth 
decided to become a chef and worked as a trainee in a hotel in Eilat, where he met Els from 
Bloemendaal. It was love at first sight. ‘She had to leave the next day, but I knew right away that she 
was the one." After a brief romance via letter and phone, he joined Els in the Netherlands in 1995. 

Initially Roth earned his keep in Amsterdam’s pizzerias. But one visit to Jonnie Boer’s De Librije 
changed his life. “That’s when I fell in love with haute cuisine. In a year and a half I had been round 
all the restaurants.” He tried out what he saw at home. One day he took the plunge and invited Jonnie 
Boer to his house. 

“I cooked seven courses: foie gras terrine, pigeon breast in cabbage leaves.’ Jonnie was impressed. 
“He said: Moshik, you should be a Michelin inspector or a chef.” Boer helped him get an internship 
at a top restaurant in Schipluiden called De Zwetheul. “I worked every spare moment, without 
earning a cent.” After that he cooked for a while in various Amsterdam hotels. In 2001 he arrived in 
the Brouwerskolkje kitchen, and a year later he and Els bought it. 

It is a small white stone establishment set among the trees. Autumn rain splashes on the tar roof and 
the washed gravel tiled terrace. Inside there are eight tables on a wooden floor beneath a low wooden 
roof. Unadorned save for a few simple chandeliers, the luxury is to be found only on the plates. 

Roth wanders to and fro like a big friendly giant in baggy trousers between the kitchen and the 
dining room, explaining to the guests what they are eating: a cornet of beetroot with horse radish ice-
cream, Wagyu with seaweed, spaghetti of parmesan with bacon foam, ‘abstract of the sea’, never a 
dull moment in Brouwerskolkje. 

Thanks to Roth the restaurant has undergone a transformation. Before he came along, 
Brouwerskolkje was an old-fashioned outfit, where hikers and cyclists popped in for coffee and 
apple pie. Roth immediately got busy with haute cuisine. “Foie gras, turbot. Almost all the regulars 
left. Only the connoisseurs stayed.” 

The experimental urge needed no encouragement. He was fascinated by the discoveries of the 
Spaniard Ferran Adriá and Heston Blumenthal, the pioneers in molecular cuisine and like Roth self-
taught in the kitchen, not drilled and kneaded by the rules of classical cuisine. 
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Molecular cuisine has been called the new nouvelle cuisine, but has also met with resistance. 
'Molecular’ techniques such as cooking at (extremely) low temperatures, and gimmicks like foams 
and gels of liquids are used by almost all modern top chefs. But down to the last man, almost all 
chefs distance themselves from this 'technical' style of cooking. 

They don’t get it, says Roth fiercely. “My grandfather always said: if a child doesn't understand 
something, he asks. If a grown-up doesn’t understand something, he criticises it. And, by the way, 
it’s not even new: we’ve been eating ice-cream for hundreds of years and distillation is an age-old 
process.” Yet he does have some sympathy for sceptics.  

You might be a good old-fashioned chef with years of experience and suddenly along comes a rookie 
without a chef’s diploma and tells you that you shouldn’t let the meat get above 64 degrees because 
then the protein coagulates and the meat dries out. 

“If you don’t know why that happens, then you will avoid it. But innovation makes the world go 
round, modernisation is a form of intelligence. The problem is that it is not properly implemented by 
many chefs. They’re the ones who give molecular cuisine a bad name.” 

But why in heaven’s name would you put a boiled egg in liquid nitrogen to make ice-cream? Roth 
points to his head: “When you eat this egg, you get a signal at the front of your head to say that the 
taste is recognisable, but at the back of your head a light goes on indicating that the shape is all 
wrong. This short circuit creates a smile on your face. That’s the surprise element.” 

The pitfall of innovation is using technology because the gadgets are so great. Roth has fallen into 
this trap too. “But I’ve grown up. Now I work with less emphasis on technology. I would no longer 
drag a good langoustine through the mincer and make a mousse from it.” Roth wants to produce 
flavour. Take, for example, his extract of black rice. “I only want the taste of rice, not the filling. So I 
make an extract of the rice juice, which has a pure rice taste. I’ve created something new, but all you 
taste at the table is rice." 

Brouwerskolkje is no different to the rest of molecular cuisine: one person will love it, another 
won’t. Michelin gave Roth one star, Lekker didn’t even give him a place in the top 100. Roth sighs: 
“Sometimes I don’t think we speak the same language.” 

Those who do, however, are scientists at Wageningen. Roth received a 15,000 euro research grant 
from the Ministry of Agriculture. He will soon be getting a machine that freeze-dries under vacuum. 
Roth hurries to the kitchen and returns with a piece of chocolate full of air bubbles. Like an Aero, but 
better. “You can make something like this in a machine with foie gras or Époisses cheese. Just think: 
a cheese aerobar!” 
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Learning goals 

When you have completed this chapter, you will know/be able to: 

1. Simplify a complex dish into the three basic structures and the five basic components using 

the diagram. 

2. Name two examples of molecular gastronomical dishes. 

3. The concept of flavour and its three components (taste, smell and texture).  

4. Explain that a product characteristic is a characteristic of food that can be determined with a 

measuring device. 

5. Some key physical and chemical properties of four basic components of food. 
 

Structure of this chapter 

Sections: 
 

2.1 Can we do you a flavour?  

The different components of flavour are explained. 
 

2.2 Measuring flavour 

How can flavour be translated into product characteristics? 
 

2.3 From product characteristics to structures  

The three basic structures are named and their differences explained. 

 

2.4 From structures to molecules  

  Four basic components (water, carbohydrates, proteins and fat) are explained in detail. 



 

Molecular Gastronomy, June 2010. -16-

2.1 Can we do you a flavour? 

When you eat a dish, you make all kinds of observations, using your five senses: smell, taste, touch, 

sight and hearing.   

 

When you eat a dish with bacon and eggs, you can see the white and yellow of the eggs and some 

nice cooked bacon. You can smell the typical smell of bacon. When you take a bite you can hear the 

crunching noise as you chew the bacon. You taste the savoury flavour of the bacon and you can feel 

the difference between the crispy bacon and the much softer egg. 

 

The flavour of a dish consists of the taste, the smell and the texture. These three components can be 

measured and described using methods from chemistry and physics.  

 

In this section you will become acquainted with these three components of the flavour of a dish and 

with the molecular mechanism behind them.  

At the end of this section, you will also study the appearance of a dish. This has no direct impact on 

the flavour, but is nevertheless an extremely important part of the eating experience.  

 
Figure 4 The three components of flavour 

 

2.1.1 Taste 

Taste is the detection of non-volatile substances using the receptors of the tongue. The tongue is 

not, as was previously thought, a sort of map divided into different sections where you can 

exclusively taste a certain flavour. In fact you can detect all tastes anywhere on your tongue.  

Most people are familiar with four tastes, namely sweet, sour, salty and bitter. However, what many 

people do not know is that there is another fifth taste, namely umami (umami is Japanese for 

flavour). Umami is a sort of savoury taste and was first described in 1908, when it appeared that the 

substance glutamate provided a taste sensation that could not be described by sweet, sour, salty or 

bitter. Umami was not really accepted as the fifth flavour until Asian cuisine gained in popularity in 

the Western world (Asian cuisine uses a lot of monosodium glutamate, which also has the umami 

taste).  

Assignment 2 Describe the flavour  

Describe the characteristic flavour and appearance of 5 dishes. For example, in a  ‘broodje kroket’ it is the 

colour contrast between the ‘broodje’ and the ‘kroket’ (white/brown) and the contrasting texture of the 

‘kroket’ itself (crunchy on the outside, soft and greasy with pieces of meat on the inside). 
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Table 1 The five tastes that can be detected with your tongue  

Taste Chemical components Products in which they can be 

found 

Sweet Glucose, fructose, aspartame  Sugar, soft drinks, icing 

Sour Lactic acid, acetic acid, phosphoric acid Lemon, yoghurt, sauerkraut 

Salty Sodium chloride (NaCl), ammonium 

chloride (NH4Cl) 

Cooking salt, pickled meat, 

salty liquorice 

Bitter Quinine, caffeine and phenols Coffee, wine, beer 

Umami (Ve-tsin) Monosodium glutamate, which is an 

amino acid (part of a protein) 

Old cheese, Chinese food and 

snacks, e.g. crisps.  

 

The tongue is covered in taste papillae. These are shown in magnified form in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 The tongue. 

The taste papillae are folds on your tongue. They are necessary for increasing the surface area of 

your tongue. There are three types of taste papillae on your tongue: 

1. Mushroom-shaped papillae (Fungiform papillae) 

These are located on the front two thirds of the tongue; they are embedded with an average 

of four taste buds. 

2. Circumvallate papillae (Vallate papillae)  

These are large dome-shaped papillae which lie in a V-shape on the rear part of the tongue. 

They are embedded with an average of 250 taste buds. 

3. Leaf-shaped papillae (Foliate papillae)  

These papillae lie along the length of the tongue and are embedded with about 1300 taste 

buds. 

 

Taste buds are therefore found on the taste papillae. In Figure 5c you can see a microscopic image of 

a taste bud. Taste cells are located in the taste bud. 
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When can you detect a flavouring? Every flavouring has a threshold value, which is the minimum 

concentration needed to detect the flavouring. In taste research, determining the threshold value of 

substances is important for various reasons. A number of artificial sweeteners, for example, have an 

unpleasant after-taste. If the producer can keep the concentration of these substances under the 

threshold value, the consumer will not taste them and he or she will still like the product. Substances 

can also migrate into food from food packaging and in excessive concentrations can result in taste 

anomalies. Obviously, the manufacturer aims to keep the concentration of these substances under 

the threshold value so that the consumer doesn’t notice them. 

 

Not everyone has the same threshold value for flavourings. It is often higher in the elderly than in 

young people. This is because (taste) cells break down. Most cells in the body can be reproduced, but 

taste cells fall into the category of those that cannot. As the number of taste cells diminishes, so does 

their effect.  Another reason for deteriorating taste (higher threshold value) is smoking. It is also 

important how often someone comes into contact with certain flavourings. The more frequently a 

person experiences a flavouring, the higher that person's threshold value: this is called habituation. 

One example is spicy Chinese food. This is normal for the Chinese, but often too spicy for us. Because 

we are not used to eating spicy food, our threshold value for these spicy flavourings is lower. 

 

In task 1 you will practise with these threshold values. 

 

 

 

 

 

 

 

 

The action of the taste cells (explanation in Figure 5c) 

 

At one end of the taste cells are microvilli (small tentacles), which are in contact with the mouth cavity, and at 

the other end they are in contact with nerve cells via synapses. On the end of the microvilli there are receptor 

proteins. There are various types of receptor proteins for detecting sweet, sour, salty, bitter and umami. As a 

result of a series of chemical reactions arising from the binding of, for example, glucose to the receptor 

protein, the electrical potential of the taste cell changes. If this action potential is great enough, the cell is 

activated and information signals are sent to the brain. The minimal concentration of a substance that 

initiates this reaction is also called the flavour threshold value. 

Trouble tasting umami? 

 

Perhaps you have difficulties imagining the taste of umami, and how it should taste. If you want to taste 

umami, simply try some soya sauce. It contains a great deal of monosodium glutamate and has the typical 

savoury taste of umami (in addition to a slightly salty taste). If you still have difficulty with the umami taste 

after trying soya sauce, don't worry! Research has shown that Asian people are a lot better than Westerners 

at tasting umami. The Chinese, for example, are good at distinguishing different types of soya sauce (an 

Asian sauce which contains a lot of monosodium glutamate) on the basis of the umami strength, while 

Westerners can only taste major differences in the levels of salt. This is probably because the umami taste has 

been used in Asia for centuries, while the flavouring is fairly new to the West.  

This is again due to the threshold value as determined by you in the previous task. Not all substances have 

the same threshold value. Of sour, sweet, bitter and salty, bitter has the lowest threshold value, followed by 

sour and salty. Sweet has the highest threshold value.  
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Task 1 The threshold value of quinine 

 

In this task we are going to look at the threshold value of 

quinine (a bitter-tasting substance). Quinine is one of the substances that makes Tonic taste bitter.  

    

 

You are going to determine the threshold value of quinine 

among your fellow students. The task will include some statistics  

which you don’t need to learn, but it serves here to  

show that taste research is not just about tasting.  

  

 

On the table before you are 10 plastic beakers numbered 1 to 10. The aim is to sample from each of the 

beakers in turn. You can sample several times. Answer the questions in the questionnaire.  

Important: Between sampling each pair of solutions, eat a cracker and rinse out your mouth with water to 

neutralise the taste. 

 

Take beakers 1 and 2 and try them one after the other. 

 

Which beaker contains quinine? 

 

1  2  both of them   neither of them 

0  0  0   0 

 

Then do the same with beakers 3 and 4.  

 

Which beaker contains quinine? 

 

3  4  both of them   neither of them 

0  0  0   0 

 

Then beakers 5 and 6: 

 

Which beaker contains quinine? 

 

5  6  both of them   neither of them 

0  0  0   0 

 

Then beakers 7 and 8. 

 

Which beaker contains quinine? 

 

7  8  both of them   neither of them 

0  0  0   0 

 

And finally, beakers 9 and 10. 

 

Which beaker contains quinine? 

 

9  10  both of them   neither of them 

0  0  0   0 

 

 

Once you have finished sampling the solutions, the lecturer will put the correct answers on the board. Check 

which questions you got right. The lecturer will also write down the concentrations of quinine. Check which 

quinine concentration you gave the correct answer for. Enter your answers in the graph on the following page. 
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Once you have put the concentrations in the graph, you will see in which concentrations you tasted quinine 

and in which not. You probably gave the correct answer more often for the higher concentrations. All being 

well, the lecturer has drawn a table on the board. In this table, indicate for which concentrations you gave the 

correct answer. 

 

Besides the actual tasting, statistics also plays a role in sensory tests. You will see this in the next assignment 

when you have to calculate the threshold value of the class using a statistical test. In addition, a certain 

(significant) number of people in the class will have to have tasted this concentration in order to be able to 

assume that this concentration has really been tasted and that it was not just a good guess. 

The following example helps explain this test:  Imagine that you are a producer of a TV quiz show. You want to 

find questions that are not too easy, but also not too difficult. To this end, you invite 30 volunteers and ask them 

a number of multiple-choice questions, where they can choose from ‘A’ or ‘B’. If the question is difficult, there 

are always some people who think they know the answer and a few who simply guess. If at least 20 of the 30 

people answer the question correctly, you can say with 95% certainty that they have not just guessed, but that 

they knew the answer. This question is therefore not too difficult for the participants. 

The same goes for quinine. Sometimes you will have known which answer to choose. But you will also have had 

doubts about the correct answer on occasion. That’s when you ended up guessing. For the concentration that 

20 out of the 30 people in your class tasted, you can assume with 95% certainty that the substance really was 

tasted and not just guessed. This concentration is called the threshold value for your class. 95% is a limit agreed 

upon by statisticians when something may be assumed.  

 

In the table below you can see the critical value for the number of people in your class (This is therefore the 

number that can taste the quinine, whereby you can assume that they did not guess; N represents the total 

number of students in the class). 
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Number of 

students in class 

Critical value 

(at 95% certainty) 

N 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

9 

9 

10 

10 

11 

12 

12 

13 

13 

14 

15 

15 

16 

16 

17 

18 

18 

19 

19 

20 

20 

21 

22 

22 

23 

23 

24 

24 

Questions: 

1. a) What is the threshold value of quinine for your class? Does your own threshold value (which can be 

roughly seen in the graph you drew) deviate much from this? Can you think of an explanation for this? 

 

 

b) The threshold value of quinine given in the literature is 3.4 mg/litre H2O. Compare this with that of 

your class and try and explain the differences. 

 

 

 

2. Can you now say with certainty that the threshold value of quinine is as high as the results from your 

class suggest? In other words, can you assume that the results from your class apply to the whole 

population? Check the set-up of the experiment, and think of a few areas in which this set-up could be 

improved to obtain a more reliable experiment. 
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2.1.2 Smell 

 

 

Taste is largely influenced by the smell of a dish; it is even said that 95% of the flavour of a food is 

determined by the smell. Which is why you can hardly ‘taste’ food when you have a cold. 

 

 

There are only five tastes, but there are thousands of different smells. In other words: the nose can 

recognise thousands of different chemical components.  

But, as you have seen in assignment 3, it is impossible to name all these smells, in the way tastes can 

be categorised as sour, salty, bitter, umami and sweet. 

 

The difference between taste and smell is that non-volatile substances are detected by taste, while 

volatile substances are picked up by smell. Volatile substances are simply in the gaseous phase. They 

are substances that evaporate easily.  

 

Smell is detected with the nose. To be more precise, with the olfactory epithelium, which is indicated 

by the number 4 in Figure 6. The total surface area of the olfactory epithelium is 5 cm
2
.  

Task 2 Poor, good and super tasters 

 

With a simple calculation you can determine whether you are a poor, normal or super taster. For this 

experiment, you will need: 

 

• Blue food dye 

• A hole punch 

• A cotton bud 

• A piece of white paper 

• A magnifying glass 

 

Punch a hole in the piece of paper. Dip a cotton bud in the blue dye. With the cotton bud, rub the blue dye 

over the front part of your tongue. Hold the hole in the paper against your blue tongue. Now let someone 

with a magnifying glass look at this part of your tongue and count how many taste papillae there are in the 

hole. If you have fewer than 15 taste papillae in the hole, you are a poor taster. Good tasters have between 

15 and 30 taste papillae and super tasters have more than 30 papillae on the surface of the hole. 

 

Task 3: What are you eating? 

 

In this task you will notice that smell has a major effect on the flavour of a food, as well as the experience.   

During this experiment your lecturer will blindfold someone and let them taste various foods.  Try and 

guess what you are eating while holding your nose.  

Assignment 3 Describe the smells 

Name five smells that are not related to products (e.g. the smell of bacon). Think of smells like fresh, 

mouldy, but also nutty. 
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Figure 6 The olfactory organ 

How the olfactory organ works. 

 

Olfactory molecules bind to receptor proteins, which are located on the cilia of the olfactory cells (no. 6). The 

cilia are situated in a mucous layer of water, proteins and carbohydrates, along which the inhaled air flows. 

There are about 700 different sorts of receptor proteins on the cilia in your nose. Every olfactory cell contains 

only one sort of receptor protein. The different kinds of olfactory cells are not grouped together, but are 

distributed throughout the olfactory epithelium. This is shown in Figure 6 as number 6. The different colours 

represent the different olfactory cells (each with a different receptor protein).  

As with taste detection, chemical reactions also take place when you smell; these eventually lead to a charge 

difference and activation of neurons. The signals sent by the different kinds of receptor proteins come together 

per type of receptor protein in the glomeruli, which are shown as number 5 in Figure 6. From there the signals 

are transmitted to the mitral cells (number 2). These are the neurons that pass the signals to the brain.  

Richard Axel and Linda Buck received the Nobel Prize in 2004 for their research on smell and the discovery of the 

olfactory receptors. 

 

In order to be able to detect a smell, the concentration of this fragrance must exceed a certain 

boundary value (similar to the threshold value). If the concentration is lower than this boundary 

value, the smell is not detected. Every substance has a different boundary value. Ethanol is only 

detected in very high concentrations (more than 100 mg/l); a bucket of 10 l water must contain at 

least 1 g ethanol for the presence of ethanol to be detected. A substance like 1-p-menthene-8-thiol, 

which has a grapefruit smell, can be detected at 0.00000002 mg/l; so you can already smell this 

substance if there is 1 g dissolved in a tank full of water!  

 

Fragrances are also called aromatics. They usually dissolve well in oil. Flavourings such as sugar are 

best dissolved in water. This difference between flavourings and fragrances is important for the cook. 

Fragrances are usually also very volatile. This means that they can easily evaporate during the 

cooking process.  

 

Flavourings dissolve well in water; and thus the saliva in your mouth, allowing them to easily contact 

the tongue. Conversely, fragrances do not dissolve easily in water; they transfer to the air in the 

mouth. Fragrances are usually detected by the nose. To highlight this difference, take soup as an 

example. There are both fragrances and flavourings in soup. The fragrances are in the oil, and this oil 

floats on the water (you can see this in the form of the small, slightly cloudy circles on the top of the 

soup). Since fragrances also have a low boiling point (for example, the fragrance of grapefruit, which 

is already in the gaseous phase at room temperature), they will convert to the gaseous phase and 

rise from the soup). To prevent the loss of all the fragrances, you cover the pan with a lid. 
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The relationship in which a substance distributes itself in water and oil is called the partition 

coefficient. This is a fixed number for each flavouring and fragrance.  

The partition coefficient can be expressed in a formula as follows: 

w

o

A

A
Kp

][

][=  

[A]w is the concentration in mol/l of substance A in water and [A]o  is the concentration of substance 

A in mol/l in oil.  

 

If the partition coefficient of the substance lies between 0 and 1, the substance has a great affinity 

for water. These substances are hydrophilic (water-loving). They are detected by the tongue, and are 

usually flavourings.  

A substance with a high partition coefficient (>1) has a great affinity for oil. These substances are 

hydrophobic (water-repelling). They are detected by the nose and are therefore fragrances. If the 

number is equal to 1, the substance has an equal affinity for water and oil. The substance zingerone, 

which is present in ginger, has a partition coefficient of 20.4. This substance dissolves easily in oil and 

is therefore a fragrance. Citric acid is present in citrus fruit and has a sour taste; it is a flavouring with 

a partition coefficient of 0.023.  

Assignment 4 Taste and smell 

 

1. Describe how smell and taste are detected by receptors. 

2. Why are taste molecules detected mainly by the receptors of the tongue, and smell molecules by 

the receptors in the nose? 

3. From the molecules in Table 2, indicate: 

a. Whether the molecule mixes well in water or in oil 

b. Whether the molecule is detected by receptors on the tongue or in the nose 

c. Whether the molecule is a smell molecule or a taste molecule 

     ` Table 1 Molecules in products 

Molecule Product Partition coefficient 

Narangin Orange peel 0.36 

2,6-nonadienal Fresh salmon 700 

Menthol Mint  2000 

Tannic acid Tea, red wine 0.70 

Diacetyl Butter, cheese 2.8 

Capsaicin  Chilli pepper 10000 

Acetic acid citrus acid 0.023 

Limonene Orange peel 67000 

 

4. A chef would like to make a sauce with an orange taste. For the extra orange sensation he grates 

the peel of an orange. The peel of an orange contains the molecule limonene with a partition 

coefficient of 67000. The chef is not quite sure whether to make a water-based or oil-based sauce. 

Advise the chef on the best course of action. 

5. Butter kept in the fridge starts to smell foul after a while, not just because of the ageing process 

but also because... 

6. If you add cream (35% fat content) to a strong tasting tomato soup, does the flavour become more 

intense or less intense? Explain your answer. 

7. Would a piece of mint chewing gum taste mintier for longer, if you added a bit of oil to it? Explain. 

8. If you have eaten very ‘hot’ food containing lots of capsaicin, should you drink water or milk to cool 

down your mouth? Explain. 

9. Explain which herb oil is more concentrated: a lemon oil or a chilli oil. 

10. Asparagus (and other vegetables) have a stronger taste if they are prepared in oil than if they are 

prepared in water. Explain this with the partition coefficient of the flavourings in asparagus. 

11.  Vegetables have many flavourings with a partition coefficient less than 1. 

Explain how vegetables should be cooked to give them the most taste: boiling or steaming. 
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Assignment 6 Cucumber chemistry (from: Chemie Aktueel issue 18, no. 54)  

 

Look at the structural formula of (E-Z)-2,6-nonadienal in Source 2. Calculate whether cucumber contains 

a lot or a little of this substance.  (Tip: mixes well with water or fat, and therefore…) 

Assignment 5 Fragrances  

(from: Chemie Aktueel issue 18, no. 53)  

Read Source 1 

 

Fragrances are low boiling substances,  

i.e. they have a low boiling point.  

  

1.  Why does a fragrance need a low  

boiling point? 

2.  What does this say about the  

interactions between fragrance molecules? 

 

Carvon is used in the article as an example.  

Carvon has the following structure:  

   

3.To which categories named in the article (alcohols, phenols, ketones, aldehydes,  

ethers or esters) does carvon belong? 

4. Is this substance more miscible in water than oil? Explain your answer. 

 

 

Source 1 

 

Fragrances 
Fragrances are low-boiling 
alcohols, phenols, ketones, 
aldehydes, ethers or esters. 
A minor difference in chain 
length, side chain or 
another form of enatiomer 
makes a huge difference to 
the aromatic experience. 
For example, the two 
isomers of carvone smell of 
caraway seed and 
spearmint.  

It’s summer and that means the silly 
season for news. So what better time 
to take a look at the chemistry of 
cucumbers. A quick browse of 
www.c2w.nl provides a few 
interesting reactions from the 
organic, analytical and genetic 
angle.  
The smell of cucumbers is the result 
of various bonds, including 2-
nonenal, hexanal and (Z_-1,5-
octadien-3-on. The most important 
fragrance, however, is (E-Z)-2,6-
nonadienal. Emeritus Professor 
Lambert Brandsma once synthesised 
the substance. He prepared a 
Grignard reagent from 1-bromo-3-
hexene and let it react with propyl 
aldehyde dimethyl acetal in ether at 
-25°C, with CuBr as a catalyst. 

Source 2 

The resulting ether was then 
converted into the desired fragrance 
using a little sulphuric acid. 
Brandsma published the recipe in the 
then KNCV journal Recueil, volume 
1976, page 66. But he advised 
caution. “it gives off that intensive 
smell you get when you slice up 
cucumber and add vinegar to it. Just 
one drop makes you feel nauseous, 
and your whole house will smell of it 
afterwards.” 

Cucumber chemistry 
Molecular aspects of Cucumis sativus 
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2.1.3 Texture 

 

Texture is also a component of flavour. The texture of a food is what you feel in your mouth when 

you chew and swallow it. There is a range of adjectives related to texture: crunchy, soft, melting, 

rough, smooth, hard, syrupy, crumbly, juicy, fibrous, creamy and fatty. Every food has a number of 

recognisable textural properties. Once the food no longer possesses these properties, it is no longer 

regarded as being tasty, even though the taste and flavour may still be alright. An example is the 

crunchiness of crisps. Crisps may have the right flavour and taste, but once they are no longer 

crunchy, they are no longer tasty. While chewing food, senses in the palate, cheek and tongue are 

used. Jaw muscles and joints are also used. 

 

The texture of a food is determined by the structure. The structure is defined by the arrangement of 

the carbohydrates, fats, proteins and water in the food. The four possible structures are dealt with in 

section 2.3. 

 

The texture affects how you savour a dish, but also the speed with which fragrances in particular are 

released. Therefore, the texture also dictates the intensity of the smell.  

 

A fragrance is ‘locked up’ in the structure of a food.  

Whether the fragrance is actually detected depends firstly on the characteristics of the fragrance 

itself. For example, how ‘willingly’ the fragrance is dissolved in the structure. As explained in the 

previous section, a hydrophobic fragrance will not remain dissolved in a hydrophilic structure like 

water for long. The molecule then moves from the liquid to the air, where it can be smelled. If the 

hydrophobic fragrance is dissolved in oil, it is a lot less easy to smell. The structure of the molecule 

fits so well with the structure of oil that it stays within the structure. 

 

The second factor of importance for fragrance detection is the speed with which the molecule can 

move through the structure. Molecules move faster through a gas than through a solid. The 

structures present in foods fall somewhere between these two extremes. One example of a structure 

that contains a lot of gas is a foam. A molecule can move rapidly through a foam. An example of a 

solid structure is cheese. The molecule moves much more slowly through this. 

 

Research has been conducted on the relationship between the intensity of fragrances observed in 

cheese and its firmness. The results showed that in a firm cheese the fragrances were less intense. 

The firmer the cheese, the more slowly the molecules move through the structure. The exact 

relationship between texture and the ability to detect a flavour is the subject of much research at 

present. What can, in any case, been concluded is that a fragrance has to work its way through the 

structure of a food. The speed of this movement depends on both the properties of the molecule and 

the properties of the structure.  
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2.1.4 Visual aspects 

Appearance has nothing to do with flavour, but it is extremely important in a dish or food. 

Appearance is what you can see when you look at a dish, i.e. how it is presented on the plate and the 

various colours that appear in the dish. The colours of a food provide information about the product 

itself. They can indicate, for example, how ripe a product is: a green banana is not ripe, a yellow one 

is. You would expect a pink drink to be sweet and not bitter. In addition, colours tell us something 

about the freshness of a product and the extent to which it has been processed: wilted salad looks 

very different from fresh salad. The colour can also give an impression of the flavour of a dish. This 

impression can also be misleading. Take the example of green ketchup, which was on sale in 

supermarkets not so long ago. Cooks use colour to make dishes look surprising. Pasta can be dyed 

black with a little help from squid ink (Figure 7). This colouring gives the dish a completely different 

look. 

 

 
Figure 7 Black pasta 

   

 

 

 

 

 

 

Assignment 7 Texture  

1. Which two factors determine whether a smell is released from a food? 

2. From the following dishes or parts of dishes, indicate which textural properties are important for 

the dish. Use adjectives like crispy, rough, etc. 

Blancmange, ice-cream, wafers, pasta, whipping cream and crisps 
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2.2 Measuring flavour  

 

The previous section contained a description of what flavour is and how it can be detected. The 

various components that go to make up flavour can be reduced to product characteristics. Table 3 

contains a summary of some product characteristics that foods may possess. (Dishes consist of 

several foods and do not have product characteristics. We therefore refer to the product 

characteristics of foods.) 

Table 3 Product characteristics and measurements.  

Flavour 

characteristic 

Product characteristic Scientific measuring methods 

Smell Rose smell, sulphur smell, grass-like 

 

Gas chromatography 

Odour analysis 

Taste Salty 

Sour 

Bitter 

Sweet 

Measure salt concentration 

Measure pH 

Measure quinine concentration 

Measure sugar content 

Texture Thick, hard, crunchy, creamy, tough, 

greasy, fibrous, crumbly 

Measure thickness 

Measure foam stability 

Measure air quantity  

Measure tensile strength 

Measure fat levels  

Measure fat composition 

Microscopic analysis 

Appearance Dark, light, green, red, colour pattern, 

sharp, blurred 

Colour measurements 

Microscopic analysis 

Spectroscopic dimensions 

 

 

In the table you can detect the three components of flavour and appearance, this time coupled to 

product characteristics. Product characteristics can be measured and thus the subjective observation 

of flavour and appearance can be converted into objective measurements.  

Scientists carry out these measurements in the lab. The results of these measurements give the cook 

a better idea of what he/she is doing in the kitchen. 

For instance, the cook gains more insight into the product characteristics of the ingredients being 

used, of the relationship between product characteristic and concentration of the ingredients, and of 

the effect of the processes he conducts on the food. 

Armed with this new understanding and his creativity, the cook can improve his recipes. 

A simple example of how this table can be used is as follows. A product characteristic of lemonade is 

sweetness. Sweetness can be linked to the sugar content in the lemonade: the sugar concentration is 

a measure of sweetness. The more sugar the lemonade contains, the sweeter the taste. To test this 

theory, you could perform a sensory test. For example, you could ask a group of children to taste a 

certain lemonade and give their opinion on how sweet it is.  

 

You can also do this for many other product characteristics, for instance, the crunchiness of a chip or 

the creaminess of a particular sauce. Using this knowledge you can then innovate and improve 

existing recipes. Say you want to improve the thickness of a sauce; you could opt to increase the fat 

percentage of the sauce. You could then measure the thickness (also called viscosity) of the sauce at 

various fat percentages. You would probably discover that a higher fat content produced a thicker 

sauce. 
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In addition to the scientific methods in assignment 8, there is another method of determining 

product characteristics called a sensory test. This concept was previously described in the example of 

sweet lemonade. A sensory test actually creates a link between a subjective observation and an 

objective measurement. Sensory tests are often used to see if a new product tastes good, but also to 

see whether certain changes have a demonstrable effect on the flavour.  

There are various kinds of sensory test. The key difference between them is actually the experience 

of the tasters. You can have the tasting done by a group of people who have no experience in such 

matters. In this case you would ask questions like “which product did you like best?” or “is the 

product tasty?” This test is often used to see if a new product tastes good, and is something that a 

chef often does with a new dish. 

 

Another type of test involves the use of expert tasters. These people are very good at distinguishing 

between different flavours and are trained to describe smells and tastes (see Task 4). This sort of 

panel is often used to determine the quality of different products. They don’t describe a product as 

'tasty' or 'not tasty', but look instead at the differences between products, for example between 

Heinz ketchup and a generic brand ketchup. 

 

 
 

Assignment 8 Product measurements 

Invent a method to measure the amount of air/gas in a product. 

 

Assignment 9 A healthy deep-fried diet 

Read the Newspaper Article 2 “Fried food weight loss diet” (on the following page) 

1. Name a few key product characteristics of chips. 

2. How could you measure the crunchiness of a chip?   

3. Explain in your own words the difference between traditional deep-frying and deep-frying using 

the superheated steam method. 

4. What is the relationship between the superheated steam method and molecular gastronomy? 
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Fried food weight loss diet!       Newspaper Article 2 
Here is a typical example of the way in which improvements to cooking equipment can improve the eating 
experience. Because in the near future you may well be able to make healthier chips without having to 
sacrifice the taste and the greasy mouth-feel. Only recently there was a machine in the news that makes 
chips using superheated steam. Deep-frying can be compared to a drying process, because the moisture in a 
chip is partly released in the form of steam. This drying is partly responsible for making chips so crunchy.  
The superheated steam doesn’t contain much water vapour, so the chip also dries, causing the same effect 
on the chip as with deep-frying, but without the fat. The chips are however made a little greasy to give the 
right mouth-feel. They still have to be pre-cooked before being made into a crunchy chip. Who wouldn’t 
like to eat chips without feeling guilty and suffering the consequences, e.g. putting on weight? But, apart 
from the nice greasy taste, isn’t that all part of the eating experience? 
 

 

Bron: NVOX, Isolde van Leeuwen 

Profession Box 2 

For taste research, let's venture into the world of philosophy 

Interview with Bob Cramwinckel, director of the Centrum voor Smaakonderzoek (Centre for Taste Research) 

(CSO) in Wageningen. Cramwinckel studied food chemistry at Wageningen University. 

 

Cramwinckel gets straight to the point: “natural science and taste research do not run completely in 

parallel". Natural science is straightforward. There are isolated phenomena, such as magnetism. “Every 

scientist regards magnetism as an isolated phenomenon, but taste is not isolated, it is an experience”. 

According to Cramwinckel in taste there is a clash between scientific logic and human interaction. It is 

precisely this interaction that makes it so interesting. “You often hear people say ‘there’s no accounting for 

taste’”, says Cramwinckel, “this is because people are involved, and consciousness plays a vital role”.  

 

Cramwinckel therefore approaches taste as an interactive process, in which human and product jointly 

determine the outcome. Environment is also important. Cramwinckel cites obesity as an example of this 

interaction. According to science (and thus logic), the solution is very simple: eat less and do more exercise. 

Unfortunately this doesn’t work in practice, because simple logic doesn’t work on illogical people.  

 

His almost philosophical approach to taste and taste research makes Cramwinckel no ordinary taste 

researcher. No white boxes where people have to stand and taste, as this only gives a superficial scientific 

feel. No secrecy about the true nature of the research just let people taste and tell them what to look out 

for. And most important of all: everybody’s different, and never assume that your research is 

representative of the population; these are connoisseurs.  
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Is taste only subjective, and if so, how can you draw any conclusions from research? “Just because you 

admit that your research is not representative for the population, doesn’t mean that it isn’t representative 

for anybody”, says Cramwinckel. His panels are made up only of people who have a real affinity with the 

product that is being tested, i.e. connoisseurs. According to Cramwinckel these connoisseurs all have the 

same idea about what is ‘tasty’ about their favourite product. And there’s no dispute about the differences 

in key features, such as sweetness, firmness and crunchiness. As long as you remember that your research 

is done by connoisseurs for connoisseurs (just a fraction of the population), you can draw some quite 

powerful conclusions from your results.  

 

Researchers use statistics to try and generalise their results as much as possible, so that they are 

representative for the entire population. According to Cramwinckel statistics are definitely useful.  They 

enable you to say whether there is a real difference or not. It is a tool, so you have to understand the 

significance yourself. And in Cramwinckel’s opinion, this significance is currently very important.   

 

“Everybody’s different when it comes to the taste experience”, says Cramwinckel. He uses Albert Heijn as 

an example: “In this supermarket there are about 20,000 different products, but every family buys the same 

200 or so products all the time. This is already a good indication that there are great differences in taste." 

That’s why Cramwinckel finds it such fun to do research in this area. According to him, this knowledge 

about interactions and the illogical behaviour of people and taste also teaches us something about 

ourselves. You learn something about your own preconceptions and realise that you have your “own 

reality”. Such knowledge is useful in taste research, but also in the rest of your life: it makes you more 

tolerant and flexible, says Cramwinckel. 

 

This is evidenced in the way that his business is run. Cramwinckel works in time slots of approx. 2 months, 

the time it takes to conduct the research. He has no idea what is going to happen after this research, “I 

have no idea what I will be doing in 4 months from now, my diary is empty”. This may sound reasonable 

enough, but for a company director it is unique, especially for a business that has been running successfully 

for the last 20 years! 

Is there no research already planned for the future? “Yes”, says Cramwinckel, “the big ‘oliebollen’ study for 

AD is confirmed, unless they suddenly decide that they have to save money”.  

 

Task 4 Tasting and evaluating biscuits 

In this task you and your fellow students are going to take a sensory test. You are going to look at 2 

different biscuits. You will begin by determining which characteristics are the most important to look for, 

and you will then describe the biscuits. From the descriptions the four most important characteristics will 

be selected and evaluated on a scale from 1 to 5. Finally, you will decide which of the 2 biscuits is tastiest, 

as a kind of market research. At the end of the task, the lecturer will explain the differences between the 2 

biscuits. 

 

There are 2 kinds of biscuit before you. Try these biscuits and write down 5 taste elements of the biscuits 

(for example, not just sweet, sour, salty and bitter, but also textural properties like crunchy, juicy, solid, 

tough, creamy, etc.). 

 

When everyone is ready, read out the elements that you have written down, so that the lecturer can write 

them on the board. 

 

Enter the 4 most frequently named elements in the questionnaire below. Try the biscuits again and fill in 

the questionnaire for each biscuit (circle the answers).  

 

Important: taste carefully and several times. Don’t just taste, look at and smell the biscuits carefully. 

Between the tastings of biscuit 1 and 2 rinse out your mouth with water and take a bite of cracker to 

neutralise the taste. 



 

Molecular Gastronomy, June 2010. -32-

 

 

 

Biscuit 1 

 

Not at all       Completely 

(element 1)        (element 1) 

 

1  2  3  4  5 

 

Not at all       Completely 

(element 2)        (element 2) 

 

1  2  3  4  5 

 

Not at all       Completely 

(element 3)        (element 3) 

 

1  2  3  4  5 

 

Not at all       Completely 

(element 4)        (element 4) 

 

1  2  3  4  5 

 

Biscuit 2 

 

Not at all       Completely 

(element 1)        (element 1) 

 

1  2  3  4  5 

 

Not at all       Completely 

(element 2)        (element 2) 

 

1  2  3  4  5 

 

Not at all       Completely 

(element 3)        (element 3) 

 

1  2  3  4  5 

 

Not at all       Completely 

(element 4)        (element 4) 

 

1  2  3  4  5 

 

Enter your results in the table below on the board by putting a stroke near the score that you gave each 

element.  

Once the table on the board is filled in, enter the results of the whole class into the table on the following 

page. 

 

Try the biscuits one more time and indicate which of the 2 biscuits you find tastiest. 

 

Which biscuit did you find most tasty?  Strike this up on the board as well. 

 

Biscuit 1      Biscuit 2 
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  Number 

of times 

1 

Number 

of times 

2 

Number 

of times 

3 

Number 

of times 

4 

Numb

er of 

times 

5 

Studen

ts in 

class 

Total 

number 

of 

points 

Avera

ge 

Biscu

it 1 

 

Element 1 

 

………… 

1 

 

 

2 3 

 

4 

 

5 

 

   

 Element 2 

 

………… 

1 

 

2 

 

3 

 

4 

 

5 

 

   

 Element 3 

 

………… 

1 

 

2 

 

3 

 

4 

 

5 

 

   

 Element 4 

 

………… 

1 

 

2 

 

3 

 

4 

 

5 

 

   

Biscu

it 2 

 

Element 1 

 

………… 

1 

 

2 

 

3 

 

4 

 

5 

 

   

 Element 2 

 

………… 

1 

 

2 

 

3 

 

4 

 

5 

 

   

 Element 3 

 

………… 

1 

 

2 

 

3 

 

4 

 

5 

 

   

 Element 4 

 

………… 

1 

 

2 

 

3 

 

4 

 

5 

 

   

 

Draw the average scores per biscuit that are given for each element on the graph and sum up the scores per 

biscuit. Use a different colour for each biscuit and make a legend for the graph indicating which colour 

represents which biscuit. Using another 2 colours enter your own scores and indicate this in your legend as 

well. Do your scores correspond approximately with those of the whole class? If so, you are a good taster! 

 

 
 

Before you begin on the questions, your lecturer will tell you what the difference was between the biscuits. 
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Questions: 

1. What strikes you about the differences in evaluation of the taste elements between the 2 kinds of 

biscuit? Discuss this on the basis of what you know about the characteristics of the biscuits. 

 

2. Why do you think it was necessary to test the biscuits carefully, rather than immediately eating and 

swallowing them? 

 

3. Do you think you could judge after this test which of the 2 kinds of biscuits the manufacturer should 

bring to market? Explain why and why not. 

 

4. Indicate which taste elements of sweet, sour, salty and bitter play a role in biscuits and which do not. 

For all taste elements give at least 3 products in which these elements play a role. 

 

You will have realised from this task how difficult it is to set up a taste study whose results can be applied to 

a large group of people. Which is why there is still a lot more research being done on how taste works, and 

how these studies can best be set up.  

 

You may be wondering what use such a study is for cooks. A very good example of this is the Belgian system 

of Food Pairing. A number of Belgian researchers are investigating which tastes go together, both on the 

basis of structure, but also on the basis of this sort of research. It can reveal very surprising results, which 

can be used by cooks to make innovative dishes with strange (but delicious!) combinations. 



 

Molecular Gastronomy, June 2010. -35-

 

2.3 From basic components to structures 

 

 
As a rule, all foods consist of five components:  

• water  

• carbohydrates  

• fat 

• protein  

• air  

 

You might think that an egg consists mainly of protein. But you would be wrong. An egg is 75% water 

and only 10% protein. Butter seems to contain only fat, but in fact also contains about 10% water as 

well as protein and carbohydrates.  

 

The five components are arranged in every food in a different way: this is called the structure. The 

arrangement results from the fact that the five components do not mix well. The structures can be 

found on a microscopic scale between 100 nanometres (1 nanometre is 10
-9

 m) and 1-5 millimetres. 

 

The structure of bread is visible to the naked eye: you can see the holes. However, if you look at a 

glass of milk, it doesn’t appear to have any structure, that is until you look at it under a microscope. 

Then you will see little globules of fat floating in water. The structure of milk is visible on a microscale 

(1 micrometre = 10
-6

 m). Foods have microscale structures that ultimately define product 

characteristics like thickness, taste and colour.  

 

 

Assignment 10 The basic components in foods and dishes  

For the molecular gastronomical dish below, calculate the quantity of protein, water, fat and carbohydrates 

in g per 100 g. A few tips: 

Start from the quantity on your plate.  

Disregard the evaporation effect during the reduction process. 

The peel and stubs represent about 20% of the weight of the asparagus. 

The data on the ingredients can be found in BINAS table 82A. 
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Recipe: Asparagus/white chocolate ice-cream 

 

Normally speaking, ice-cream is made in an ice-cream machine and frozen. This asparagus ice-cream is frozen 

using liquid nitrogen. Liquid nitrogen has a temperature of -196
0
 C. When liquid nitrogen is poured over a 

dish, it freezes very rapidly. In this process the water freezes in all places at the same time, and not first on 

the outside and then slowly and increasingly to the inside. This simultaneous freezing produces much smaller 

ice crystals than in ‘normal’ ice-cream. The result is much creamier ice-cream. 

 

Ingredients:  

The peel and stubs of 1 kg asparagus 

500 ml whipping cream 

500 ml full-fat milk 

150 g white chocolate.  

 

Wash the asparagus waste thoroughly, let it drain and bring it to the boil in a steel pan with the cream and 

milk. As soon as the cream mixture comes to the boil, turn down the heat and let the asparagus peel infuse 

for 30 minutes. Then let the peel cool in the cream and pour the mixture through a sieve. Collect the cooking 

fluid and use a ladle to push out as much liquid as possible from the peel. Put the asparagus cream in a clean 

pan and bring to the boil again, and then let the cream reduce until there is 5 dl left. Cut the white chocolate 

into small pieces. Wait until the asparagus cream is luke warm and then melt the chocolate in it. Leave the 

mixture to cool to room temperature and then, while stirring, add about half a litre of nitrogen. The nitrogen 

has now created ice-cream. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the recipe says, the liquid nitrogen gives the ice-cream a different structure from normal. A 

molecular gastronomical innovating principle (the use of liquid nitrogen) is, therefore, being applied 

to an existing dish. This is one of the things that molecular gastronomy is all about: using chemical 

knowledge (in this case the knowledge that faster freezing produces smaller ice crystals) to improve 

recipes in the kitchen. In chapters three and four this will be discussed in more detail, because then 

you will be examining two important structures and how they relate to each other.  

 

Dishes that contain the same quantities of protein, fat, carbohydrate and water can, however, have 

completely different product characteristics because of their microstructure. A good example of two 

products that have the same composition but totally different product characteristics is milk and 

yoghurt. Yoghurt is thick and sour, while milk is sweet and much thinner. Yet (full-fat) milk and (full-

fat) yoghurt both contain 87% water and about 3.5% protein, 3.5% fat, 5% lactose and 0.7% minerals.  

 

The reason for this difference is the microstructure. Microstructure is a food’s structure on a 

microscale, and the microscale covers particles which range in size between 0.001 and 10 

micrometres. 

In milk, fat takes the form of small globules ‘dissolved’ in the plasma, the liquid part of the milk. The 

fat globules in milk vary in size from 0.1 to 10 micrometres. Every fat globule is covered with a double 

layer (membrane), which consists of proteins, phospholipids, vitamin A and cholesterol. This 

membrane is about 10 nanometres thick (1 nanometre is 10
-9

 m).  

The proteins in the milk can be divided into a casein fraction and a whey-protein fraction. The casein 

is present in the form of micelles (see box). A micelle is an aggregate of casein protein with a 

diameter of about 0.1 micrometre. The micelle comprises four different types of proteins, as well as 

other substances, such as calcium.  

 

Before milk can be sold to consumers, it is homogenised. Homogenisation is a process whereby the 

fat globules in milk are broken up to form a homogeneous mixture. Homogenisation prevents the 

(creaming) of the fat fraction in the milk.  
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Creaming causes the fat droplets to rise to the top of the milk, resulting in a layer of cream on the 

milk. Fat droplets actually have a lower density than water.  

Like oil on water, the fat droplets will form a layer of fat on top of the aqueous (water) phase of the 

milk. 

 

 
 

Figure 9 shows the microstructure of milk; the big globules are the fat particles, the smaller ones are 

the casein micelles. 

 

 
Figure 9 Microstructure of milk 

Yoghurt has a lower pH than milk: the pH of yoghurt is about 4.3 and that of milk, 6.8. The low pH of 

yoghurt is caused by fermentation with lactic acid bacteria. This makes the yoghurt taste much more 

sour than milk. Another consequence of the low pH is that the casein proteins coagulate into a 

network. The fat globules are incorporated in this network of proteins. This clustering of proteins and 

fat globules gives yoghurt a much thicker texture than milk. The microstructure of yoghurt is shown 

in Figure 10. 

The micelle 

 

Micelles also appear in soap solutions. Soaps are stearate salts that consist of a Na
+
 or a K

+
 ion with a very 

long hydrocarbon tail. When soap is dissolved in water, these salts form little bubbles, with the charged part 

of the soap molecule on the outside (the Na or K ions: the dark blue circles in the figure). This part of the 

molecule is hydrophilic. The hydrocarbon tails are located on the inside of the little balls. They are 

hydrophobic, or ‘water-repelling’. Figure 8 is an image of an air bubble in soapsuds. The continuous phase in 

soap suds is the water, containing the dissolved soap. This structure – little balls of molecules in water with 

the hydrophobic part of the molecule on the inside and the hydrophilic part on the outside – is called a 

micelle. 

 

 
Figure 8  Air bubble in soap suds 
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Figure 10 Microstructure of yoghurt 

 

Hervé This, one of the pioneers of molecular gastronomy, noticed that all dishes consist of 

dispersions. Dispersions consist of a dissolved phase (dispersed phase) and a continuous phase 

(phase which incorporates the dissolved phase). Does that mean that a dispersion is a solution? No. 

So what is the difference between a dispersion and a solution?  

 

In a dispersion the basic components are mixed together on a microscale, while in a solution the 

basic components are mixed together on a molecular scale (Figure 11). 

An example of a solution is a cup of tea with sugar. The sugar mixes with the water on a molecular 

scale: the sugar molecules are completely miscible (dissolved) in water. Because they are so small, 

the structure is not visible, even with the help of a microscope. In dispersions such as yoghurt and 

milk, the structure can be seen at the microscopic level, as you saw earlier in this section. The fat 

particles are not dissolved on a molecular scale in the water, but instead form structures on a 

microscale. Previously in this section, you read about the sedimentation of milk. Milk sedimentation 

is an example of segregation (Figure 11). 

 
Figure 11Solution and dispersion  

 

Dispersions are therefore systems that can be mixed on a microscale. They are also called colloidal 

structures. A colloid is a particle that is bigger than a molecule, but too small to be seen with the 

naked eye. The size of the particles ranges from 0.001 to 10 micrometres. The fat particles in milk, 

which are 5 micrometres in diameter, are classed as colloids. The casein micelles of 0.1 micrometre 

are also colloids.  
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An overview of the different structures on the microscale is shown in Figure 12. There are 9 different 

dispersions, because both the dispersed phase (the ‘dissolved substance’) and the continuous phase 

(the ‘solvent’) can occur in three different phases: as gas, liquid or solid.  

 

 
Figure 12 Types of dispersions  

You can use this table to categorise all dispersions. The categories into which most foods fall are 

framed in red in the diagram: the foams (solid and liquid) and the emulsions (solid and liquid). In 

chapters 3 and 4, there will be a more in-depth explanation of foams and emulsions. 

 

  
Figure 13(left)  beer foam (a liquid foam) Figure 14 (right) bread (a solid foam) 

 

 

Assignment 11 

a. We mix a salt solution with soap and oil. What is the dissolved substance or dispersed 

phase and what is the solvent or the continuous phase? Give your answer in the form of a 

drawing. 

b. In beer foam, what is the dispersed phase and what constitutes the continuous phase? 

And in bread? Do the same for the following products: mayonnaise, milk, ice-cream and 

butter. 

Assignment 12 

This assignment is about yoghurt and cake. Answer the questions for each of the products separately.  

1. Which of the 5 basic components does the product contain and in what quantity (g/100 

g)? You may use BINAS table 82A to answer this question.  

2. With a structural drawing indicate where the fat droplets are situated in yoghurt and 

where the air bubbles appear in cake. 

3. Is this structural drawing on a microscale or a molecular scale? 

4. Indicate which components are in which phase. What is the dissolved phase and what is 

the continuous phase? 

5. In which category from the diagram in Figure 13 would you place yoghurt? And cake? 
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2.4 From ingredients to basic components 

 

All foods consist of five components: water, carbohydrates, proteins, fats and air. The characteristics 

of these components and the mutual interactions between them determine the product 

characteristics of the food. 

 

 
 

The interactions between water and fat will be dealt with in more detail in chapter 3 on emulsions. 

The interactions between air, protein and carbohydrates will be dealt with in chapter 4 on foams.  

In order to give you a better understanding of the basic components, this section will look at some of 

the key attributes of water, carbohydrates, proteins and fats. 

Assignment 13 Molecules and structures  

Molecules and structures belong to different size categories. A fat globule in milk has a diameter of 5 

micrometers. A fat molecule is, however, much smaller. 

 

1. Calculate the volume of this fat globule. 

2. Work out how many mols of fatty acid are in this fat globule. For the purposes of this calculation 

we assume that milk fat consists only of elaidic acid. Elaidic acid has the following properties: 

a. Molecular weight: 282.45 g/mol 

b. Density: 850 kg/m
3
 

3. Calculate (using Avogadro’s constant from Table 7 of BINAS) how many molecules there are in this 

fat globule. 

4. What conclusions can you draw from the difference in size when comparing the fat globule with 

the molecule of elaidic acid? 
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2.4.1 Water 

 

Water seems so ordinary, but it is crucial in the preparation of our food. Water consists of small 

molecules with a strong mutual attraction. Two hydrogen atoms and an oxygen atom (H2O) go to 

make up a molecule of water. The hydrogen atoms are connected by covalent bonds (sharing of pairs 

of electrons) to the oxygen atom. The oxygen atom pulls more strongly on the electrons in the 

covalent bond (electron negativity) than the hydrogen atom.  

 

The shape of the molecule is not linear but angular. This is because the centres of + and – charges do 

not converge, creating a dipole. This means that one side of the molecule has a slightly positive 

charge, and the other a slightly negative charge. (Figure 15). 

 

 

 

 

 

 

 

 

 

Figure 15 Dipole in water and hydrogen bonds 

The difference in electronegativity between O and H is extremely big. As a result the H atom of one 

water molecule is attracted to the O atom of another water molecule. Hydrogen bonds form 

between the water molecules, forming a cluster.  
 

These hydrogen bonds create a particularly strong bond between the water molecules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hydrogen bonds 

The water molecules are bound together by hydrogen bonds and are grouped together in clusters 

(molecular complexes). These hydrogen bonds create a particularly strong bond between the water 

molecules. Due to this strong bond: 

• water has a high melting point and a high boiling point. Without hydrogen bonds the melting 

point would be –100
o
C and the boiling point –80

o
C.  

• water has a high latent heat evaporation (= the amount of energy absorbed without a 

corresponding rise in temperature). This property is used by our body to cool down by sweating. 

It also ensures that our water-rich country has a moderate climate (in the desert the 

temperatures at night are –10
o
C and during the day 50

o
C). 

• ice is the only solid to float in its own liquid. The optimal hydrogen bonds in the ice crystals 

create cavities.  
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Examples of other groups that can also form hydrogen bonds are the OH group of ethanol (alcohol) 

and the NH2 group present in amino acids. In the NH2 group there is a difference in electron 

negativity between the H
δ+ 

atom and the N
δ-

 atom. In addition to these two groups, C=O, CO (with 

three double bonds), and HF groups can also form hydrogen bonds with a hydrogen atom.  

 

Molecules that contain enough of these groups are hydrophilic: they dissolve easily in water. 

Molecules such as fats contain few of these groups and have difficulty dissolving in water; they are 

therefore hydrophobic. Therefore, substances that easily form hydrogen bonds dissolve well in 

water.  

2.4.2 Carbohydrates 

Carbohydrates are compounds consisting of carbon, hydrogen and oxygen atoms.  

The carbohydrates group contains a great many different types of molecules. These molecules have 

one thing in common: they all have several OH groups (hydroxy groups).  

They also contain an aldehyde ( ) or ketone ( ) group. Carbohydrates are therefore also 

called polyhydroxyaldehydes or polyhydroxyketones. 

 

The carbohydrates are subdivided into a number of groups: 

1. Monosaccharides 

2. Disaccharides 

3. Oligosaccharides 

4. Polysaccharides 

 

The various groups of sugars are described below in a little more detail. 

 

Monosaccharides and disaccharides 

Monosaccharides are the smallest and most simple molecules in the carbohydrate group. The 

monosaccharides that occur most frequently in foods are glucose and fructose (Figure 16). 

Monosaccharides occur in two structures in nature, namely in a linear structure (a straight chain) and 

in the shape of a ring. When a sugar is dissolved, it can switch back and forth between these two 

forms (creating an equilibrium).  

 

 
 

Figure 16 Glucose and fructose 

When fructose and glucose bind to each other, they form a disaccharide, namely saccharose (Figure 

17). Saccharose, also called sucrose, is the product we know as sugar. It is made from sugar beet or 

sugar cane. Saccharose can also be split into two monosaccharides, glucose and fructose.  
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Another well-known disaccharide is lactose. Lactose is 

present in milk and consists of the monosaccharides 

glucose and galactose. Lactose is the only existing 

disaccharide of animal origin. All other disaccharides are 

made by plants. Table 4 gives an overview of a few of the 

most commonly occurring disaccharides. 

 

Table 4 Disaccharides 

Sugar Source Monosaccharides 

Saccharose Cane, beet  Glucose and fructose 

Lactose Milk Glucose and galactose 

Maltose Grain and honey Glucose and glucose 

Cellobiose Cotton, jute, paper Glucose and glucose 

 

 Figure 17 The structure of saccharose 

Assignment 14 Saccharose (from: Chemie Aktueel volume 19, no. 57)   

1. Explain why saccharose can be dissolved in water. Can it also be dissolved in fat? Explain 

why or why not.  

 

Now read Source 3.  

2. Why does the manufacturer call “Splenda” a natural product and why do the sugar farmers 

claim that it is a chemical product?  

3. ‘made from sugar, tastes like sugar’. Is this claim correct? Give a brief explanation.  

4. Copy down the structural formula of saccharose (from BINAS) and indicate which hydroxyl 

groups have been replaced. 

5. Give an explanation for whether saccharose still tastes sweet if all OH groups are replaced 

by Cl. 

Source 3 

C2W, 15 September 2007 

 
Sweet can turn sour 
The Sugar Association, an 
affiliation of American sugar 
farmers, has accused Johnson & 
Johnson of deceiving the public. 
The sweetener sucralose (brand 
name Splenda, ‘made from sugar, 
so it tastes like sugar’) is sold as a 
natural product although it is 
actually a chemical product. 
 Sucralose is saccharose 
in which three hydroxyl groups 
have been replaced by chlorine. 
This is achieved in the laboratory 
in various ways, but only Johnson 
& Johnson’s supplier Tate & 
Lyle knows how to do it on an 
industrial scale. Details about the 
process and raw materials are 
carefully guarded. There is, 
however, a rumour that the 
infamous toxic gas phosgene is 
used in the chlorination process. 

 And ‘made from sugar’ 
is not necessarily true, because 
there are sucralose patents that 
do it without. In order to clear up 
this matter, the sugar farmers 
want to film the process in the 
sucralose plant in Alabama. A 
judge has rejected their request 
for the time being. To be 
continued. 
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Oligosaccharides  

Chains of 3 -5 monosaccharides are complex saccharides known as oligosaccharides.. 

Oligosaccharides are to be found primarily in seeds. They are a form of stored energy, which can be 

used when the seed germinates. These saccharides are of no further interest as far as molecular 

gastronomy is concerned. We can only absorb simple saccharides (monosaccharides) from the small 

intestine into the blood. Since our digestive system does not make enzymes to break down 

oligosaccharides into monosaccharides, oligosaccharides pass through the intestines undigested.  

 

Polysaccharides 

These are macromolecules in which 20 to 5000 monosaccharides are linked together. A few well-

known polysaccharides in the molecular kitchen are starch, cellulose, pectin, dextran and xanthane. 

Polysaccharides also have several OH groups. This enables them to interact with water via hydrogen 

bonds. However, in some polysaccharides the attraction between the chains is so great (also due to 

hydrogen bonds) that they do not dissolve in water. Since polysaccharides are big and not completely 

miscible in water, they belong to the colloids. They play an important role in dispersed systems, 

described in section 2.3.  

The polysaccharides can be categorised in various ways. A distinction can be made between linear 

and branched polysaccharides. In the linear category all monosaccharides appear in one long chain. 

The branched polysaccharides also consist of long chains of monosaccharides, but they also have side 

chains that consist of (chains of) monosaccharides.  

The second difference between the polysaccharides can be seen in the number of different types of 

monosaccharides in the chain. When a polysaccharide consists of only one type of monosaccharide, 

it is called a homoglycan. When there is more than one type of monosaccharide, for example the 

combination of glucose and fructose, it is called a heteroglycan. The two categories (linear/branched 

and homo/heteroglycan) containing polysaccharides, will be further elaborated on the basis of starch 

and dextran. 

 

Example 1: Starch 

Starch is one of the most well-known polysaccharides. It is present in grains, roots, bulbs and 

vegetables. It is present in the form of granules in plant cells. The starch granules are a form of 

energy storage for the plant concerned. Starch consists of not one but two polysaccharides, namely 

amylose and amylopectin (Figure 18 and 19). They are homoglycans, because the chains of both 

molecules are composed only of glucose molecules. The difference is that amylose is a linear 

molecule, while amylopectin is branched. It consists of between 200 and 200,000 glucose molecules.  

 

 

 
Figure 18 Amylose 
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Figure 19 Amylopectin 

Products in which starch is used include blancmange, sweets, sauces, dressings and bread. A key 

characteristic of starch is its ability to thicken products, giving them a better mouth-feel. It is 

therefore sometimes called a thickening agent. Starch can also form a kind of network, whereby the 

structure of the product remains stable longer, so that, for instance, a blancmange does not collapse.  

 

Example 2: Dextran 

Dextran is a branched polysaccharide (Figure 20). It is produced on an industrial scale using lactic acid 

bacteria in bioreactors. Dextran consists of repeating units of glucose with glucose units as branches 

(in the diagram you can see 2 units of glucose; the dotted lines indicate where another glucose 

molecule can be attached). It is therefore a homoglycan. Dextran is used mainly as a thickening agent 

in emulsions.  

 

 
Figure 20 Dextran 

Assignment 15 

Explain whether the thickening properties of starch are the result of water attaching to the starch or the 

fact that the starch molecules interact with each other. 
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2.4.3 Proteins 

Proteins are present in all cells of all organisms. Some are building blocks, others regulate certain 

processes.  

 

Based on the size of the molecule, a distinction can be made between: 

1. Amino acids 

2. Peptides 

3. Proteins  

 

Amino acids are the smallest units. These are the building blocks of the proteins. Peptides are short 

chains of amino acids. The difference between peptides and proteins is not very clear. As a rule of 

thumb, a peptide is at most 50 amino acids long. 

 

Amino acids 

Amino acids are the building blocks of proteins. Amino acids have an acid (carboxyl-) and a base 

(amino-) side and for this reason are called ampholytes. There are more than 200 types of amino 

acids in nature. Proteins, however, are only composed of 20 different types. (BINAS table 67C) 

 

An amino acid always has an amino group, a carboxyl group 

and a so-called side chain, or R-group (Figure 21). This side 

chain differentiates the different amino acids from one 

another. For instance, if the side chain consists of CH2–SH, 

then it is the amino  acid cysteine, and the amino acid that 

has CH2–OH as a side chain is serine. The properties of the 

side chain determine whether the amino acid is miscible in 

water, or in oil/fat. 

 

 

 

 

 

 

 

 

Assignment 16 Amino acids in egg 

An egg is composed of 75% water, but it also contains many proteins. The egg white is mainly water and the 

yolk mainly fat. Think about which amino acids from the table are present in the egg white and which in the 

egg yolk. Use BINAS to answer this question.  

 

Amino acid Egg white/Egg yolk 

Serine  

Glycine  

Leucine  

Threonine  

Glutamine  

Valine  

 

Figure 21 amino acid structure 
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Peptides 

A peptide is a chain of several interlinked amino acids. Peptides are similar to disaccharides and 

oligosaccharides in the carbohydrate group. Two amino acids are linked together by a bond between 

the COOH group of one amino acid and the NH2 group of another. This bond is called the peptide 

bond (Figure 22). 

 

 
Figure 22 Peptide bond between two amino acids 

Proteins 

In a protein the amino acids are linked together in a long chain. The side chains of the amino acids 

stick out of the chain. The sequence of amino acids in the chain is called the primary structure. This 

chains can form a spiral structure, or helix, which is called the secondary structure of a protein 

molecule. This spiral structure comes about because a hydrogen bond is created each time around 

the four amino acids between the C=O and the N-H of the opposing amino acids. This spatial zigzag 

structure arises because the peptide bond is not able to turn freely. 

 

 

Figure 23 shows the helical shape of a protein. In Figure A the 

helix can be seen with side chains (green). Figure B shows the 

spiral with all atom groups.  

A perfect spiral is present in proteins that have to ensure 

firmness. These powerful fibres can be found in skin, hair, fur, 

nails and hooves. They are also responsible for the firmness 

of, for example, steaks. 

Depending on the side chains of the amino acids, the helix 

winds itself into a tertiary structure. 

 

 

 

Figure 23 Protein: secondary structure 

Various kinds of bonds emerge in various places between the amino acids: 

• extra hydrogen bonds 

• covalent sulphur bonds 

• ionic bonds 

 

These sorts of bonds are responsible for the formation of the tertiary structure, which is the final 

form of the protein (more about this structure later in the chapter on foams). 

 

Proteins also form complexes with each other, whereby they ‘stick’ to each other by means of 

hydrogen bonds and/or ionic bonds. This is called the quaternary structure. 
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Assignment 18 Mussel glue (from: Chemie Aktueel volume 18, no. 54) 

Read Source 4. 

Below is the structural formula for DOPA. 

 

 

 

 

 

 

 

1. On the basis of the structural formula, explain what makes DOPA an amino acid. 

Depending on the pH the acid group and the amino group may relinquish or take up an H+. 

The OH groups on the benzene ring can also relinquish H+. 

 

OH

OH CH2 CH C

O

OH

NH2

Assignment 17 Amino acids 

Which amino acids must a protein contain to be able to form the following bonds? 

1. Hydrogen bonds 

2. Sulphur bonds 

3. Ionic bonds 

Use table 67C in BINAS to answer this question. 

Cling-on Mussels 
15 August 2006 – Arjen Dijkgraaf 

 
Explanation of chemical bond between mussel and various 
substrates 
 
Mussels (Mytilus edulis) firmly attach themselves to almost any 
surface. As far as sticking power is concerned, their adhesive 
resembles most industrial products and is water- and salt-resistant 
too. 
 
Researchers at Northwestern University (Evanston, Illinois) now 
think they know why. They have been investigating the amino 
acid L-3,4-dihydroxyphenylalanine (DOPA), the most important 
component of the mussel adhesive, with an atomic force 
microscope (AFM). By attaching one end of the molecule to the 
tip of the microscope and the other to a substrate, they were able 
to test the strength of the bond. This amino acid occurs in high 
concentrations in the proteins in mussels. 
 
The molecule appears to be able to form very strong bonds with 
the atoms of other surfaces. 
 
The researchers are to publish their findings this week in the 
online edition of PNAS.  
 
Source: C2W, 15 August 2006 

 

Source 4 
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Recipe: Steak marinated in kiwi 

 

One way to make a steak more tender is to marinate it in kiwi puree.  

 

Ingredients: 

1 peeled kiwi 

1 steak (100 g) 

Oil  

Pepper and salt 

 

Puree the kiwi with a hand-held blender. Place the steak in a bowl and cover it with the kiwi puree. Make 

sure that all the surfaces are coated with the kiwi puree. Leave the meat to marinate for 20 minutes, then 

take it out, pat it dry, and season with pepper and salt. 

 

Grill the steaks on both sides until brown (approx. 1 minute). Leave the steak to cook further under 

aluminium foil. The steak is now ready to serve. 

According to the article, DOPA is present in high concentrations in mussel proteins. 

1. What is a protein? 

2. Explain what happens on the molecular level ‘when DOPA is present in high concentrations in 

protein’. 

3. Draw the structural formula of a piece of protein in which two DOPA molecules are adjacent to 

each other. 

4. In the sentence “A group of American scientists have discovered that the molecule can form strong 

bonds with the atoms of other surfaces”, there is a chemical error. Explain why the term ‘bond’ is 

incorrect in this sentence. 

5. Which word would you use in place of ‘bond’?  

6. Explain why a DOPA molecule can probably bind well to atoms of other surfaces. If necessary, draw 

the structure that results from this bond. 

Assignment 19 Steak marinated in kiwi 

Read the above recipe. 

 

The recipe states that the steak is made tender by being marinated in kiwi. This is because there are 

enzymes in kiwi.  

1. What effect do you think these enzymes have on the meat proteins in the steak? 

2. What do you think happens if the steak is left to marinate for too long in the kiwi puree? 
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2.4.4 Fats 

All fats have the same chemical structure. However, fats can contain different fatty acids. The fatty 

acid composition can be responsible for a difference in properties. Fats that are liquid at room 

temperature are usually called oils. Fats and oils are a useful store of energy in our body. Energy can 

also be stored in the form of glucose or glycogen, though fat is the most efficient in storing energy. 

For instance, per gram fat contains 9 kcal of energy, as opposed to the 4 kcal per gram of glucose. In 

the kitchen fat is a versatile ingredient. It provides a soft structure and helps bring out the taste of a 

dish.  

 

Structure  

Fats and oils are triglycerides with long apolar tails: they are composed of glycerol and three fatty 

acids (see figure 24), which link up when the water is released. The process of this linkage is called 

transesterification (or rearranging of the esters):  

 
Figure 24 A glycerol and B a triglyceride: glycerol bound to 3 fatty acids 

 

There are 50 different natural fatty acids. Glycerol dissolves in water, while in fatty acids it depends 

on the structure and fats do not dissolve in water. 

  

 

Assignment 20 

Fats contain C= O groups that accept hydrogen and can thus form hydrogen bonds. Why then does a fat not 

mix in water? 
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Fats and saturation 

In principle oils are liquid and fats are solid, even though they have the same molecular mass. The 

difference is in the saturation of the fatty acids that are bound to the glycerol. Unsaturated fat 

molecules have one or more double bonds between the carbon atoms in the chain (C=C); saturated 

fatty acids only have single bonds between the atoms in the carbon chain (C-C) (Figure 25). Saturated 

molecules are flexible and approach each other easily to form a strong Van der Waals bond. A double 

bond creates a rigid piece in the chain which is difficult to approach and so results in a weak Van der 

Wals bond. The weaker the Van der Wals bond between the molecules, the lower the melting point.  

 
Figure 25 Saturated fat (structure A) and unsaturated fat (structure B) 

 

 

 

How can you make solid margarine from vegetable oils? By hydrogenating vegetable oil, i.e. letting it 

react with hydrogen, the double bonds are lifted and more saturation occurs (not 100%). This 

process is called setting. It is used to obtain the desired structure and shelf life. It is also used for 

making peanut butter. When you grind peanuts, you get peanut butter, but a layer of oil quickly 

forms. However, if you hydrogenate the oil, you obtain a blend that no longer separates.  

 

 

  

 

 

Assignment 21 

When you look at Figure 25, which of the 2 fats do you think has the lowest melting point? 

Assignment 22 

Vegetable fats contain 85% unsaturated fatty acids and 15% saturated fatty acids. Animal fats consist of 

50% saturated and 50% unsaturated fats. Is vegetable fat solid or liquid at room temperature? What about 

animal fats? Explain your answer. 
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3 Emulsions 

 

Making mayonnaise yourself is a difficult process. It often fails. But why? It was once thought that 

pregnant women could not make mayonnaise. And that the stirring of the mayonnaise should always 

be done to the right, because if you did it to the left, the mayonnaise would separate. Another myth 

was that a left-handed man could not make mayonnaise.  

Nowadays we know more about the product characteristics of mayonnaise and we know the 

microstructure. As a result we now know exactly why mayonnaise is so difficult to make.  

 

 
   Figure 26 The red line 

To give you an idea how mayonnaise is made, here is the recipe.  You don’t need to try it yet, that 

will come later in the practical course.  

 

A recipe for mayonnaise 

  

Ingredients 

1 egg 

1 tsp mustard 

½ tsp salt 

2 tbsp vinegar or lemon juice 

3 dl sunflower oil 

pepper  

 

Instructions 

1. Mix the egg, mustard, salt and vinegar in a bowl.  

2. Add the oil slowly to the mixture, stirring all the time. 

3. Season with a little pepper.  

 

If you add the oil too quickly to the contents of the bowl, the oil separates from the other 

ingredients. This process is called shifting. The separation occurs because the oil and the other 

ingredients do not mix. This is probably one of the main reasons why mayonnaise often fails. This 

mixing problem is one of the features of emulsions.  

 



 

Molecular Gastronomy, June 2010. -53-

‘Emulsions’ is a collective noun for products like mayonnaise, yoghurt, milk, butter, margarine and 

salad dressings. An emulsion consists of two liquids (often oil and water) which are dissolved in one 

another on a microlevel.  As explained in section 2.3 “From product characteristics to structures”, the 

substances are not dissolved together at the molecular level, like sugar in tea, but at the microlevel. 

Emulsions have a number of common features on the microscale (1 micrometer is 10
-6

 m).  

 

Learning goals 

When you have gone through this section, you will understand why mayonnaise so often fails. 

You will also know/be able: 

1. explain why mayonnaise shifts and how this can be avoided. 

2. the molecular interactions between water, fat and the emulsifier, that form the 

microstructure of an emulsion. 

3. apply this knowledge of molecular interactions to butter and vinaigrette. 

4. the key factors that affect the stability of emulsions 

You will see that this knowledge can be applied in theory to all emulsions. You are going to use all 

this acquired knowledge in the last section, where you will be examining molecular gastronomical 

emulsions!  

 

Structure of this chapter 

 

Sections: 

 

3.1 What is an emulsion?  

The features of an emulsion. 

 

3.2 Water and hydrogen bonds 

The role of water in an emulsion. 

 

3.3 Fats and hydrophobic interactions  

The basic fat molecule. 

 

3.4 Emulsifiers  

  The role of emulsifiers in emulsions. 

 

3.5  Emulsions in the kitchen 

Applying the previous sections in the kitchen. 

 

3.6 The stability of emulsions  

Describes how the stability of an emulsion can be improved. 

 

3.7 Emulsions in the molecular gastronomical kitchen   

Molecular gastronomical emulsions.  
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3.1 What is an emulsion? 

 

What are the similarities between emulsions such as milk, salad dressing, butter and margarine?  If 

you look at the list of ingredients on the package, you will discover that they all contain fats (in solid 

or liquid form), water and an emulsifier. Other ingredients are also added to affect product 

characteristics like colour, flavour or thickness.  

In figure 26, the red line, you can see the pieces of the puzzle that go to make up an emulsion:  

An emulsion is composed of water and fat. Normally water and fat (or oil) don’t mix. However, 

with the presence of a third substance, an emulsifier, they do. 

 

Mayonnaise contains at least 70% fat and more than 10% water. The water comes from lemon juice 

and the egg (an egg is 75% water). As the recipe states, you first place the water-based ingredients in 

the bowl. Then you slowly add the oil. The oil is 99% fat. The emulsifier in the mayonnaise is a 

component of the egg yolk.  

 

What does mayonnaise look like under the microscope? Figure 27 shows mayonnaise that is 

magnified 500 times under the microscope. You can see the oil droplets in the water. Not all the 

droplets in the emulsion are the same size.  

 

 
Figure 27 Mayonnaise magnified 500 x  

The oil droplets are also called the dispersed phase. The water forms the continuous phase. The oil 

droplets are dissolved on a microscale in the aqueous phase. The emulsifier sits at the interface 

between the oil droplet and the water. Mayonnaise is therefore an oil in water emulsion, 

abbreviated to O/W emulsion. There are also emulsions in which the water forms the dispersed 

phase and the oil the continuous phase. These emulsions are called water in oil (W/O) emulsions 

(Table 5). 

 

Table 5 Different emulsions 

Food Oil in water emulsion Water in oil emulsion 

Full-fat milk x  

Whipping cream  x  

Vinaigrette  x 

Mayonnaise  x  

Butter  x 
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Why are emulsions usually white in colour? The white colour is caused by the particle size of the fat 

droplets in the mayonnaise. Water is clear (transparent) because the wavelength of light is greater 

than the diameter of the water molecules. Fat droplets, as present in mayonnaise, are about 1 

micrometre in diameter, which is greater than the wavelength of light. Therefore, the light touches 

the fat particles and disturbs them. This causes the white colour. (The product that is ultimately 

made in the kitchen from the emulsion may well have a different colour. A cocktail sauce is an 

emulsion, but the addition of tomato ketchup makes it pink instead of white). 

Assignment 1 Mayonnaise and chip sauce 

 

     
 

  
 

 

Chips can be eaten with mayonnaise or chip sauce. Chip sauce is a W/O emulsion and mayonnaise an O/W 

emulsion.  

1. Make a note in g/100g of the quantities of the basic components in the chip sauce and the 

mayonnaise.  

2. Which substance acts as the emulsifier in the mayonnaise and in the chip sauce? 

3. Which substance ensures that mayonnaise and chip sauce, despite the different concentrations of 

water and oil, have the same thickness? 

4. What is the role of the ingredients sugar, salt and vinegar in the mayonnaise and in the chip sauce? 

5. What would be the major advantage of ‘reversing' an emulsion, as has occurred in chip sauce? 

Nutritional value (per 100 ml): 

 

Energy 2800 Kj (690 Kcal) 

Protein 1g 

Carbohydrates 3g (of which sugars) 3g 

Total fat 75g 

    Saturated 6g 

    Mono-unsaturated 48g 

    Poly-unsaturated 21g 

Fibers; less than 0.5g 

Sodium 0.37g 
 

Ingredients: 

Vegetable oil, water, egg yolk (6%), sugar, vinegar, mustard, salt, 

aroma, antioxidant E385, pigment beta-carotene. 

     

E = by the EU assessed for safe additives 

Nutritional value (per 100 ml): 

 

Energy 1200 Kj (290 Kcal) 

Protein 1g 

Carbohydrates 10g (of which sugars) 6.3g 

Total fat 27g 

    Saturated 2.1g 

Fibers 0g 

Sodium 0.57g 
 

Ingredients: 

Water, vegetable oil (25%), vinegar, modified starch, egg yolk, mustard, 

salt, thickener E415, preservative E200, aroma. 

     

E = by the EU assessed for safe additives 
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Most emulsions are liquid. Mayonnaise, salad dressing and yoghurt are all liquids. But there are 

exceptions: butter is a solid emulsion and ice-cream also consists of a combination of a foam and a 

solid emulsion. 

 

 

3.2 Water and hydrogen bonds 

 

Why do oil and water not mix unless an emulsifier is added? An emulsion consists of hydrophilic 

molecules (water), hydrophobic molecules (oil) and amphiphilic molecules (emulsifiers).   

 

Water plays an important role in emulsions, particularly because oil and water don’t mix. The process 

by which water forms hydrogen bonds was explained in chapter 2 . This formation of hydrogen bonds 

is important, and will be elaborated upon in the next section when we take a look at fats. 

 

 

 
3.3 Fats and hydrophobic interactions 

 

Mayonnaise consists of at least 70% fat. Other emulsions like butter and yoghurt also contain fat. 

Therefore  fat is one of the key components in an emulsion.  

Fats and oils have different melting points: a fat is hard and an oil is liquid at room temperature (see 

chapter 2). Fats are mainly from animal sources, such as milk and meat. Oils are usually obtained 

from vegetable sources, such as olives and sunflowers. The structural formulas of fats are dealt with 

in section 2.4.4.  

 

 

 

Assignment 2 Characteristics of an emulsion  

1. This section contained a description of various characteristics of an emulsion. Make a list of these 

characteristics. 

2. Look at the structure of mayonnaise under a microscope. Indicate the aqueous phase and the oil 

phase of the mayonnaise. 

3. What colour would an emulsion be, if you made the fat globules smaller than the wavelength of 

light? 

 

Assignment 3 Hydrogen bonds 

1. Draw the hydrogen bonds that appear when water is mixed with ethanol. 

2. Why does fat not mix with water? 

3. Explain why charged particles, such as ions, dissolve well in water. 

Assignment 4 Fats and oils 

Answer the questions for the foods olive oil and butter (these figures are on the next page) 

 

1. Indicate whether the product contains mainly saturated or unsaturated fatty acids.  

2. Linoleic acid (C18:2) is a fatty acid that is present in olive oil (Figure 28). 

 Elaidic acid (C18:1) is a fatty acid that is present in butter (Figure 29).  

Elaidic acid has a melting point of 43 °C; the melting point of linoleic acid is -5 °C. 

a. Explain this difference in melting point using the structural formula of both fatty acids. 

b. Explain why you expect elaidinic acid to be present mainly in butter and linoleic acid 

mainly in olive oil. 
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Oil cannot form hydrogen bonds. It is a hydrophobic molecule. A hydrophobic molecule contains few 

charges and cannot make interactions with water. When oil is mixed in water, the network of 

hydrogen bonds that together form the water molecules is disturbed. This disturbance uses up 

energy that cannot be retrieved by the formation of new hydrogen bonds. The water molecules just 

around the surface of an oil droplet cannot make bonds with each other. However, in order to make 

a maximum number of hydrogen bonds, the water molecules arrange themselves in a cage-like 

structure around the oil droplets (Figure 30A). The maximum number of hydrogen bonds actually 

provides the system with an energetic advantage. This reorientation of the molecules can be seen in 

Figure 30B.  

 

  

 

 

 

 

 

 

 

 

 

 

 

When two oil droplets approach each other in water, they stick together.  

In Figure 31, you can see how the number of hydrogen bonds and the freedom of movement of the 

molecules increases when two droplets of oil become one droplet. Since the surface of one joined 

droplet is smaller than that of the two separate droplets, the water molecules can form more 

hydrogen bonds, thereby obtaining more freedom to move.  

The density of oil is lower than that of water. As a result of this difference in density, the fat droplets 

rise up from the water. The emulsion separates into a layer of water topped by a layer of oil.  

 

 
Figure 31 Reorientation of water molecules around oil droplets 

 

Figure 30A Cage shape Figure 30B Water molecules around an oil droplet  

 

    
   Figure 28  Linoleic acid 

 
       Figure 29 Elaidic acid 
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3.4 Emulsifiers (surfactants) 

 

Why is egg yolk, aside from oil and water, such an important ingredient of mayonnaise? It is because 

egg yolk is the emulsifier. An emulsifier is also called a surfactant.  

An emulsifier is an amphiphilic molecule. An amphiphilic molecule reacts with both hydrophobic and 

hydrophilic molecules. In the case of mayonnaise, lecithin, which is present in the egg yolk, is the 

emulsifier. Lecithin is a collective name for a series of molecules that have an emulsifying effect. 

There are about 5 grams of lecithin in one egg yolk.  One of the emulsifiers in lecithin is 

phosphatidylcholine (Figure 32). Phosphatidylcholine has a hydrophobic tail and a hydrophilic head. 

The hydrophilic head will have interactions, such as hydrogen bonds, with water, and the 

hydrophobic tail will interact with fat and oil. You can make litres of mayonnaise with the yolk of just 

one egg.  

 

 Figure 32 Phosphatidylcholine 

A molecule like phosphatidylcholine interacts both with water and oil and in so doing positions itself 

on the interface of water and oil, see Figure 33. The emulsifier (3) sits with its apolar tail in the fat (2) 

and with the polar head (the green ball) in the water (1). The function of the emulsifier can be 

compared with the function of the stearate molecule in soap. This is described in Chapter 2: The 

Basis. 

 

 
Figure 33 Mayonnaise 

with the emulsifier (3) on 

the interface between oil 

droplet (2) and water (1).  

Assignment 5  

You have made mayonnaise with oil droplets of 1 micrometer diameter. In this emulsion, the oil droplets 

comprise 70% of the total volume. Assume that the other 30% is water. You can assume that the oil 

droplets are round in shape. 

 

1. What is the volume and surface area of 1 oil droplet in this mayonnaise? 

2. How many droplets of oil are there in 1 litre of mayonnaise? 

3. What is the total surface area of all these droplets together? 

4. Imagine that the number of droplets is halved, because two droplets with a diameter of 1 

micrometer merge to form 1 new droplet. The diameter of the new droplet is not 2 micrometers. 

The new droplet is twice the volume of the old droplet. What is the total surface area of the newly 

formed droplets? 
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An important group of molecules which also have an emulsifying effect are the proteins. Some 

examples are soya proteins, gelatin, ovalbumin and milk proteins. 

There is an important difference between the proteins and the emulsifiers like phosphatidylcholine 

mentioned above. As you read in section 2.4.3, proteins consist of a chain of amino acids. One 

protein is composed of multiple amino acids. Thus, proteins are macromolecules. A protein is 

therefore much bigger than an emulsifier like phosphatidylcholine. This difference in size means that 

there are several hydrophilic and hydrophobic parts in proteins instead of one hydrophilic head and 

one hydrophobic tail per molecule. The hydrophilic parts of the protein stick more in the water and 

the hydrophobic parts more in the oil (Figure 34). 

 

 
Figure 34 An O/W emulsion with top left two oil droplets surrounded by molecules of an emulsifier like lecithin; on the right 

three oil droplets surrounded by proteins like emulsifier. 

 

There are two types of emulsion: O/W and W/O emulsions. The type of emulsifier largely determines 

which of these two emulsions is formed, because each emulsifier has, despite being amphiphilic, a 

slight preference for either the oil phase or the aqueous phase. This preference is expressed in the 

hydrophilic/lipophilic balance, also called HLB. The HLB scale ranges from 0 to 20. When an emulsifier 

has a low HLB value (3-6), it means that the emulsifier has a preference for the oil phase. A high HLB 

value favours the aqueous phase.  

The following formula is used to determine the HLB value of molecules:  

 

HLB = 20 * (Mw/MO) 

 

Mw is the molecular weight of the hydrophilic part of the emulsifier and Mo is the molecular weight of 

the total emulsifier. (It is multiplied by 20 to get to the scale of 0 to 20; this scale is arbitrarily 

chosen). 
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Assignment 6 

1. Indicate the hydrophilic and the hydrophobic part of phosphatidylcholine in the structural 

formula (Figure 32).  

2. Indicate the hydrophilic and the hydrophobic part of the following emulsifiers: 

 

 

 

 

 

 

 

 

 

 

 

Source 5  
Detergent of peptide basis can be activated and deactivated by pH 
by: Arjen Dijkgraaf 

   Wednesday 22 August 2007 
 

Australian scientists have developed peptide-based surfactants, which can be activated or deactivated by 
changing the pH of the solution. One of the applications of this would be a washing detergent that will 
work on a very short rinse cycle, according to Annette Dexter and Anton Middelberg (University of 
Queensland) during the American Chemical Society Conference in Boston. 
 
The idea is that the detergents in washing powders are already connected such that the pH during the 
washing cycle is different from that during the rinse cycle. If ‘pepfactants’ are added to deactivate the soap 
activity during rinsing, much less water is needed to rinse away the already loosened dirt.  
The pepfactants could also be incorporated in eye drops. They are milder than the usual surfactants, and 
they can also be used in such a way that the emulsion immediately breaks upon contact with the pH of the 
eye. 

 
Another application is in the separation of petroleum and water. Such emulsions are usually very difficult 
to break. Thanks to pepfactants it would be possible to 'rinse' much more oil out of an almost exhausted 
source, whereby the detergents employed could be re-used again and again.  
According to Dexter, the problem is that pepfactants cost 500 dollars per kilo. Normal detergents can be 
bought for 10 dollars..  

    Source: www.c2w.nl 

Assignment 7 

In Chapter 2: The Basis, the action of soap was explained with the help of a diagram. 

Draw the structural formula of the soap molecule stearate (stearic acid), see BINAS table 67B1. Indicate on 

the drawing where the hydrophilic and hydrophobic part of this molecule is situated. Indicate also where 

the molecule is positioned on the air-water interface. 

  

Figure 35 Mono-glycerides 

Mono-glycerides are commonly used to stabilise 

emulsions like ice cream and margarine 

Figure 36 Citric acid ester 

These ester molecules are 

used as emulsifiers in 

amongst others margarine 

Figure 37 di-acetyl-tartaric-acid ester, commonly used to improve the 

stability of salad dressings  
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Assignment 8 Zap soap (from: Chemie Aktueel volume 19, no. 57) 

Read Source 5.  

Annette Dexter and Anton Middelberg have made a 'pepfactant'. The word pepfactant is a combination of 

the words peptide and surfactant (substance that lowers the surface tension of a liquid). The peptide 

consists of 21 amino acids with the abbreviation Ac- M K Q L A D S L H Q L A R Q V S R L E H A -CNH2. In this, 

Ac represents the carboxyl end and CNH2 the amino end of the peptide. The letters in-between represent 

the amino acids from which the peptide is composed. See table 67C1 in BINAS for the coding of the amino 

acids.  

 

1. Draw the “SLHQ” segment of the peptide chain in structural formula. 

2. A peptide is a helical structure. Explain why a peptide can form a helix. (See section 2.4.3) 

Below you will see a representation of a helical wheel to help you study the 3D-structure of a peptide. Copy 

the peptide Ac- M K Q L A D S L H Q L A R Q V S R L E H A  -CNH2 onto a piece of paper and number the 

amino acids from left to right. Compare this with the helical wheel. The ‘wheel’ is what you see if you look 

along the axis of the helix. 

    
 

In the figure below, the 3-letter abbreviations for the amino acids appear in the helical wheel of the  

pepfactant. 

 
 

3. In the helical wheel indicate with an A or a P whether the side group of the amino acid is hydrophobic or 

hydrophilic. (A=apolar P=polar). See BINAS. 

4. Using the answer to question 3, explain how the helix can be used as a soap. 

5. Why will the pepfactant not be used on a large scale in the short term? 



 

Molecular Gastronomy, June 2010. -62-

 

 
 

 

 

 

 

 

 

Figure 38 Ingredients AdeZ 

 

 

 

 

 

 

 

 Figure 39  Ingredient Chocolademelk 

 

 

 

 

 

 Figuur 40 Ingrediënten Becel light 

Assignment 9 HLB values  

1. An emulsion is stable when the emulsifier dissolves well in the continuous phase. Explain what 

type of emulsion (W/O) or (O/W) is formed with emulsifiers with a low HLB value and which with a 

high HLB value.  

2. Look at the ingredient label of AdeZ, chocolate milk and Becel light (Figure 38-40). Fill in the table 

below (Table 6):   

a. Which ingredient is the emulsifier? The names of the ingredients with E numbers can be 

found in BINAS table 82C. 

b. Is the product an oil in water emulsion or a water in oil emulsion (use the HLB number 

that is already entered in the table)? 

c. In addition to the molecular emulsifiers in the products, there are also proteins present as 

emulsifiers. For each product write which protein can also act as an emulsifier.  

    Table 6 Emulsifiers 

Product Emulsifier HLB Emulsion type Proteins 

Chocolate milk 

Friesche Vlag 

 8.0   

AdeZ  8.0   

Becel light  3-6   

 

3. A chef comes to you with an idea for making a prawn mayonnaise. Some of his clients are allergic 

to egg protein, so he doesn’t want any eggs in his mayonnaise. He is looking for another emulsifier. 

Give the chef some substantiated advice about which emulsifier would be suitable. 

 

Ingredients: 
 

Water, fruit juice concentrate (16.5%) (grape, apple, mango (1.8%) peach 

(1.5%)), sugar, soy-protein (1.1%), citric acid, minerals, vitamins (C, B6, B2, B1), 

stabilizer (pectin), soy-oil, emulsifier (soy lecithin), artificial sweeteners 

(sucralose, acesulfame-K), colouring (beta-carotene)    

 

 

Ingredients: 
 

Skim milk, whey, sugar, cream, cocoa (1.7%), stabilizers: 

E471, carrageenan, guar gum, aroma 

Ingredients: 
Water, vegetable oil, gelatine, emulsifiers (E322, E471), preservative E202, 
vitamins (E, B6, A, folic acid, D, B12), aroma’s, colouring E160a 



 

Molecular Gastronomy, June 2010. -63-

 
 

 
 

Assignment 10 Double emulsions 

Read the above newspaper article. 

Now you have looked at O/W and W/O emulsions, but more and more experiments are being conducted 

with emulsions. One of the latest developments in the field of emulsions is a so-called double emulsion, as 

described in the newspaper article. 

1. Draw the microstructure of the double emulsion mentioned in the text. Clearly indicate what is 

water and what is oil. 

2. What would you call this double emulsion? An O/W/O emulsion or a W/O/W emulsion? 

 

For the double emulsion in the text, a lot of force is used to make extra small oil droplets. There is an 

alternative way of making double emulsions, with the HLB values of emulsifiers. 

3. How do you think you can make a double emulsion using your knowledge of the HLB values? 

4. Will the microstructure of this double emulsion be the same as that of the emulsion you drew in 

1.? 

 

5. Which of these 2 methods do you think is the most suitable for making double emulsions? 

 
Assignment 11 How much egg yolk is required to make mayonnaise? 

1. Relatively little egg yolk is needed to make a lot of mayonnaise. You are now going to work out 

precisely how much mayonnaise you can make with one egg. Start with the following data: 

a. There is about 5 g emulsifier in one egg (this is 0.025 mol) 

b. The emulsifier takes up about 1 nm
2
 per molecule 

c. The oil droplets in the mayonnaise have a radius of 10 micron (= 1x10
-5

 metre). 

d. Start from the assumption that the entire surface of the oil droplets is covered with 

emulsion. 

2. In the previous question you started on the assumption that only the quantity of emulsifier in the 

egg yolk determines how much mayonnaise you can make, but this is not entirely true. What else 

could you add more of to make an equal amount of mayonnaise with one egg? 

 

3. If you assume that the thickness of the layer of water around the oil droplets is 0.1 micron 

(=0.1x10
-6

 metre) and that there is about 100 ml water in egg yolk, how many litres of mayonnaise 

can you make without adding water? 

(Remember, the amount of water required for each droplet is the surface area of that droplet 

multiplied by the thickness of the layer of water) 

Low-fat mayonnaise can be much tastier  
No. 1 March 2010  
  
 

Emulsions, like mayonnaise, are becoming more low-fat, tastier and longer lasting thanks to a very 
promising new technology. Koen van Dijke has developed a method for the chair group Food Processing 
Science at Wageningen University, where he graduated with a PhD in November 2009. 

Emulsions from immiscible liquids, such as oil and water, are present in everyday food items like milk, 
low-fat margarine and mayonnaise. “Current methods of mixing use a lot of energy and do not always give 
the best result", says van Dijke. “With this new microscale system, we allow a very thin film of oil to flow 
into water. This produces oil droplets, about two thousand per second, that mix with water.”  
These emulsions seem to be more homogeneous than current emulsions and the production process uses far 
less energy. In addition, double emulsions can be made using this method. So you could make a super low-fat 
mayonnaise which tastes the same as its full-fat equivalent. 
Source: Wageningen World  

Source 6 
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3.5 Emulsions in the kitchen 

 

In the previous section you looked at emulsions at the molecular level. In this section you will be 

looking at a number of examples of emulsions in the kitchen. 

3.5.1 Cream and butter 

 

Milk can be made into cheese, custard, yoghurt, ice-cream, milk foam (for cappuccinos), milk 

powder, condensed milk, not forgetting butter and cream, the dairy products which we will be 

examining in this section. Figure 41 shows how some dairy products are made from milk.  

 

 
Figure 41 Milk and milk products  

First, the milk is centrifuged to separate it into cream and skimmed milk. Butter can be made from 

the cream. The cream can also be mixed again with the skimmed milk. This mixing process is also 

called standardisation, because it occurs in a fixed ratio. In this way milk with precise fat percentages 

can be made: full-fat milk contains more cream than semi-skimmed milk.  

 

Butter is an emulsion, but a special one: it is actually a solid rather than a liquid emulsion.  

 

In this section you will take a closer look at the microstructure of butter and the way in which water, 

oil and the emulsifier in butter are arranged.  

Table 7 shows the composition of cream and butter. Like mayonnaise cream is an oil in water (O/W) 

emulsion. Butter is a water in oil (W/O) emulsion. 

 
Table 7 Composition of cream and butter 

Component Quantity in cream (%) Quantity in butter (%) 

Water 69.5 17.2  

Fat 20.0 82.0 

Lactose 5.0 0.2 

Protein 3.5  0.6  
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The microstructure of cream is visible in Figure 42. The key 

components are the fat droplets (dispersed phase) and the water 

(continuous phase). Milk proteins and lactose, among other 

things, are dissolved in the water; this liquid is also called the 

plasma of the milk. A special membrane made up of several layers 

of proteins is positioned between the fat droplets and the 

aqueous phase. This membrane is in fact the emulsifier in the 

cream, similar to the molecular emulsifiers in the previous 

section. The proteins sit at the interface of the plasma and the fat 

droplets.  

 

Butter is a solid water in oil (W/O) emulsion and cream is a liquid 

oil in water (O/W) emulsion.  

 

How do you make butter from cream?  

• You have to make a solid emulsion from a liquid emulsion. 

• You need to ensure that the O/W emulsion becomes a W/O emulsion. 

 

How can you ensure that these changes take place? By using the characteristics of the components 

that we have.  

Start with the characteristics of the fat molecules. The fats in milk consist mainly of saturated fatty 

acids, like animal fats in general. Vegetable fats consist for the most part of unsaturated fatty acids. 

Saturated fats have a high melting point. Table 8 gives a list of the fatty acids present in cream and 

their melting point. The molecular formulas of the fatty acids can be expressed as Ca:b, where a is 

the number of carbon atoms in the chain, b is the number of double bonds in the chain. Because of 

the difference in melting point, part of the fat in milk is always liquid and part solid. The solid part is 

also called the crystal form. This fraction (the proportion of fat in crystal form) increases as the 

temperature falls.  If you cool cream to about 14 °C, a certain percentage of the fats will become 

solid (i.e. will assume the crystal form), and the liquid emulsion will become a solid emulsion. 

 
Table 8 The fatty acid composition of cream fat 

Fatty acids  Molecular formula of 

the fatty acids 

Percentage of the 

total fat (%) 

Melting point 

(°C) 

Butyric acid C4:0 9.5 -8 

Capronic acid C6:0 4.1 -4 

Caprylic acid C8:0 0.8 16 

Caproic acid  C10:0 3.2 31.5 

Lauric acid  C12:0 2.9 44 

Myristic acid  C14:0 11.5 54 

Palmitic acid C16:0 26.7 63 

Stearic acid C18:0 7.6 70 

Arachidic acid C20:0 1.8 75 

Palmitoleic acid C16:1 4.3 0 

Elaidic acid C18:1 22.4 43 

Linoleic acid C18:2 3.1 - 5 

 

In order to change the O/W emulsion into a W/O emulsion, you use a different property of the fat. 

The fat in the cream has a greater affinity for an air phase than for an aqueous phase. It is therefore a 

case of choosing the least bad option, whereby the fat droplets in cream favour the air phase. When 

you beat air bubbles into the cream, the fat will therefore go to the interface of the air and the cream 

(Figure 43 step 1; the stripes on the fat globules represent partially hardened fat).  

Figure 42 Microstructure of cream  
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On the water-air interface they spread some of their liquid fat and a part of their membrane over the 

air bubble (Figure 43. step 2). Due to the high concentration of fat, several fat globules stick to one 

air bubble. The air bubbles move through the liquid and collide. The films of the air bubbles are 

unstable due to the fat layer, so two air bubbles merge (coalesce). This makes their surface area 

smaller and the present fat globules are driven towards each other. The liquid fat now works as an 

adhesive, sticking the fat globules together (Figure 43. step 3; a little liquid fat may remain). If you 

continue to beat the cream, the coagulation will take over: this beating is called churning.  

 

 
Figure 43 Churning butter 

 

The clots now take part in the churning process, creating bigger clots. The bigger they become, the 

more direct collisions occur between them and clots grow without the need for air bubbles. More 

liquid fat is released and at the end of the churning process, there are few air bubbles left, because 

there are too few fat globules to stabilise the air bubbles. Thus, a network of clotted fat globules is 

formed that ‘envelops’ the aqueous phase. At the end of the churning, you have formed a 

continuous phase of fat, with a few water droplets in-between. The emulsion has been converted 

from an O/W emulsion to a W/O emulsion; the cream has been transformed into butter. The 

complete process of butter-making is shown schematically in Figure 44 (Yellow: fat, white: air, blue; 

water). 

 

 
Figure 44 From cream to butter  

 

Assignment 12 Butter comes in many guises 

When you walk through a supermarket, you will notice that there are a great many different types of 

butter. It is also striking that nowadays there is more and more 'low-fat' butter (e.g. low-fat margarine, 

Becel light, etc.) on the market. 

1. Calculate how many kcal per 100 g there is in butter and in low-fat butter, assuming that butter 

contains about 80% fat and 20% water, low-fat butter 40% fat and 60% water, and that fat 

contains 9 kcal per gram and water 0 kcal per gram. 

2. These low-fat butters are made by reversing emulsions, thus producing an O/W emulsion. What 

will play an important role in keeping these types of butter stable? (something that plays hardly 

any part in normal butter; think about what can go wrong when making mayonnaise). 

Apart from its use as a spread for bread, butter is also used a lot in the kitchen for cooking. Either as an 

ingredient or for cooking ingredients in. Low-fat butter is never used for this purpose.  

3. Why do you think it is not possible to use a low-fat butter for cooking? 

4. How would you resolve this problem? 
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Make your own butter!  

 

Heat up 500 ml raw milk to 40 degrees; let it cool and put the milk in the fridge overnight. Next day, separate 

the cream from the skimmed milk (the milk without fat). Put the cream in a jam jar and get shaking. The fat in 

the cream will clot and you have made butter. You can buy the raw milk from a farmer.  

 

3.5.2 Vinaigrette 

Vinaigrette is a French salad dressing. The basis consists of approximately 1/3 water and 2/3 oil. The 

aqueous phase consists mainly of vinegar. A vinaigrette is easy to make.  The oil, vinegar and other 

ingredients such as pepper, salt and herbs, are shaken together to create a cloudy emulsion. The 

vinaigrette is immediately poured over the salad, before the emulsion has time to separate.  

A vinaigrette can be an O/W or a W/O emulsion.  

 

The O/W emulsion and the W/O emulsion are not very alike. The first variant is thick, contains big 

particles and is white; the latter is transparent and much thinner. The product characteristic 

thickness is also called viscosity. Viscosity is a measure of the amount of energy lost when a liquid 

flows. The energy is lost because the liquid molecules rub together (friction) when they move 

alongside each other. The more friction takes place, the higher the viscosity.  

You can calculate the viscosity of a liquid in the following way. Imagine you have two plates, with a 

liquid between them (Figure 45). One plate moves while the other does not.  

 

 
Figure 45 Two plates with a liquid between them. The factors that affect the force are represented.  

If there were no friction, you would not need to exert any force on the moving plate. In practice, 

however, friction does take place. So a force is needed.  

 

In addition to butter and low-fat butter, there is also margarine. Like butter, margarine also contains around 

80% fat. The main difference is that margarine is made from vegetable oil and butter is made from milk. 

5. What is the advantage of using vegetable oil instead of milk fat as in butter? 

6. Could you use margarine for cooking? 

Assignment 13 Vinaigrette 

1. Salad leaves are also hydrophobic. Give reasons for which type of vinaigrette (W/O or O/W) is most 

suitable for making salads. 

2. Draw the microstructure of this vinaigrette. Indicate the position of the oil, the water and the 

emulsifier. 

3. When salad leaves are cut, the cell fluid which is largely water, is released from the salad cells. 

Explain which type of vinaigrette (W/O or O/W) is suitable for cut salad. 

4. Draw the microstructure of this vinaigrette. Indicate the position of the oil, the water and the 

emulsifier.  
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This force depends on the following factors: 

• The surface area of the plates: A 

• The distance between the plates:  d 

• The speed with which the plates move: v  

• A constant, that depends on the extent of friction between the molecules. This constant is 

also called viscosity – η 

The above can also be expressed as a formula: 

d

vA
F

η⋅⋅=  

 

 
3.6 Stability of emulsions 

 

An emulsion is stable if the two phases mixed with each other do not separate again. The process of 

separation is also called ‘shifting’. In the case of mayonnaise the two phases are oil and water. When 

the oil and water phase of the mayonnaise separate, you get shifted mayonnaise. This looks 

unappealing.  

 

If you want to make a molecular gastronomical dish with new ingredients, it is important to know 

about the factors that affect the stability of your food. You can put a lovely sauce on the table with 

new ingredients or flavours, but if the sauce starts to shift after five minutes, the effect is lost. 

 

You can calculate the stability factors. Begin by checking which forces are exerted on one single 

droplet of oil in mayonnaise or in a salad dressing. Which physical forces affect this droplet?  

 

Think of a motionless drop of oil in an aqueous environment. There are two forces constantly being 

exerted on the droplet. Gravity pulls the droplet downwards and buoyancy pushes the droplet 

upwards. The latter force equals the weight of the displaced water and so should be greater than 

gravity because oil is lighter than water. The droplets should therefore move. Or, put more 

scientifically: there is a resultant that ensures upward acceleration.  

The droplet therefore gains speed and this speed increases. But moving objects in a medium always 

experience resistance. This is because the molecules of the object and of the medium exert forces on 

each other.   

Assignment 14 Viscosity 

Rank the following products from high to low viscosity:  

mayonnaise, water, tomato ketchup, peanut butter, salad dressing, milk 
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Figure 46 shows the forces exerted on the droplet.  

 

Buoyancy and gravity do not change, and only depend on the size of the droplet 

and the densities of both liquids. The resistance, however, does change: the 

greater the speed, the greater the resistance. The resultant and also the 

acceleration diminish as the resistance increases. 

What is remarkable here is that the acceleration itself is responsible for 

reducing the acceleration. The acceleration digs its own grave!  

The resistance reacts very quickly to the changes in speed and therefore 

changes take place relatively quickly. In practice you see droplets of oil in water 

rising to the top with a constant speed.  
 

What does this constant velocity depend on? 

 

The answer to this question requires further explanation of the above analysis with formulas. 

 

Using Figure 46 and the above analysis, it can be established that where there is a uniform motion of 

the oil droplet: 

 

wzo FFF =−         (1) 

 

If these forces are described as a function of radius, densities, velocity and viscosity of water, you get 

a comparison. From this you can deduce how the velocity depends on the radius and the densities of 

oil and water and on the viscosity of the water.  

 

Gravity  

The following applies to gravity: 

 

grF

gVF

gmF

oilz

oilz

oilz

⋅⋅⋅=

⋅⋅=
⋅=

)( 3
3
4 πρ

ρ
 

 

Therefore 

3
3
4 rgF oilz ⋅⋅⋅= ρπ        (2)  

 

Buoyancy 

Archimedes’ principle applies to buoyancy: 

 

Archimedes’ principle 

 

“Any object, wholly or partially immersed in a fluid, is buoyed up by a force equal to the weight of the fluid 

displaced by the object.” 

 

 

 

Figure 46 The forces that are exerted   

on a rising emulsion droplet.  
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grF

gVF

gmF

watero

watero

watero

⋅⋅⋅=

⋅⋅=
⋅=

)( 3
3
4 πρ

ρ  

 

Therefore 

3
3
4 rgF watero ⋅⋅⋅= ρπ        (3) 

 

Frictional force  

 

How much friction will the oil droplet experience and on which factors does this friction depend?  

The following factors play a role: 

• The viscosity of the liquid.  

A thick liquid creates more friction than a thin liquid.  

• The velocity of the oil droplet.  

The higher the speed, the more friction takes place. 

• The size of the oil droplet.  

The bigger the droplet, the greater the frictional force. 

 

These three factors are summarised in Stokes’ law. Stokes established that the relationship between 

the frictional force (Fw) and the named factors, the viscosity of the liquid (η), the velocity (v) and the 

size (r) of the emulsion droplet – can be expressed as follows:  

rvFw ⋅⋅⋅⋅= ηπ6         (4) 

 

From comparisons 1 to 4, it now follows that: 

 

 

rvgrgr ow ⋅⋅⋅⋅=⋅⋅⋅⋅−⋅⋅⋅⋅ ηπρπρπ 6
3

4

3

4 33
   (5) 

 

If you use the diameter (d) instead of the radius (r), it can be deduced that:   

 

 

( )
η

ρρ
⋅

⋅⋅−
=

18

2dg
v ow

             (try and deduce this yourself)    (6) 

 

 

Symbol Meaning  Unit 

 v velocity ms
-1 

ρw density continuous phase kgm
-3

 

oρ  density dissolved phase kgm
-3

 

g gravitational acceleration ms
-2

 

d diameter of the droplet m 
η  viscosity Pa s 

 

         

Assignment 15 

Enter the unit for all symbols in the 

deduced formula and see if you also 

come up with the unit of velocity. 
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This formula for calculating the velocity applies to all emulsions with droplets bigger than 1 μm, i.e. 

for fat droplets in milk, mayonnaise and vinaigrettes. 

 

 

 
3.7 Emulsions in the molecular gastronomical kitchen 

 

Armed with your knowledge about the molecular properties of fats, water and emulsifiers, you are 

going to look at some molecular gastronomical emulsions. 

 

3.7.1 Making molecular butter 

 

Butter has the awkward characteristic of being too hard to spread on bread when taken straight from 

the fridge. How can molecular gastronomy help the cook to adapt this product characteristic of 

butter to his dish? In his book ‘Molecular Gastronomy’ Hervé This described how this is possible. 

 

 

 

Assignment 16 Making vinaigrettes 

Soon after making a vinaigrette a chef will notice that it is not stable. So the time between making the 

vinaigrette and putting it on the table should not be too long.   

1. Describe in your own words what happens to a vinaigrette once it is no longer stable. 

The vinaigrette is made as follows:  

I. One tablespoon of vinegar, one tablespoon of cold strong stock, half a teaspoon of salt and 

pepper to taste are mixed together in a bowl. 

II. Then the olive oil is slowly added.  

2. On the basis of this description, explain what type of emulsion is formed (W/O or O/W). 

3. The chef would like to know how long the vinaigrette can be left to stand before it separates. For 

this you need to know the velocity of the oil droplets in the vinaigrette. The oil droplets in the 

vinaigrette have a diameter of 50 micrometres (Figure 47). The viscosity of water is 1*10
-3

 Pa s. 

Calculate the velocity of the oil droplets in the vinaigrette. 

 
Figure 47  Vinaigrette 

 

4. Calculate how long it will be before the vinaigrette is completely separated. The container in which 

the vinaigrette is placed is 20 cm high. The oil droplets are uniformly distributed, so the average 

distance that one droplet covers is 10 cm. 

5. Ready-made vinaigrettes from the shops have to stand longer than those in the kitchen. The 

industry therefore uses thickening agents, such as xanthan, to make the vinaigrette thicker. By 

adding xanthan, the viscosity of the continuous phase is increased. Calculate how high the viscosity 

has to be to keep the vinaigrette stable for six months. 
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Take a careful look at table 8 in section 3.5.1, which lists the various fats present in butter, along with 

their melting points. In contrast to water, which melts at 0 °C, butter has not one but several melting 

points; this is called a melting trajectory. The melting trajectory of butter ranges between -50 °C and 

+40 °C. At 4 °C, 70% of butter is present in solid form, and at 30 °C, 10%.  

 

Butter can be divided into three fractions on the basis of its melting point: 

• The first fraction consists of short fatty acids with double bonds, whose melting point lies 

between -50 °C and 10 °C.  

• The second fraction consists of short fatty acid chains with a few single bonds. These fats 

have melting points between 10 °C and 20 °C.  

• The third fraction consists of saturated fats, which have a melting point between 20 °C and 

40 °C.  

 

The French physical chemists Frédéric Lavigne and Michel Ollivon and their colleagues researched 

not the melting but the hardening of butter. This process is also called crystallisation. First they 

heated up some butter, then they let it slowly cool down. Because of the different melting points of 

the fats, they were able to extract the different fat fractions from the butter. Caprylic acid, for 

example, crystallises at a temperature of 16 degrees, and can then be extracted from the butter, and 

caproic acid at 31.5°C.  

 

 

 

Making molecular butter 

 

With a little help from a pack of butter and a pan you can make your own butter at home. In order to separate 

the different fat fractions, heat up the butter and then let it cool down slowly. This process is also called 

fractional crystallisation.  When you allow the melted butter to slowly cool, you can isolate those crystals (solid 

particles) that appear at the same temperature and which all consist of the same sort of molecule. Extract the 

different fat fractions from the butter. When you have a number of fat fractions, you can mix them together 

again to make perfect butter that will spread straight from the fridge. 

Assignment 17 How do you make perfect butter? 

Imagine you want a soft creamy butter which is easy to spread straight from the fridge. Which fat fractions 

should you use to make it?  

Imagine you want to make a hard butter. Which fractions would you use for this? 
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3.7.2 Mayonnaise… with a twist! 

As you now know mayonnaise is composed of oil, water and an emulsifier. In addition to these 

components, there are several other ingredients, namely mustard, salt, lemon juice and/or vinegar. 

These are vital, because they add flavour to the mayonnaise. You also now know what makes a 

mayonnaise stable and which ingredients it must contain. In the following assignment you will invent 

new mayonnaises by changing the various ingredients. 

 

 

As you will see, using your knowledge about emulsions and molecular gastronomy, you will be able 

to make totally different sauces, such as mayonnaise for people who are allergic to chicken protein.  

3.7.3 Aioli  

 

Aioli is an emulsion sauce from the Provence, a region in France. It is made from olive oil and crushed 

garlic. But normally speaking oil and water don’t mix. So how can this emulsion sauce be stable 

without the addition of an emulsifier like egg yolk or milk protein?  

Hervé This has also done some research on aioli. Garlic appears to contain surfactant molecules. As 

with the other emulsifiers that you have come across, these molecules sit on the interface of oil and 

water.  

So, if you can make an emulsion from just garlic and oil, does it work with other vegetables? 

 

The answer is right in front of your nose. As we know from biology, all animal and plant cells contain 

water and proteins. The proteins that occur in nature in vegetables can also be used as emulsifiers, 

provided that you extract these surfactant molecules from the cells. You must therefore break the 

cells, just as you crush the garlic to make aioli, so that the emulsifiers are free to do their job. 

Meat and fish can also be used to make sauces. The great thing about these is that you don’t have to 

add any extra protein, because the emulsifier is already present! A meat mayonnaise or a fish aioli 

can be easily prepared in the kitchen.  

 

 

Assignment 18 Mayonnaise, with a twist 

1. First we are going to look at different flavourings that you can add. You know that mayonnaise 

consists of an oil and a water phase and that flavourings dissolve in one of these two phases (see 

chapter 2 section 1.2). Think about how you can make a savoury mayonnaise, describe the process 

at each step (hint: chicken stock gives a wonderful savoury taste). 

 

Your savoury mayonnaise is a big hit, and you are asked to make prawn-flavoured mayonnaise.  

2. How would you go about making a prawn-flavoured mayonnaise? (Remember that taste is largely 

determined by aroma molecules!) 

 

Now that we have looked at a number of different flavours, we can take a look at the egg yolk, the 

emulsifier.   

3. Is it possible to make mayonnaise without this egg yolk? And if so, how? 
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4 Foams 

Obvious examples of foams in the kitchen are whipping cream, chocolate mousse and cappuccino 

foam. But did you know that bread, currant loaf and ice-cream are also foams? One thing that these 

foods all contain is gas.  

 

Ferran Adrià is one of the most famous chefs in the world. Between 2006 and 2009 he was elected 

the best chef in the world four times in a row. He cooks in the trendsetting Spanish restaurant El 

Bulli. The unique thing about the philosophy in the El Bulli kitchen is that existing recipes are 

deconstructed and then put back together again in a new way, using new ingredients and new 

equipment. Take a look at the following film clip (URL-2) to get an idea of what goes on at El Bulli.  

 

 
Figure 48 The red line 

Following the El Bulli philosophy, the Dutch chef Moshik Roth created a ‘new’ stew. The various 

ingredients in the stew (carrot, potato, onion and smoked sausage) were used to make a foam 

structure. This makes a new experience out of eating stew.  

 

What is the scientific definition of a foam?  

A foam is a dispersion of gas in a continuous phase. The continuous phase consists of a combination 

of the basic components water, proteins, carbohydrates and fats. Not all basic components are 

present in every foam. For example, a beer foam consists only of water, protein and carbohydrates. 

The gas bubbles in the foam vary in size from a few millimetres (whipping cream), to a few 

centimetres (bread). The continuous phase in a foam often forms a thin layer, also called an 

interfacial film. Foam can be divided into two categories, depending on the molecules in the 

continuous phase: 

• Foams that are based on proteins and carbohydrates. 

• Foams that are based on proteins and fats. 
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The difference between an emulsion and a foam 
  

The dispersed phase in an emulsion is a liquid and in foam a gas.  

A liquid droplet in an emulsion is 1000 times smaller than a gas bubble in a foam. 
 

Major differences between liquids and gases in this context are: 

• Gases and liquids differ in density by a factor of 1000.  

• A gas can be compressed more easily than a liquid.  

• The solubility of gases in water is greater than that of oil in water. 

 

In this chapter the emphasis will be placed on foams based on proteins and carbohydrates. 

Foams can be liquid (e.g. beer foam), but also solid (e.g. bread foam). There are also a great many 

intermediate foams: they are not entirely solid, nor entirely liquid (e.g. bread dough, whipping cream 

and chocolate mousse). The subdivision into solid and liquid foams can be found in Figure 49, a table 

you will recognise from Chapter 2. 

 

 
Figure 49 Types of dispersions  

Learning goals  

When you have completed this chapter, you will know: 

1. the molecular interactions between proteins and carbohydrates that form the basis of a 

foam. 

2. the formation of other foams that have not been dealt with using the knowledge acquired in 

this chapter. 

3. three processes that ensure the stability of foams. 

4. the ideas behind molecular gastronomical foams. 

 

Structure of this chapter 

Sections: 

4.1  The role of proteins in a foam 

A more in-depth look at the interactions of proteins in foam. 

 

4.2 The role of sugars in a foam 

 A more in-depth look at the interactions of carbohydrates in foam. 

 

4.3  The stability of foams  

Description of the three mechanisms that ensure the stability of a foam.  

 

4.4  Examples of foams in the molecular gastronomical kitchen 

Molecular gastronomical foams and a few examples of foams. 
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4.1 The role of proteins in a foam  

 

In this chapter you are going to look at the meringue by way of example. A meringue is a light and 

crispy foam that is often served as a dessert. The key ingredients are egg white and sugar. There are 

various stories about the origins of 

meringue. The traditional view is that 

meringue was invented in the Swiss town 

of Meiringen by an Italian chef. The recipe 

for a meringue had already been 

recorded in 1692 by the French cook 

François Massialot.  

There are many variations of the recipe. 

The most well-known of them is the hard 

and airy version. By way of illustration, 

you will find one of the recipes below for 

making meringue.  You don’t need to 

make this yourself.  

 

 

 

 

Figure 50 A meringue (Van der Linden, 2008) 

Recipe for Meringue 

 

Ingredients  

• 2 egg whites  (the whites of two eggs)  

• 100 g sugar  

• 1 tsp vinegar  

 

Equipment 

• oven  

• baking paper 

 

Preparation Preheat the oven to 100 °C. 

Whisk the egg whites while adding the sugar little by little until stiff peaks are formed. Add the vinegar and 

mix everything together. With 2 spoons scoop up 12 oval forms and place on the baking tray lined with baking 

paper or use an icing tube to squeeze out shapes onto the baking tray. Bake the meringues for about 1 hour 

for small shapes and 1 hour 20 minutes for bigger shapes. The outside should be dry and easy to remove from 

the baking paper. 

Assignment 1 The microstructure of a meringue 

1. In the online nutrient table (URL-3) table look up which main components the egg white contains 

(if you do not have access to a computer, you can ask the lecturer for a hard copy). Draw the 

microstructure of a meringue after it has been beaten to stiff peaks, before it goes in the oven. 

Indicate on the drawing what is the dispersed phase and what is the continuous phase. 

2. Indicate which molecules are in the dispersed and which in the continuous phase. 

3. The protein acts as the emulsifier. Draw the protein in the foam. Draw a schematic diagram 

showing the position of the hydrophilic and hydrophobic parts. 
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Researchers at Wageningen University together with Jonnie Boer, owner of the 3-star restaurant ‘De 

Librije’, have carried out research on the meringue. De Librije wanted to make foams that were 

similar to meringue, but with a different flavour. Jonnie Boer knew from experience that, for 

example, you can make a foam with apple, but not with melon. The chefs at De Librije wanted a 

standard foam recipe, which could be used to make foams with all kinds of ingredients.  

 

The researchers and chefs were inspired by ice-cream. Ice-cream is also a foam and exists in 

hundreds of different varieties of taste and colour. Would it be possible to make meringues in so 

many varieties? Can you change the taste and keep the same meringue-like structure? The answer to 

this question lies behind the science of the meringue.  

 

Figure 51 shows meringues prepared with different concentrations of protein and sugar (sucrose). In 

this chapter you will find out how the variation in the concentration of the basic components causes 

these meringues to look so different from one another.  

 

 
Figure 51 Meringues with different concentrations of sucrose and protein. 

In meringue, the basic components of protein, sugar and air are mixed together.  

 

The egg white serves three functions in the meringue: 
 

1. It works as an emulsifier, also called a surfactant. 

2. It ensures that the foam remains stable when it is whipped.  

3. The denaturation of the protein in the warm oven makes the foam even more stable.  
 

All these three functions will be discussed again later in this chapter.  
 

When making a meringue, you start by beating the protein (the white of an egg). Using a whisk you 

beat air (the dispersed phase) into the water of the protein. Why don’t the air bubbles beaten in this 

way immediately come out of the aqueous phase again? As we saw in the chapter on emulsions, 

there are emulsifiers in egg whites (surfactants). The emulsifiers in egg white are proteins.  
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In the mayonnaise the emulsifiers moved to the interface of water and oil. There is no oil in the 

meringue. Here the emulsifier positions itself on the interface of water and air, as it does in soapy 

water. 

 
Figure 52 The meringue on a microscale 

There is some time between beating the foam and putting it in the oven. In this time the protein and 

the sugar stop the foam from collapsing. Together they form ‘solid walls’ between the air bubbles, 

preventing the joining of several small air bubbles into a bigger one.  

 

 

When the meringue is heated in the oven, the proteins that are present denature. Protein 

denaturation is the change in the structure of proteins under the influence of heat, acid, alcohols, 

salt or beating.  Proteins denature, therefore, if they are exposed to higher temperatures and also if 

they are beaten.  

The denaturation of the proteins and the addition of the sugar turn the liquid foam into a solid foam. 

In order to understand the concept of protein denaturation, we need to take a much closer look at 

the secondary and tertiary structure of proteins.  
 

 
     Figure 53 Proteins  

2 How much protein is needed 

1. A chef is going to make a meringue. He only has a few eggs. He would like to make the best use of 

these to make as much meringue as possible.  

Calculate how many air bubbles there are in one litre of meringue foam. Do this using the following 

data: 

a. The diameter of the air bubbles in the meringue is 0.4 mm. 

b. 80% of the foam is air.  

2. The protein moves to the interface of the air and the liquid. Calculate how much protein is 

required per m
2
 air bubble for the interface. You have the following information: 

a. With 150 mg protein you can make half a litre of meringue foam (total volume). 

b. Assume again that 80% of the foam is air. 

3. Now determine how many litres of meringue you can make with 1 egg. One egg contains 1000 mg 

protein.  



 

Molecular Gastronomy, June 2010. -79-

Chapter 2 dealt with the composition of proteins and explained the primary, secondary, tertiary and 

quaternary structure of proteins. The secondary structure of the protein refers to the way in which 

the amino acid chain that makes up the protein, ‘rolls up’ or ‘curls’ in the available space, in short, 

what spatial form it takes. The form it takes is largely determined by the hydrogen bonds between 

amino acids. 

First, a spiral structure is formed. This form is called the α-helix (Figure 55). Myoglobin (a protein 

present in muscle tissue) is an example of a protein that consists mainly of helices. If the protein 

chain cannot ‘curl up' into a perfect spiral by means of hydrogen bonds, a β sheet is formed (Figure 

54).  

 

 
 

The manner in which these β sheets and α helices are arranged in 3D (=spatially), is called the tertiary 

structure of a protein. Figure 56 shows the tertiary structure of the protein alpha lactalbumin which 

is present in milk. The red spirals are the α helices and the yellow arrows are the β sheets. 

 

 
Figure 56 Alpha lactalbumin 

 

Figure 54 β sheet 

 

Figure 55 α helixes in myoglobin 
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The combination of the secondary and tertiary structure of the protein is also called the protein 

conformation. Since this conformation is stabilised primarily by hydrogen bonds, it is less strong than 

the covalent bonds between the amino acids. Two types of protein can be distinguished based on the 

conformation.  

 

• Globular proteins 

• Random coil proteins 

 

Alpha lactalbumin is an example of a globular protein (Figure 56). Globular proteins have many 

secondary and tertiary structures. The hydrophobic groups of the protein – if the protein is situated 

in an aqueous environment – are on the inside, and the hydrophilic groups on the outside of the 

protein molecule (Figure 57). A globular protein therefore has a hydrophobic nucleus and a 

hydrophilic exterior. Globular proteins are extremely compact; which is why they don’t swell up in 

water. Examples of globular proteins are gliadin (grain protein), β-lactoglobulin (milk protein) and 

ovalbumin (egg protein). 

 

Assignment 3 The tertiary structure of beta-lactoglobulin 

The protein beta-lactoglobulin is present in great quantities in milk.  

This protein also has β sheets (the yellow arrows) and α helices (the red spirals).  

 

    
1. Two pieces of amino acid chains are spliced (cut) from the protein.  

DALFKAL  

ENKVKDT  

Write the names of these amino acids (in three-letter abbreviations) side by side. Use table 67C 

from BINAS.  

2. Draw the structure of these two amino acid chains using the structural formulas from BINAS.  

3. On the basis of the type of amino acid, determine whether the two amino acid chains a and b will 

spatially form a β sheet or an α helix. 
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Figure 57 Schematic diagram of globular protein  

Random coil proteins are long linear chains, with no secondary and tertiary structures. These random 

coil proteins are roughly coiled in a round form. The dimensions of these proteins depend on the 

temperature, flexibility of the chain and the type of solvent (for example, water with or without salt). 

Some proteins are random coil proteins by nature, for example casein or gelatin. A schematic 

drawing of a random coil protein can be seen in Figure 58.  

 

 
Figure 58 Schematic diagram of random coil protein 

Upon denaturation globular proteins are converted into random coil proteins. The protein in the 

meringue consists largely of ovalbumin (egg protein), a globular protein. In addition to hydrogen 

bonds, other bonds also play a role in stabilising the molecule, namely: 

 

• Covalent sulphur bonds 

• Hydrophobic interactions 

• Van der Waals interactions 

• Ionic bonds 

 

The beating of the protein causes denaturation. When the whisk goes through the protein during 

beating, the forces exerted on the protein molecules cause the protein molecule to open up. 

When the meringue foam is heated in the oven, further changes occur. The heat causes the 

breakdown of hydrogen bonds, ionic bonds, Van der Waals interactions and covalent sulphur bonds. 

As a result the protein is pulled from its globular structure and converted into a random coil protein.  

 

The changes that take place at the molecular level can also be seen with the naked eye. The 

meringue foam becomes white and firm, when it is heated. But how can this change be explained?  
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This change is called protein denaturation and takes place in a number of steps (Figure 59): 

 
Figure 59 Protein denaturation in three steps 

In step one the proteins are still globular. In the second step a number of bonds, such as the 

hydrogen bonds, are broken. The proteins use the sites where bonds are broken to form new bonds 

with other proteins. This results in a network of proteins. This can be seen in step three. An example 

of such a network is a boiled egg. This network ensures the firmness of the boiled egg. Protein 

denaturation can also be represented as follows:  

 

Protein (step 1) partial denaturation (step 2) → irreversible denaturation (step 3) 

 

To a certain extent, protein denaturation is a reversible process. Initially there is an equilibrium 

between the protein and the partially denatured protein. But at a certain moment the reaction 

comes to an end and the process becomes irreversible. This also takes place when an egg is boiled.  

 

How does a boiled egg become white in colour?  In chapter 3 you read that emulsions are white 

because fat droplets are bigger than the wave length of light. The proteins in an egg in contrast are 

not bigger than the wavelength of light (they are about 5 nm). So the normal protein in an egg is 

transparent. Yet it turns white when cooked. The cooking process causes the proteins from the egg 

to denature and stick to each other. The result is a cluster. These clusters consist of a great many 

molecules, which increase the size of the protein cluster to almost a micrometre. This size is bigger 

than the wavelength of light, so a boiled egg is white in colour. 

 

 
 
4.2 The role of sugars in a foam 

 

The basic molecule of sugar is also present alongside the basic molecule of protein in the meringue. 

Saccharose, or table sugar, is used to make a meringue. This is a disaccharide, consisting of glucose 

and fructose. Mono- and disaccharides are used in foams to make them sweeter. They are also 

responsible for the crispy texture of the foam once it has been baked. Saccharides also play an 

important role in the thickness of the foam. Before the meringue goes into the oven, the saccharose 

prevents the foam from sinking due to the liquid running out. The sugar increases the viscosity of the 

foam (Figure 60). Saccharose dissolves on a molecular level, and is present in the continuous phase 

of the meringue. 

Assignment 4 Protein denaturation 

Watch the following film clip (URL-4) for a more detailed explanation of protein denaturation. In protein 

denaturation are the covalent bonds between the carbon atoms in the amino acid chain broken? Explain 

your answer. 



 

Molecular Gastronomy, June 2010. -83-

 
Figure 60 Relationship between saccharose concentration and viscosity   

When a meringue is heated in the oven, the water evaporates and the sugar concentration increases. 

This causes an increase in the viscosity. This together with the protein denaturation turns the liquid 

foam into a solid foam.  

 

In other solid foams, like bread, biscuits and cake, there is an additional mechanism to protein 

denaturation that is responsible for preventing the foam from collapsing. These products contain 

polysaccharides. Since polysaccharides contain macromolecules, they increase the viscosity at much 

lower concentrations of saccharose. In these foods, polysaccharides form a network similar to that 

formed by protein denaturation. The water is ‘trapped’ in this spatial network. See Figure 61. 

 
Figure 61 The difference between a monosaccharide and a polysaccharide in solution at the molecular level.  

 

Assignment 5 Sugar in foam  

1. Draw a schematic diagram in which you indicate the relationship between sugar concentration and 

viscosity. Indicate the expected relationship for the following types of carbohydrates: saccharose, 

glucose and starch. 

2. In some meringue recipes cornflour is used in addition to sugar. Cornflour consists largely of corn 

starch. Why is this ingredient used? 

3. Can all the sugar in the meringue be replaced by corn starch? 
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Profession box 3 

 

A real masterchef has the magic touch 

Interview with Adrian Bradshaw, born in Australia and working for 11 years at Mars International, two of those 

years at Mars in the Netherlands (known for Mars®, Snickers®, Twix®, M&M’s®) in Veghel as a process 

manager. Bradshaw studied chemical engineering in Australia and always had an interest in food. 

 

Bradshaw begins to enthuse about the differences between chefs in the kitchen and those at work in the food 

industry. “Chefs have got the magic touch”, says Bradshaw, "for instance, a real masterchef can mix ingredients 

and come up with a unique taste combination”. He can understand why some people pay a month’s salary for 

this magic. According to Bradshaw, what happens in industry is quite different; here the aim is to ensure that 

food used on a daily basis is of a good and consistent quality. He gives the example of a Mars bar; this product 

must have a consistent quality. Whether you eat it the day it was made or 12 months later, the taste must be 

(almost) the same. 

 

Asked whether ‘knowledge from the kitchen’ therefore has no place in industry, Bradshaw begins to laugh. He 

explains that every new project begins in the kitchen. Researchers think up a new product and a chef makes it 

in the kitchen. If this product complies with certain requirements (stable for long enough, tasty, good price, 

etc.) the product has to be made on a larger scale (this is called scale-up). This is the point at which Bradshaw 

gets involved; he forms a sort of link between the technicians who conduct the scale-up and the researchers. In 

Bradshaw’s opinion there are 3 important steps in this scale-up process. First the so-called pilot scale. The new 

product is still made individually in the kitchen (a so-called batch process); the pilot scale is a little bigger than 

the kitchen and becomes a continuous process, i.e. like on a conveyor belt. If the product succeeds on the pilot 

scale, production is scaled up about 10 times. This is called the concept line scale. This concept line scale can 

already produce enough to provide one country with the new product. At Mars they often use Belgium for this 

purpose, because 10 million inhabitants can be supplied from North Brabant. If everything goes to plan on the 

concept line scale and the product sells well, then a decision to increase the process another 5 times is made. 

This final phase is called the industrial scale, and from this point on the new product can be sold around the 

world. 

 

According to Bradshaw this scale-up process and the difference with the kitchen can be compared to climbing a 

mountain. The chef and Bradshaw both want to reach the same summit (a new product), but they both get 

there in a different way. The chef will walk, while Bradshaw will try and build a cable car. The chef might well 

be the first to reach the summit, but he may only do it once (i.e. his product will stay on the small scale). Once 

Bradshaw has finished the cable car, lots of people can reach the summit (i.e. his product is available on a large 

scale, and more importantly, it is affordable).  

 

You may be wondering  why this interview is relevant to a chapter about foams. During his 11 years at Mars, 

Bradshaw has worked regularly with foams, including meringues and the foam in the Mars Bar. What is the 

status of the knowledge about foams from the kitchen? Bradshaw explains that the stability of a foam on an 

industrial scale is crucial, but that at the ‘kitchen’ scale care already has to be taken to make sure that the 

stability is very high, otherwise it is almost impossible to let a foam run through a continuous process. Foams 

are extremely sensitive and are not very resistant to force, yet force is precisely what is needed to move it 

through the process; in the kitchen, on the other hand, the foam can be handled very carefully. As a result of 

these difficulties with transportation, foams are added to the product as late in the process as possible, 

because from that moment the product must be handled with the utmost care. In industry, therefore, you face 

the same challenges as in the kitchen, but on a greater scale. 

 

However, Bradshaw also sees the benefits of working with foams on an industrial scale. You get a much more 

even foam structure, which is as a result more stable (remember disproportionation). In addition, nougat (for 

example, the filling in a Mars bar) is one foam that can actually only be made well on a large scale. It is also 

easier to use things like high pressure, something that gives an entirely different bubble structure. 
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Then Bradshaw explains an average working day. “I arrive in the morning and if I see my boss, I run and hide.” 

On a more serious note, he says that his days are all very different. He is usually working on one big project, 

which usually takes about 4 weeks. Then he works towards a major trial (for example, running tests on a pilot 

scale), for which enormous preparation is required, given that one day of test runs can quickly run up costs of 

20,000 euros. He therefore has to ensure that the test is run as efficient as possible. On the day (or days) of the 

trial runs, his working day is long and thereafter the new knowledge from these trial runs is processed. One of 

his key tasks is ensuring that everything runs smoothly.  

 

His job requires a fair bit of travelling, since he is responsible for starting up new offices for Mars all over the 

world. He says that he spends about 40% of his time travelling, but that for the average employee this figure is 

nearer to 15%.  

 

The final question is why you would opt for a scientific education, and more specifically, work in the food 

industry. In Bradshaw’s view one important reason is that it is well paid. As a graduate you can do something 

that not everyone can, you are sought-after. This is certainly the case in the food industry, where starting 

salaries are on average 10 to 20% higher than in other industries. In addition to salary, Bradshaw believes that 

a technical job is often more challenging and offers variety (this seems to be true when looking at the variety of 

Bradshaw’s work, always busy with another project, working with different people, in different locations and 

under different circumstances). “Of course, you have to be passionate about what you do”, says Bradshaw. 

“What you learn at university is important, but you only really start learning when you begin a job. Luckily this 

is quite different from studying at university.” 
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4.3 The stability of foams 

 

The time between making the meringue and the moment it is put in the oven should not be too long. 

If you wait too long, the foam collapses. A beer foam only remains stable for a few minutes and then 

slowly collapses: this is called ‘killing’. A bread foam on the other hand will never collapse.  

A foam is stable if the air in it does not immediately escape. In a bread foam this will not happen, but 

‘killing’ of a beer foam is a very common problem. 

Why is one foam stable, and another not? And how can you prevent a foam from collapsing? 

 

There are three processes that largely determine the stability of foams: 

• Drainage 

• Disproportionation  

• Coalescence  

4.3.1 Drainage 

 

Drainage is the phenomenon whereby the liquid that forms the continuous phase of the foam runs 

out from between the gas bubbles (Figure 62). As a result the foam collapses more quickly and is 

therefore stable for less time. This phenomenon is caused by gravity pulling the liquid downwards.  

 

Fz= m.g  

 

The speed with which drainage occurs depends on the quantity of liquid present in the foam. If there 

is a lot of liquid, the mass of the liquid in the foam is great. Likewise, the force with which the liquid is 

pulled downwards is also great. Because this force is great, the speed of drainage will be high. If 

some of the liquid has already drained from the foam, the speed of drainage will be reduced. 

Drainage can be prevented by increasing the viscosity of the liquid. The higher viscosity creates a 

force opposed to gravity.  

 
Figure 62 Drainage 

Drainage can easily be measured, by measuring the volume of liquid under the foam.  
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Using the following formula you can calculate the drainage speed: 

 

η
δρ

3

4.02 ⋅⋅⋅⋅⋅= dg
Q  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Symbol Meaning  Unit 

Q Drainage flow m
3
s

-1
 

ρ Density kgm
-3

 

d Diameter of foam bubble m 

δ  Thickness of continuous phase 

between the bubbles 

m 

η Viscosity of continuous phase Pa.s 

g Gravitational constant Ms
-2

 

Assignment 6 The drainage of meringue foam 

Use the formula for drainage in this assignment. 

In the study of meringue by three-star restaurant De Librije (§ 1.2), drainage was also investigated. They 

wanted to know the effect of the protein concentration and sugar concentration on the drainage speed. 

1. Explain in your own words what drainage is. 

2. Explain which two forces affect the drainage speed of the meringue.  

3. Look at Figure 60. Explain the relationship between the sugar concentration in the meringue and 

the viscosity of the liquid. 

4. In figure 63 the amount of drainage from the meringue is plotted against time. Different 

concentrations of protein and saccharose are used. (In the first column behind the symbol is the 

protein concentration – from top to bottom from 1.5 to 15% - and in the second column the sugar 

concentration – from top to bottom from 0 to 200%). Which foam stayed stable for longest? See 

also Figure 51 for a photo of the ‘meringues’ that are produced from the various protein and 

sucrose concentrations. 

5. Using Figure 60 explain why the meringue with a low sugar concentration has a lot of drainage, 

while the meringue with the highest sugar concentration has the least.  
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Figure 63 Drainage in the meringue 
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4.3.2 Disproportionation   

When you pour bath foam into a bath full of water, all the gas bubbles are small initially. After a time 

the gas bubbles become bigger and bigger. This phenomenon is also called disproportionation. It is 

caused by a difference in pressure between the large and small gas bubbles in a foam. This 

phenomenon also occurs in beer foam, champagne foam and meringue. Disproportionation is largely 

responsible for ‘killing’ beer foam. 

 

 
Figure 64 Disproportionation 

 

In disproportionation the gas in the air bubbles moves around. This motion can occur in two 

directions: 

 

• From a small air bubble to a bigger air bubble 

• From air bubble to the air outside the foam, which is in fact an infinitely large air bubble. 

 

Disproportionation can be illustrated with a simple experiment. Imagine a tube with two soap 

bubbles (Figure 65). One soap bubble is blown bigger than the other. There is a tap between the two 

soap bubbles so that the air from both soap bubbles cannot come into contact with each other. As 

soon as the tap is opened, air flows from the small to the big bubble. Why does the air move?  

 

 

 

 

Assignment 7 Taking drainage into account 

1. Using the formula for drainage, explain how the drainage speed can be reduced. 

2. A chef would like to leave the meringue foam to stand longer than usual. So he adds carrageenan 

to thicken the meringue. Work out how much carrageenan has to be added to allow the foam to 

stand for half an hour. The relationship between the concentration of carrageenan and the 

viscosity is shown in the table. Use the following data:            

 

Concentration 

of carrageenan 

(%) 

Viscosity 

(mPa*s) 

1 57 

2 397 

3 4411 

4 25356 

5 51425 

a. The total volume of the foam is 200 ml.  

b. The foam is 85% air and 15% carrageenan/water. 

c. The foam is no longer stable once all the liquid has run out. 

d. The diameter of the gas bubbles is 0.5 millimetres.  

e. The density of the continuous phase is 1000 kgm
-3

. 

f. The thickness of the interfacial film is 100 micrometres. 
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There is a pressure difference between the big and small soap bubble.  

 
 

Figure 65 Experiment with two soap bubbles.  

The quantity of gas dissolved in the continuous phase is a function of the pressure in the air bubble.  

The pressure in the air bubble can be calculated using the Laplace equation: 

 

r
ppp buitenin

γ2=−=∆  

 

Here r is the radius (m) and γ the surface tension (N/m) of the bubble. The two p's represent the 

pressure inside and outside the air bubble (in Pascal). According to this equation, the pressure in a 

small bubble is greater than the pressure in a big bubble. If the pressure is more in the small bubble, 

more gas from this bubble will dissolve in the continuous phase. The concentration of gas is then 

higher around this small air bubble. As a result of this difference in concentration between the air 

bubbles, the gas will diffuse from the small to the big air bubble. The result is that the small air 

bubble shrinks and the big air bubble grows. 

 

 

The experiment above involving the soap bubbles 

gets a little more complicated when you look at 

beer foam or meringue. In addition to the pressure 

difference, the miscibility of the gas in the liquid 

also plays a role. One gas is more miscible in water 

than another (Table 9). The gas molecules move 

through the liquid from the small air bubble to the 

big air bubble (Figure 66). The gas has to overcome 

the resistance to miscibility in order to be able to 

move.  

 

 

Figure 66 Schematic representation of disproportionation [Miscibility of gas in liquid] 

 

Assignment 8 Volume of air bubbles 

The gas bubbles in a meringue are not all the same size. One air bubble has a radius of 0.5 mm, another is 1 

mm.  

1. Calculate the volume of these two gas bubbles. 

2. How many gas bubbles are there in 1 ml foam? 

3. The air bubble with 1 mm radius has a pressure difference of 1 bar. Calculate the pressure in the 

other air bubble. The air bubbles have a surface tension of 50 N/m. 

4. What is the relationship between the size of the air bubble and the pressure in the air bubble? 
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Table 9 Miscibility of gases in water 

 

 

 

  

 

 

 

 

 

 

 

ml /ml 

water 
0°C 15°C 30°C 

N2 0.0235 0.0177 0.0149 

CO 0.0354 0.0268 0.0222 

CO2 1.713 1.075 0.760 

O2 0.0492 0.0365 0.0274 

N2O 0.0235 0.0177 0.0149 

Assignment 9 Whipping cream 

Product developers at Friesche Vlag are developing a whipped cream in dispensing canisters.  

1. Describe the function of the various ingredients in the whipped cream.  

 

          
 

2. Indicate with names the location of the different ingredients in the product in the following 

drawing.  

 

   
 

3. On which two properties of the gas bubbles and the gas does disproportionation depend?  

4. Why have the product developers opted to use N2 rather than CO2 in the whipped cream? 

Ingredients: 

 
Whipped cream, sugar (8.5%), propellant 

(N2O, N2), emulsifier (mono- and di-

glycerides), stabilizers (E339, 

carrageenan), aromas  



 

Molecular Gastronomy, June 2010. -91-

 

4.3.3 Coalescence  

Coalescence is the joining of two air bubbles in the foam, in between which is an extremely thin layer 

of liquid (distance between the bubbles: 10-100 nm). The thin film between the two air bubbles 

breaks and the droplets join together to form one new droplet. This phenomenon is shown in Figure 

67. Proteins play a role in preventing coalescence. When proteins surround the air bubble, a kind of 

elastic layer is formed. This layer protects the air bubble from fusing with another air bubble. Like 

two bouncy balls, the gas bubbles bounce off each other. The fusion can also be prevented by 

enlarging the layer of liquid between two gas bubbles.  

 

 
Figure 67 Coalescence 

Coalescence and disproportionation cause the increase in size of gas bubbles in a foam. Coalescence 

and disproportionation occur not only between the gas bubbles in the foam, but also between the 

gas bubbles in the foam and the air outside the foam. These two processes will eventually cause the 

gas bubbles to disappear: the foam becomes instable, and the foam structure disappears.  

If you want to make your own whipped cream, you start with milk cream (milk with more fat than usual 

milk) and you whip it up (beat air into it). In fact, this is the same as when you make butter (see section 

3.5.1), except that you do not keep going until the fat in the cream starts to clot and you get a W/O 

emulsion. In whipped cream there is a network of air bubbles that are stabilised by the fat in the cream. To 

a large extent the fat fills up the liquid between the air bubbles (as you can see in the image above).  

Whipped cream is a foam based on carbohydrates and oil, and not carbohydrates and proteins (as with 

meringue). Therefore, in whipped cream the fat assumes the role of the proteins in stabilising the air 

bubbles. 

1. Why is milk cream used rather than milk for making whipped cream?  

2. Why should the cream that you use be unhomogenised? 

 

The whipped cream should be beaten at a low temperature (between 4 and 7 degrees). In addition, 

whipped cream should not be kept cooler than 0
0 

C. 

3. Why is the optimal temperature for making whipped cream so low? (Hint: the fat is important 

here) 

4. Why should whipped cream not be made or kept at a temperature lower than 0
0 

C? (Hint: the 

water between the air bubbles plays a vital role here) 

Assignment 10 Comparing the stability of foams and emulsions 

Foams and emulsions are actually fairly similar. They are both mixtures of water with something that 

doesn’t actually mix with water. In foams this is air, and in emulsions oil. In this assignment you will look in 

greater depth at how this difference affects stability. For this assignment, have in mind chocolate mousse 

for a foam and mayonnaise for the emulsion. 

First of all, we are going to look at the solubility of oil in water (emulsion) and air in water (a foam).  

1. Which of the two (oil or air) dissolves better in water? 

2. What effect does this have on stability, i.e. what will be less stable, an emulsion or a foam? (think 

of disproportionation as described in section 4.3.2) 

3. What do you think would happen if you dropped a few droplets of oil onto the head of a beer? 

The bubbles in a foam are usually bigger than those in an emulsion. 

4. What effect does this have on stability? Which is more stable? 

5. What is your final conclusion, which of the two is most stable? 
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4.4 Examples of foams in the molecular gastronomical kitchen 

You now know what a foam is and what role proteins and carbohydrates play in a foam. You also 

know which processes affect the stability of foams. Now you can apply this knowledge to molecular 

gastronomical foams in the molecular kitchen. 

4.4.1 How proteins ensure the formation of a beautiful champagne foam 

One of the studies undertaken by Hervé This in his book “Molecular Gastronomy” involves 

champagne foam. In this study champagne foam was analysed by champagne producer Moët et 

Chandon. The quality of the ‘head’ had diminished in recent years. It should have been a stable foam 

with fine gas bubbles. But it had become a foam with big bubbles. It looked less attractive and also 

disappeared very rapidly. The purpose of the study was to find out what created the beautiful, stable 

head on the champagne. The study looked at the impact of protein on the foam. For a number of 

years champagne manufacturers had been using a filtration device to improve the clarity of the 

champagne. The champagne producers thought that this could be the cause of the problem. 

 

4.4.2 Zabaglione  

Zabaglione is a dish of Italian/French origin. It is made by 

beating together egg yolks and sugar.  After beating, the 

mixture is heated up and a dessert wine is added. The liquid 

foam emerges with continuous beating. Zabaglione is often 

served with pieces of fruit, such as strawberry. A deliciously 

light dessert! 

 

 

       

      

      
         Figure 68 Zabaglione 

 

 

 

 

 

 

 

 

 

 

Assignment 11 Champagne foam 

1. Champagne foam contains the following components: water, proteins, carbohydrates and air. 

Make a drawing of the foam. Indicate where the components are located. 

2. What is the role of the protein in the champagne foam?  

3. Upon filtration part of the protein is removed. What effect may this have on the foam? 

Assignment 12 Zabagliones 

1. Explain what happens to the protein on a molecular level when you heat it up. 

2. The denaturation temperature of egg yolk is 68 °C. According to chefs, the zabaglione should not 

be heated up to 100
0
C. Why not? 

3. Explain to which temperature the egg yolk should be heated. 
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4.4.3 The same foam – different proteins 

 

What was the end result of the meringue study by restaurant De Librije and Wageningen University? 

The study showed that the amount of protein does not limit the amount of foam that can be formed. 

Approximately 10 g protein per litre liquid is enough to make a stable foam. The amount of liquid is 

crucial in the meringue. Less liquid means that there is less liquid between the bubbles. In order to 

be able to produce a foam, there should be a minimum amount of liquid between the gas bubbles. 

The quantity of liquid can be increased by adding water or extra sugar. The sugar binds the water to 

hydrogen bonds and causes an increase in the volume of the foam (Figure 69). The sugar molecules, 

like the water, end up between the gas bubbles. Sugar also helps to obtain the right viscosity. 

 

 
 

Figure 69 Impact of sugar on foam volume 

If only protein is used as an ingredient in the meringue, the texture will be rubbery, instead of the 

desired crunchy structure. The crunchiness depends on the amount of sugar added. The more sugar, 

the crunchier the meringue! 

 

How can you use this knowledge to innovate the meringue? Would it be possible, for example, to 

make a meringue with skimmed milk instead of protein, so that you can make as many different 

flavours as with ice-cream? The answer is yes! Skimmed milk also contains proteins. The amount of 

protein in skimmed milk is sufficient to cover the entire surface of the air bubbles with protein 

molecules. It is now possible to make various meringues by adding ingredients to the milk! How 

about blackberry meringue, orange meringue or caramel meringue? It’s all possible thanks to 

molecular gastronomy! 
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4.4.4 Making espumas with the gourmet whip 

 

A new kitchen appliance which is used to make many different foams is the 

gourmet whip (Figure 70). A gourmet whip is actually a sort of whipped cream 

squirter, but a little more flexible. You can use the gourmet whip to make 

whipped cream, but you can also use it to make all kinds of new and surprising 

foams. The gourmet whip is mainly used to make the all-popular espumas. 

Espumas are foams made from, among other things, fruit juice, cucumber juice 

or coffee. A gourmet whip is a stainless steel can in which you place all the 

ingredients for the foam. There is a valve on the gourmet whip to which a gas 

cartridge can be attached. The gas from this cartridge is discharged into the 

ingredient mix, creating a foam-like structure. Take a look at the following two 

film clips (URL-5 and URL-6), in which a beetroot foam and a cappuccino foam 

are made with a gourmet whip.  

 

                                        Figure 70 Gourmet whip 

Assignment 13 Making espumas 

 

An example of a recipe for which the gourmet whip is used is strawberry espuma (figure 71): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Why is gelatin suitable for making foam? 

2. What is the role of the other ingredients in the foam? 

3. Why is the gelatin heated to 60 degrees? 

4. Why is nitrogen gas used in the gourmet whip? 

 

 

 

 

 

 

         

 

           Figure 71 Strawberry espuma 

Strawberry espuma 

 

Ingredients 

• 900 g strawberries 

• 110 g sugar 

• 8.5 g gelatin (5 leaves of 0.85%) 

 

Method 

Let the gelatin swell in cold water. Cook the strawberries with the sugar. Puree them and push them 

through a fine sieve. Heat up 200 ml of the strawberry puree to 60 degrees and stir in the gelatin.  Add the 

remaining puree and let the mixture cool down. Beat the cooled mixture with a whisk and put it in the 

gourmet whip. Use 1 cartridge with nitrogen gas. 
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5 In conclusion 

Over the last few weeks you have been looking at two different structures, foams and emulsions. You 

may remember that the gel structure was mentioned in the red line, but was not discussed further. 

The following experiment is a particularly good example of how a gel can be used in an innovative 

way in the kitchen. 

 

 

You will see that little gel balls are formed that are hard on the outside and have a strong mango 

flavour inside. You can of course substitute mango for any number of other flavours, such as juice 

from the supermarket or even chicken stock to make a savoury ball! 

 

“Molecular gastronomy is a branch of science concerned with the study of physical and chemical 

transformations of edible materials during cooking, and the sensory phenomena associated with their 

consumption”. 

 

Molecular gastronomy is part of a scientific field that looks beyond the kitchen, namely food 

technology. Within food technology food is analysed, not just in the kitchen but on a larger scale (as 

demonstrated in the interview with Adrian Bradshaw).  Food technology can also be split into an 

applied part, where knowledge is used to improve existing processes or invent new processes ,and a 

theoretical part, where the search for new knowledge is central. Food technology combines 

knowledge about physics, chemistry and biology, with knowledge about a food. As you can see, food 

technology is more than just molecular gastronomy, and more than just research. 

Alginate balls 

 

Ingredients 

-250 ml water 

-1.3 g citras 

-1.8 g alginate 

-250 ml mango puree 

-Calcium bath with 1 litre water and 5 g calcium 

 

Method 

-Dissolve the citras in the water 

-Add the alginate and mix. Make sure that you add the alginate slowly so that it does not coagulate 

-Heat this mixture briefly up to 90 degrees 

-Add the mango puree to the cooled solution (put the solution on ice if necessary to speed up the 

cooling) 

-Measure the pH. The pH should be 4. If it is not, add citras until you obtain a pH of 4. 

-Make the calcium bath by putting 1 litre of water in a bowl and dissolving 5 g calcium in it 

 

The alginate balls can now be made by carefully dropping little droplets of the alginate solution into the 

calcium bath using a syringe. Leave the droplets to harden for about 20 to 30 seconds, and take them 

out carefully with a sieve (tip: It is useful to leave the sieve hanging in the calcium bath and drop the 

solution carefully into it. Rinse the hardened alginate balls under clean water. 
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6 Glossary  

 

Amino acids Molecules that have an amino group at one end and 

a carboxyl group at the other.  Amino acids are the 

building blocks of proteins. 
 

Amphiphile   An amphiphilic molecule reacts with both hydrophilic 

and lipophilic molecules (water and fat-loving). 
 

Chemical change  New substances emerge from chemical changes. 
 

Coalescence  Two gas bubbles become one, whereby the film 

between the droplets disappears.  
 

Colloid  A particle that is bigger than a molecule, but too 

small to be seen with the naked eye. Colloidal 

particles range in size from 0.001 to 10 micrometres.  
 

Conformation The spatial structure of a protein, which is mostly 

determined by the secondary and tertiary structure 

of the protein.  
 

Continuous phase     The phase that serves as a solvent in a dispersion.  
 

Disaccharide     Two monosaccharides joined together. 
 

Dispersed phase    The phase with the dissolved substance(s) in a  

      dispersion. 
 

Dispersion  A dispersion is a mixture of substances that are mixed 

on a microlevel (finely distributed). They consist of a 

continuous phase and a dispersed phase. 
 

Disproportionation  The movement of gas from small air bubbles to big 

air bubbles, by a difference in pressure.  
 

Drainage     The phenomenon whereby the liquid runs out of a 

      foam. 

 

Threshold value  The lower limit of the concentration of a flavouring 

whereby it can still be detected. 
 

Protein  A chain of more than 50 amino acids, that often has a 

spiral secondary structure and usually has a tertiary 

and quaternary structure. 
 

Protein denaturation The change in the tertiary structure from a protein, 

by the breakdown of hydrogen bonds, covalent 

sulphur bonds, hydrophobic interactions, Van der 

Waals forces, and ionic bonds. 
 



 

Molecular Gastronomy, June 2010. -97-

Emulsifier An emulsifier is also called a surfactant. It is an 

amphiphilic molecule that interacts with both 

hydrophobic molecules, such as fat, and hydrophilic 

molecules such as water. 
 

Emulsion  A dispersion of two immiscible substances that under 

normal circumstances do not form a stable or 

homogeneous mixture. The most commonly 

occurring emulsion is a dispersion of oil in water or 

water in oil on the microlevel. 
 

Film  The layer of liquid present between gas bubbles in 

the foam. 
 

Flavour  The combination of the observation of taste, smell 

and texture when tasting a dish. 
 

Physical change    When physical changes occur, new substances do not 

arise, but the phase in which the molecules are 

situated changes. 
 

Smell  The detection of volatile molecules with the help of 

receptors in the nose.  
 

Globular protein A protein that contains many secondary and tertiary 

structures.  
 

Boundary value  The lower limit of the concentration of a fragrance 

needed to detect it.  
 

Hardening   A chemical process whereby an unsaturated bond is 

converted into a saturated bond by adding hydrogen. 

This process can be used in unsaturated fatty acids.

  

 

Heteroglycan   A polysaccharide that consists of 2 or more kinds of 

monosaccharide. 

 

HLB number The number indicating whether the emulsifier prefers 

to be dissolved in oil or water. The HLB number can 

be used to determine which sort of emulsion will be 

formed.  
 

Homoglycan  A polysaccharide that consists of one kind of 

monosaccharide. 
 

Hydrophile  Substances that blend well with water (water-loving). 

The molecules in this substance can form enough 

hydrogen bonds with the water molecules. 
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Hydrophobe Substances that do not blend well with water (water-

repellent). The molecules in this substance form 

insufficient or no hydrogen bonds with the water 

molecules. 
 

Hydrophobic interactions Molecular interactions, caused by a restriction in the 

movement of water molecules, causing oil droplets to 

merge 

 

Hydrogenation   The breaking of double bonds in unsaturated fats, 

creating more saturated fats. This process is also 

called hardening. 

 

Hydrolysis  The splitting of a chemical bond causing water to be 

taken up. 

 

Interactions   The balance between repelling and attracting forces 

between molecules and other particles. On a colloidal 

scale this determines the stability of emulsions and 

foams.   

 

Ingredients The building blocks of a food or dish. Ingredients can 

be pared back to basic components: proteins, fats, 

water, carbohydrates and air.  

 

Lipophile    Substances that dissolve in fat/oil (fat-loving). 

Another word for hydrophobe. 

 

Macromolecules  A molecule that consists of 1-10,000 interlinked 

molecules.    

 

Microscale  microscale contains particles ranging in size from 

0.001 to 10 micrometres. 

 

Microstructure  The way in which carbohydrates, fats, proteins, air 

and water are arranged in a food or product on the 

microscale (10
-6

 m). 

 

Molecular gastronomy A branch of science concerned with the study of 

physical and chemical transformations of edible 

materials during cooking, and the sensory 

phenomena associated with their consumption. 

 

Molecular gastronomical dish  A dish that has been innovated using knowledge of 

physics and chemistry. These dishes give us a fresh 

look on eating and gastronomy. 



 

Molecular Gastronomy, June 2010. -99-

Monosaccharide  A simple sugar molecule. Contains three to six carbon 

atoms, and at least 1 hydroxyl group and 1 aldehyde 

or ketone group. 

 

Neurons   Nerve cells. Cells that process and forward 

information by means of electrochemical signals. 

 

Oligosaccharide  A chain in which 3 to 10 monosaccharides are linked 

together. 

 

Unsaturated fats   Fats with a high content of unsaturated fatty acids. 

These are fatty acids with double bonds in their long 

carbon chain. 

 

Sedimentation   A form of separation of fat and water in milk, 

whereby the fat floats on top of the milk. 

 

Buoyancy An upward force on a body that is submerged in a 

liquid, caused by this liquid, like an oil droplet in 

water. The upward force in a liquid is equal to the 

weight of the displaced liquid.  

 

Partition coefficient The relationship in which a substance is distributed as 

a dispersed phase over the continuous phases of 

water and oil. 

 

Peptide      A chain of 2 to 50 amino acids. 

 

Plasma  In milk: the aqueous liquid in which proteins, milk 

sugar and other substances are dissolved. 

 

Polysaccharide  A chain consisting of 200 to 5000 interlinked 

monosaccharides. 

 

Random coil protein A protein that contains no secondary and tertiary 

structures.  

 

Reaction      A process that leads to a chemical change. 

  

Relative viscosity The viscosity of a solution in relation to a reference 

solution (for example, water). 

 

Foam A dispersion of air bubbles in a continuous phase that 

consists of the basic components water and proteins 

in combination with carbohydrates or fats. The air 

bubbles are dissolved in the continuous phase on a 

microscale.  
 

Sensory test/study   A sensory test or study aims to find out more about 

the various characteristics of the product on the basis 

of sensory observations. 
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Taste  The observation of non-volatile substances using the 

receptors of the tongue. 

 

Texture  All physical and structural characteristics that can be 

observed by touch and that are related to 

deformation if a force is exerted on them. 

 

Appearance     What a dish looks like. 

 

Umami  One of the five tastes, alongside salty, bitter, sweet 

and sour. The taste comes from glutamate. 

 

Transesterification   The coupling of 3 fatty acids and a glycerol molecule 

to form a fat (triglyceride). 

 

Saturated fats Fats containing only saturated fatty acids. These are 

fatty acids with only double bonds in their long 

carbon chain. 

 

Viscosity  The viscosity is a measure of the resistance when a 

liquid flows. Energy is lost because the liquid 

molecules experience friction when they move 

alongside each other. The greater the friction, the 

higher the viscosity. 

 

Hydrogen bonds Molecular interaction between water molecules, 

which is caused by a difference in the electron 

negativity between the hydrogen atoms and the 

oxygen atoms. The hydrogen atoms are a result of 

interactions caused by the difference in electron 

negativity between the polar character of the 

molecules. They can form between molecules that 

have an OH and NH group. 

 

Frictional force Friction (sliding friction) is the physical concept that 

refers to the force of resistance that occurs when two 

surfaces rub against each other, while being pressed 

against each other. 
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