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1. Introduction 
 
This manual contains theory, examples and descriptions of GenStat procedures for uncertainty 
analysis and regression-based sensitivity analysis (GenStat Committee, 2005). For the actual use of 
the software presented, a moderate experience with GenStat is required. But it is hoped that a large 
part of the manual will also constitute interesting reading for those unfamiliar with GenStat. 
 
USAGE contains procedures for sampling from continuous multivariate distributions of model 
input. Model output corresponding to the input sample is calculated outside USAGE. Various 
procedures are available for the subsequent analysis of uncertainty or sensitivity. 
 
The distributions of the individual inputs are defined per input. Association between inputs is 
specified via rank correlation. Thus a great flexibility is achieved for defining input distributions. 
Restricted random samples – latin hypercube samples or samples with forced correlations – can be 
generated for efficiency reasons if the model runs take much computer time. 
 
The USAGE procedures for the subsequent analysis of sensitivity focus upon regression-based 
methods, but an example is given of a regression-free analysis of the effect of independent groups 
of inputs.  
 
In the literature diverse sensitivity measures (uncertainty contributions) have been proposed. In 
USAGE uncertainty and uncertainty contributions are exclusively quantified as variances and 
variance components. 
 
GenStat seems to be no more and no less suitable for uncertainty and sensitivity analysis than other 
high-quality statistical software. But the use of advanced statistical software has a definite 
advantage over the use of general purpose software such as FORTRAN or C, because standard 
statistical routines, and routines for graphics and I/O are readily available.  
 
Another major advantage of imbedding the routines in standard statistical software, is that the user 
can more easily extend the fixed menu of routines currently offered. It is shown for instance, how 
the sampling variability of an uncertainty measure can be assessed with a bootstrap method from 
the analysis of one ordinary random sample consisting of independent draws of the input vector. 
Other examples are the transformation of inputs or outputs before the analysis, e.g. rank-
transformation, or the use of readily available model selection techniques in order to find a small 
number of influential inputs. 
 
 
1.1. The model 
 
We will restrict ourselves to deterministic models. From the viewpoint of the analyst of 
uncertainty or sensitivity, the model will be seen as follows. A scalar (one-dimensional) model 
output y depends on a k-vector  x = (x1...xk) of inputs: 

 y = f(x) = f(x1...xk). 

The function f is deterministic; usually it is evaluated by simulation; f represents a single output. 
Different outputs are analyzed separately, although they are usually calculated simultaneously. The 
input vector x may comprise initial values, parameters, exogenous variables, etcetera. 
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1.2. Uncertainty and sensitivity analysis 
 
In the analyses discussed in this manual, the uncertainty about the value of the input vector x is 
modelled by randomness of x. Usually, the study of the combined effect of all inputs on the output 
is called uncertainty analysis (UA) while the study of the contributions of components of vector x 
to the uncertainty of  f(x) is called sensitivity analysis (SA) (e.g. Saltelli et al., 2000). Jansen 
(2005) introduces the term stochastic sensitivity analysis in order to distinguish the above sketched 
form of sensitivity analysis from all kinds of deterministic sensitivity analyses where the input is 
not random. Uncertainty analysis concerns the accuracy of prediction with the current knowledge, 
whereas sensitivity analysis pertains to the prospects to improve the accuracy by additional 
knowledge. Large uncertainty contributions – or large sensitivity – of individual inputs, or groups 
of inputs, indicate that it would be worthwhile to get to know more about these inputs, whereas it 
would be pointless to spend much effort gaining new information about the other inputs. Thus, the 
analysis provides information for decisions on research priorities. Obviously, it may explain poor 
validation results. And it may be of help in the selection of parameters that need to be calibrated: in 
particular not to calibrate parameters that cause little uncertainty. 
 
The structure of the model is assumed to be given. But usually more information is required for 
model predictions: initial values have to be measured, parameters have to be estimated, exogenous 
variables may not be known at the time when predictions are made. The current paradigm for the 
study of input uncertainty propagation is to represent input uncertainty by randomness of the 
inputs. (Alternatively, input uncertainty may be represented by a set of plausible inputs; but that 
approach may be largely treated as a special case of randomness, namely uniform distributions 
over the set.) Uncertainty analysis studies the ensuing uncertainty in the model output. The 
analysis can only give an optimistic preview of prediction error, since structural errors in the model 
will not show up; these can only become apparent in a true validation where model predictions are 
compared with new observations.  
 
Input uncertainty is represented by a multivariate probability distribution, say D, of the vector 
x = (x1...xk): 

 x = (x1...xk) ~ D. 

The multivariate distribution D describes the marginal distributions, i.e. the distributions of the 
individual inputs xi, and their dependencies.  
 
UA and SA start with a characterization of the output distribution, given the model and the 
distribution of the inputs. In this manual the variability of the distribution will be characterized by 
its variance, which is assumed to be finite. The total uncertainty, VTOT, is the variance of f(x) 
induced by the randomness of all sources xi as described by the distribution D: 

 VTOT = Var[f(x)] x ~ D. 

Increasingly often, the effect of input uncertainties is studied by computer experiments rather than 
analytically. The same trend occurs in general statistics, where many novel techniques rely on 
Monte Carlo simulation. The analytic approach requires simple, usually linear, model 
approximations, and it fails if no satisfactory approximation can be found. The computer-
experimental approach has the advantage of conceptual simplicity, but the draw-back that it may 
require many model runs. Moreover, analytic results tend to be general, whereas computer-
experimental results are often somewhat anecdotical by their dependence on experimental details. 



Usage Manual 5 

Regression-based and regression-free sensitivity analyses 
 
The procedures of USAGE perform regression-based SA, which means that the relation between 
the studied model output y, and the model inputs x1...xk, is approximated by a regression relation. 
Apart from the commonly used linear analysis, an analysis based on spline regression can be 
chosen, which often provides a more adequate description of the input/output relation. The 
analysis of the contribution of (groups of) inputs to prediction uncertainty is based on the 
regression approximation. For a satisfying analysis, the percentage of variance accounted for by 
the regression should be close to 100, since a regression-based analysis is blind for the variation in 
the model output that is not accounted for by the regression. 
 
Individual inputs or groups of inputs? 
 
Many common algorithms for SA focus upon uncertainty and sensitivity measures of individual 
inputs. Nevertheless, one would often prefer to study uncertainty from coherent groups of inputs, 
for instance all parameters associated with a subprocess, or all inputs stemming from some 
exogenous process. After a single-input SA, one often tries to interpret the results in terms of 
groups of inputs associated to specific subprocesses.  
 
Crop growth models may provide an example of the relevance of group uncertainty contributions. 
These models have weather data as input, which may comprise hundreds of uncertain numbers. It 
is futile to study the uncertainty contribution of one weather item like the mean temperature at the 
tenth of June, but it makes sense to ask how much uncertainty is caused by the weather. 
 
If the inputs consist of stochastically independent groups, various regression-free group-oriented 
sensitivity analyses are feasible. One such analysis will be discussed. A group-oriented sensitivity 
analysis is also possible for dependent input groups, but that requires quite a bit of tailoring work, 
and will not be discussed in this report. 
 
Deterministic sensitivity analysis 
 
Deterministic sensitivity analysis may be useful for inspection of the model and its software 
implementation. The analysis may suggest model simplifications, such as deletion of insensitive 
subprocesses. The questions addressed are for instance: whether some response is affected at all by 
some input; whether one can find a small subset of inputs dominating the response; whether the 
response increases or decreases according to expectation; whether the response is continuous, 
differentiable, etcetera. 
We will briefly mention the most common types of deterministic sensitivity analysis. In local 
sensitivity analysis one studies output changes under very small input changes around some given 
vector value, for instance a nominal value or a calibrated value. One-at-a-time sensitivity analysis 
studies the model's response to change of one input, at fixed values of the other inputs. In 
particular, one may study the response to nearly continuous change over some range, for instance 
in order to inspect whether the response is continuous, monotonically increasing, or one-topped. 
For completeness we also mention factorial sensitivity analysis, although it will not be treated in 
this report (see for instance Kleijnen, 1987). In this analysis, inputs are varied according to a so-
called factorial design. In the most common factorial design, the two-level design, each input has a 
low and a high level. Such an analysis may be used for instance to study interaction between 
inputs: the phenomenon that the response to one input depends on the setting of the other inputs. 
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Factorial designs might also be used to search for a small number of sensitive inputs between very 
large numbers of spurious inputs. 
 
 
1.3. Communication between USAGE and model software 
Typically, the software presented in this manual is used as follows. A GenStat program generates 
an ASCII file with a sample of model inputs. Subsequently, the user produces an ASCII file with 
corresponding model output, using his own modelling software. After that, another GenStat 
program performs an uncertainty or sensitivity analysis. The communication between the software 
components is left to the user, because it depends strongly on the specific modelling environment. 
Thus, the user himself should take care that the numbers in the intermediate files have enough 
decimals, for instance by using E-notation.  
 
 
1.4. Outline of the manual 
 
The estimation of the probability distribution of the inputs forms the major problem of uncertainty 
and sensitivity analysis, but since the subject is virtually unbounded, it falls outside the scope of 
USAGE in its present form. Section 2 contains a brief sketch of some subjects that often play a 
role in the assessment of input uncertainty of system models in agricultural and environmental 
research. Section 3 gives definitions of uncertainty contributions (sensitivity measures). The 
construction of samples from the input distribution is discussed in Section 4. These samples are 
used in Sections 5 and 6 for the estimation of uncertainty and sensitivity. Section 5 is devoted to 
regression-based sensitivity analysis for individual or grouped inputs, whereas Section 6 treats 
regression-free sensitivity analysis of independent input groups. In Section 7, we give some 
examples. Section 8 contains references. 
 
Section 9 contains Appendix I, which discusses some mathematical details. A formal description 
of the USAGE procedures is given in Appendix II (Section 10). 
 
 
2. Assessing input uncertainty 
 
The estimation of the probability distribution D of the inputs x1...xk constitutes the major problem 
of uncertainty and sensitivity analysis. Virtually any part of statistics may play a role in this 
estimation problem. We will only give a brief sketch of some subjects that often play a role in the 
assessment of input uncertainty of system models. 
 
Various types of data may be available for the quantification of parameter uncertainty, for instance 
analyses from the literature, data sets that happen to be available, or experiments performed for the 
purpose. Presently, an increasing number of databases, including geographical databases, is 
becoming available via Internet. The experiments providing information on parameter uncertainty 
should cover a range of situations relevant for the intended model application, in particular a 
sufficiently large area and a sufficiently long time-span.  
 
Sometimes a database contains a sample of model inputs that can serve directly as description of 
input uncertainty. For instance historical weather data, or an accurate and representative sample of 
soil measurements. 
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Parameter uncertainty is caused by natural variation between the systems modelled and by 
estimation error. Both may cause correlation in the simultaneous distribution describing parameter 
uncertainty. Natural covariation between parameters that are evaluated in separate experiments 
cannot be evaluated. The best solution would seem to be to assume independence unless there is 
counterevidence, since introducing unwarranted correlation would amount to saying that one 
knows more than one actually does. 
 
Any kind of statistical technique may be required to assess parameter uncertainty, but meta-
analysis, the overall analysis of analyses of separate experiments, deserves special mention (e.g. 
Hedges & Olkin, 1985). Meta-analysis can be applied to integrate analyses from literature. 
Typically, separate literature sources pertain to subsystems, so one has to perform various meta-
analyses, each pertaining to a small number of parameters of a particular subprocess. Another 
approach that deserves to be mentioned, is to estimate parameter uncertainty from calibration on 
whole-system observations, i.e. the kind of observations that the model predicts (Keesman & Van 
Straten, 1990; Janssen & Heuberger, 1995). This approach is not without problems. A major 
problem arises if one has to fix some uncertain parameters, so that the other, calibrated, parameters 
will tend to compensate errors in the fixed ones, and thereby lose their physical meaning. 
Moreover, one needs a realistic measurement-error model for a realistic post-calibration 
uncertainty assessment. Information to formulate such an error model, for instance from duplicate 
measurements, is often lacking. Nevertheless, the subject of post-calibration uncertainty seems to 
hold great promises. 
 
A database with soil or weather data should contain information about error in its data. And, for 
upscaling, also about spatial covariation of the error. Soil maps are often constructed by kriging. In 
such a case, the kriging interpolation error provides an estimate of map uncertainty (including 
covariation).  
 
A thorough quantification of input uncertainty can be very difficult and time consuming (see for 
instance Metselaar & Jansen, 1995-a). In most projects, an exhaustive data-based analysis of input 
uncertainty will not be possible, and one will have to limit the analysis to some subset of inputs. 
Objective data may sometimes need to be supplemented by expert judgement. Special purpose 
software may be of help to translate expert opinion into a probability distribution (e.g. Van Lenthe 
& Molenaar, 1993). And finally, one may decide that a, less ambitious, deterministic sensitivity 
analysis forms a more realistic alternative.  
 
 
3. Definition of uncertainty contributions (sensitivity measures)  

 
The total uncertainty is expressed completely by the distribution of f(x) that is induced by the 
multivariate distribution D of input vector x. The variance of f(x), or a few selected quantiles, may 
serve as summary measures of uncertainty. We will use the variance as summary measure of 
uncertainty. 
 
Problems arise, however, with the concept of uncertainty contributions or sensitivity measures. In 
the literature, many types of uncertainty contributions occur; see for instance Janssen (1994) for a 
fairly complete overview. The many possibilities may well cause some embarrassment of choice. 
Our approach will be to define various kinds of uncertainty contribution as the answers to various 
specific questions of the type: how much would the output variance decrease if specific 
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information about the input would become available, in addition to the information contained in 
input distribution D.  
 
The specification of uncertainty as variance provides a practicable restriction of the abundant 
possibilities. It is implicitly assumed that the variance is finite. The variance is a convenient 
measure of prediction uncertainty, because the variance can be more easily decomposed into 
meaningful parts than other conceivable measures of uncertainty. In fact this has been the reason to 
introduce the concept of variance. With this measure, the analysis of uncertainty contributions 
becomes essentially a form of analysis of variance components. Application of analysis of variance 
components to model output, stems from the 1990s (Sobol, 1990; Jansen, Rossing and Daamen, 
1994; Sobol, 1995; McKay, 1996; Saltelli, Tarantola and Chan, 1999; Jansen, 1999; Saltelli, Chan 
and Scott, 2000, Ch 8). 
 
The variance of f(x), induced by the distribution D of x = (x1...xk) will be called VTOT  

 VTOT = Var[f(x)] x ~ D 

Let S denote a subset of the x’s, for instance one particular xi, a group of parameters corresponding 
to a particular submodel, or some aggregate of exogenous variables. The uncertainty contribution 
of subset S will be expressed in two ways. Firstly, the top marginal variance, TMVS, is the 
variance reduction that would occur in case one would get perfect new information about the 
inputs S. Secondly, the bottom marginal variance, BMVS is the variance that will remain as long 
as one gets no new information about S. In both cases the new information is added to the 
information already present in input distribution D.  
 
Stated differently, TMVS is the variance accounted for by S, whereas BMVS is the variance not 
accounted for without S. 
 
Usually, TMV and BMV are expressed as fraction or percentage of VTOT. The concepts of top 
and bottom marginal variances have been introduced in UA/SA by various authors, under various 
names, (Krzykacz, 1990; Sobol, 1990, 1995; Jansen, 1994; McKay, 1996). The next table mentions 
various names used in the literature for TMVS / VTOT and BMVS / VTOT which have the same 
meaning for an independent group S of inputs (of course the group S may also consist of a single 
input).  
 
TMVS / VTOT BMVS / VTOT 
relative top marginal variance  
correlation ratio 
first order sensitivity index 

relative bottom marginal variance 
complementary correlation ratio 
total effect sensitivity index 

 
Most authors concentrate on what we call top marginal variances, often for single inputs. But we 
will argue that bottom marginal variances should not be overlooked (see also Saltelli et al., 1999); 
and we have already argued that it is often better to consider the effect of groups of inputs instead 
of individual inputs. The top and bottom marginal variances of individual inputs are closely related 
to some well-known uncertainty measures e.g. the linear correlation coefficient. For instance, if x 
is multinormal and the response f(x) is linear in x, the top marginal variance is equal to the squared 
linear correlation coefficient. 
Unfortunately, BMVS and TMVS need not be equal. When the input group S and the 
complementary input group, say T, are independent, one may show that BMVS ≥ TMVS, with 
equality if f is additive in S and T, that is if f(x) is the sum of a function of S and a function of T 
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(which implies that the response of the model to a change in S is the same for different values of 
T). Thus, in case of independence, a difference between BMVS and TMVS signals non-additivity 
of f, also called interaction between S and T. Differences between TMVS and BMVS may also be 
caused by dependence between S and T. For instance, the distribution D of x may be such that the 
value of S can almost be derived from the value of T, and conversely. In that extreme case, where 
S and T are nearly exchangeable, the bottom marginal variances of S and T would be small, but 
their top marginal variances might still be considerable. Alternatively, the dependence between S 
and T, and the nature of f(x), may happen to be such that S and T are complementary in predicting 
f(x), which would result in small values of the top marginal variances of S and T, but considerable 
values of the bottom marginal variances. 
 
In summary, differences between the two types of variance indicate interaction and/or dependence. 
The situation that the TMV of a group is greater than its BMV can only be caused by dependence. 
  
In general, TMV is a much more useful concept than BMV, and we advise to use BMV only in 
exceptional cases. TMVS assesses the maximal improvement of prediction precision that might be 
attained by better knowledge about group S, or by better control of that group. If TMVS is large, 
additional research about S might prove fruitful. If it would be utterly unrealistic, however, to 
expect to gain better knowledge about some input group S, you might use BMVS to assess the 
uncertainty that would always remain even if you succeeded in eliminating all uncertainties about 
the other inputs. If, in such a case, BMVS would be very large, research about the other inputs 
would seem rather futile. 
 
Mathematical details about marginal variances are treated in Appendix I; their estimation with 
USAGE will be treated in Sections 5-7.  
 
 
4. Generation of random samples 
 
Monte Carlo sampling from uncertain inputs comprises firstly the sampling from univariate 
distributions, possibly supplemented by methods to introduce dependencies (Iman & Conover, 
1982).  
 
Additionally, spatial or temporal stochastic simulation may be required. Weather databases or 
weather generators may be used to account for weather uncertainty. Generators of spatio-temporal 
or weather processes are not implemented in USAGE. 
 
It is desirable that the samples generated will observe the natural limitations imposed by the 
model. One should, for instance, take care that a positive input cannot acquire negative values. 
USAGE has simple facilities to impose bounds on samples. 
 
Computer random generators are commonly initialized with a user-supplied seed. Most often the 
seed is an integer number; and the random generator is initialized just once, at the first call 
(GenStat Committee, 2005). When the same seed is used, the same random sequence will be 
generated. We will not philosophize about the implication that such random generators are not 
really random: enough has already been said elsewhere about this subject. Results of seeded Monte 
Carlo analyses can be reproduced, which is an asset. But anyhow, samples should be so large that 
the result is quite insensitive to the seed used. 
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4.1. Univariate samples 
 
In USAGE a random scalar, say y, from a continuous cumulative distribution say F is drawn 
indirectly. First a standard homogeneous scalar u is drawn (i.e. homogeneous on the interval from 
0 to 1.) Then one calculates the target scalar y such that F(y)=u. The scalar y thus obtained is 
random because u is random, and it has the desired distribution F. We will apply this indirect 
method most of the time because it allows efficient drawing of efficient samples, like latin 
hypercube samples that will be introduced later; moreover, the indirect method also facilitates the 
introduction of correlations in multivariate samples (see Sections 4.4 and 4.5).  
 
Standard homogeneous variates, on interval (0,1) can be drawn with the GenStat directive URAND. 
Homogeneous variates on arbitrary intervals are easily derived. The directive HISTOGRAM can be 
used to obtain a summary view of the resulting sample. The USAGE procedure SUMMARIZE 
produces summary statistics such as mean, standard deviation, coefficient of variation, percentiles 
etcetera. Appendix II contains a formal description of the procedure.  

\\Define the sample size and the seed for the rando m generator 
SCALAR    n    ; 1000                    
SCALAR    seed ; 171096 
VARIATE   [NVALUES=n] uni 
\\Draw random sample uni from a uniform distributio n on (0,1) 
CALCULATE uni = URAND(seed) 
SUMMARIZE [PRINT=#,quantiles] uni 
DHISTOGRA [KEY=0] uni 

The USAGE procedure EDCONTINUOUS can be used to transform homogeneous (0,1) variates 
into various types of continuous scalar random variables. (ED stands for 'equivalent deviate'.) The 
currently available distributions are: beta, gamma, lognormal, normal and uniform (in alphabetical 
order). In USAGE, the first four distributions can be specified either by the first two moments 
(mean and variance), or by a pair of quantiles. The uniform distribution can only be specified by its 
bounds. A lower bound can be given for the gamma and lognormal distributions (default 0); 
whereas a lower and an upper bound can be specified for the beta and uniform distributions 
(default 0 and 1). Appendix II contains a formal description of the procedure EDCONTINUOUS. 
 
When producing a sample to be used as input to a model, one has to be sure that the input values 
lie in the ranges allowed by the model. Thus one will often need to draw from the gamma, 
lognormal and beta distributions rather than the unbounded normal distribution.  
 
The lognormal and gamma distributions are useful for variates, such as masses or concentrations, 
that have a natural lower bound – most often 0. The two distributions are much alike, and 
sometimes the choice between them will be a matter of taste and tradition. Both can be bell-shaped 
and mirrored-j-shaped. The gamma distribution, however, tends to be less “tail heavy” than the 
lognormal and thus assigns smaller probability to extremes. The exponential distribution is a 
special case of the gamma distribution. The beta distribution is especially useful for variates that 
have natural  upper and lower limits, for instance partitions, percentages or probabilities. The 
distribution can be bell-shaped, j-shaped and mirrored-j-shaped; the uniform distribution is a 
special case of the beta distribution. 
 
USAGE can be used to get a feeling for the distributions mentioned. The program below shows 
how USAGE procedure EDCONTINUOUS can be used to transform homogeneous (0,1)  variates 
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into various types of continuous scalar random variables. Procedure SUMMARIZE is used to 
inspect the results. 

\\Draw uni_ab uniform(a,b)  
SCALAR    a,b; value=40,60 
EDCONTINUOUS [DISTRIBUTION=uniform; LOWER=a; UPPER= b] CUMPR=uni; DEVIATE=uni_ab 
SUMMARIZE [PRINT=#,quantiles] uni_ab 
 
\\Draw nor1 from normal(mu, sigmasquare) 
VARIATE   [NVALUES=n] nor 
SCALAR    mu, sigmasquare; 65, 1 
CALCULATE uni = URAND(0) 
EDCONTINUOUS [DISTRIBUTION=normal ; MEAN=mu; VARIAN CE=sigmasquare] \ 
          CUMPR=uni ; DEVIATE=nor1 
 
\\Draw nor2 from standard normal with 10%-point -1 and 90%-point 1 
VARIATE   vals ; !(-1, 1) 
VARIATE   probs ; !(0.10, 0.90) 
CALCULATE uni = URAND(0) 
EDCONTINUOUS [DISTRIBUTION=normal ; METHOD=quantilE S ; PROPORTIONS=probs ; \ 
          QUANTILES=vals] CUMPR=uni ; DEVIATE=nor2 
SUMMARIZE [PRINT=#,quantiles] nor1, nor2 
 
\\Draw lnor1 from lognormal with mean mu and varian ce sigmasquare 
VARIATE   [NVALUES=n] lnor 
CALCULATE uni = URAND(0) 
EDCONTINUOUS [DISTRIBUTION=lognormal ; MEAN=65 ; VA RIANCE=1] uni ; lnor1 
 
\\Draw lnor2 from lognormal on (0, infinity), with 5%-point 5 and 95%-point 10 
VARIATE   vals ; !(5, 10) 
VARIATE   probs ; !(0.05, 0.95) 
CALCULATE uni = URAND(0) 
EDCONTINUOUS [DISTRIBUTION=lognormal ; METHOD=quant il ; PROPORTIONS=probs ; \ 
          QUANTILES=vals] CUMPR=uni ; DEVIATE=lnor2  
SUMMARIZE [PRINT=#,quantiles ; PROPORTIONS=0.05, 0. 95] lnor1, lnor2 
 
\\Draw gam1 from gamma distribution with given mean  and variance  
VARIATE   [NVALUES=n] gam1 
CALCULATE uni = URAND(0) 
EDCONTINUOUS [DISTRIBUTION=gamma ; MEAN=65 ; VARIAN CE=1] uni ; gam1 
 
\\Draw gam2 from gamma(0, infinity), with 5%-point 5 and 95%-point 10 
VARIATE   vals ; !(5, 10) 
VARIATE   probs ; !(0.05, 0.95) 
CALCULATE uni = urand(0) 
EDCONTINUOUS [DISTRIBUTION=gamma ; METHOD=quantiles  ;  ; PROPORTIONS=probs ; \ 
          QUANTILES=vals] CUMPR=uni ; DEVIATE=gam2 
SUMMARIZE [PRINT=#,quantiles ; PROPORTIONS=0.05,0.9 5] gam1, gam2 
 
\\Draw bet1 from beta distribution on (3,9) with gi ven mean and variance 
CALCULATE uni = URAND(0) 
EDCONTINUOUS [DISTRIBUTION=beta ; MEAN=5 ; VARIANCE =1 ; LOWER=3 ; UPPER=9] \ 
          uni ; bet1 
 
\\Draw bet2 from beta distribution on (0, 10), with  25%-point 5 and 75%-point 8 
VARIATE   vals ; !(5, 8) 
VARIATE   probs ; !(0.25, 0.75) 
CALCULATE uni = URAND(0) 
EDCONTINUOUS [DISTRIBUTION=beta ; LOWER=0 ; UPPER=1 0 ; METHOD=quantiles ; \ 
          PROPORTIONS=probs ; QUANTILES=vals] CUMPR =uni ; DEVIATE=bet2 
SUMMARIZE [PRINT=#,quantiles ; PROPORTIONS=0.25,0.7 5] bet1, bet2 
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Warning: When a beta or gamma distribution is specified by a pair of quantiles, EDCONTINUOUS 
tries to find the parameters of the distribution by means of a non-linear optimization (via 
FITNONLINEAR) which may occasionally fail without any warning. So please check the results in 
this case. 
 
 
4.2. Multivariate samples 
 
Direct sampling from multivariate normal and student distributions 
 
The multinormal distribution is specified by a vector of means and a covariance matrix. The 
following example yields 1000 draws of 3 variates from a 3-dimensional normal distribution with 
mean zero and a given (valid) variance-covariance matrix. For details, see the formal description 
of USAGE procedure GMULTIVARIATE in Appendix II. 

SCALAR    k ; 3 
VARIATE   [NVALUES=1000] x[1...k] 
SYMMETRIC [ROWS=k] vcov ; !( 0.0000430, \ 
                            -0.0015080, 1.11300, \ 
                            -0.0007942, 0.04264,  0 .1389) 
VARIATE   mu ; !(0.022, 0.796, 2.186) 
GMULTIVARIATE [DISTRIBUTION=normal ; NVALUES=1000 ;  PRINT=summary ; \ 
          SEED=768241 ; MEAN=mu ; VCOVARIANCE=vcov]  NUMBERS=x 
CORRELATE [PRINT=correlations] x[] 

Similarly, the multi-student distribution is specified by a vector of means, a covariance matrix, and 
a number of degrees of freedom. It should be noted that the means and the covariance matrix are 
not equal to mean and the covariance matrix of the student distribution itself, but of a normal 
distribution that plays a role in the definition of the student distribution (see Section 9.3). Adding 
the next GMULTIVARIATE-statement to the example above, yields 1000 draws of 3 variates from 
a 3-dimensional student distribution with 18 degrees of freedom, with defining mean zero and 
some given (admissible) variance-covariance matrix. For details, see the formal description of 
USAGE procedure GMULTIVARIATE in this manual. 

GMULTIVARIATE [DISTRIBUTION=student ; NVALUES=1000 ; PRINT=summary ; \ 
          SEED=768241 ; MEAN=mu ; VCOVARIANCE=vcov ; DF=18] NUMBERS=x 

Indirect sampling from more general multivariate distributions 
 
Suppose one wants to draw from a multivariate distribution with given marginal distributions of 
any type. If the component variates are independent, one may just draw them independently with 
the EDCONTINUOUS procedure, as described in Section 4.1. We will now show how to draw from 
a multivariate distribution with prescribed rank correlation matrix. The method stems from Iman 
and Conover (1982). Two remarks should be made before we proceed. Firstly, the method is only 
approximate: the rank correlation matrix of the distribution from which the draws are made is 
merely close to the prescribed rank correlation. But very close: the rank correlations of the sampled 
distribution differ at most 0.02 from the desired values; in virtually all cases this error will be 
negligible compared with the estimation error of the rank correlation. Secondly, a multivariate 
distribution is not uniquely defined by its marginals and its rank correlation.  
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The next example shows how to draw from a multivariate distribution, with given marginals that 
are normal, gamma and beta, each defined by its mean and variance. The rank correlation is given 
by a symmetric matrix, named rankcor below, which should be a valid correlation matrix. 

SCALAR    n ; 1000 
SCALAR    seed ; 161096 
VARIATE   [NVALUES=n] x[1...3], uni[1...3] 
SCALAR    mean[1...3] ; 0.125, 0.125, 0.0050 
SCALAR    var[1...3]  ; 0.004, 0.001, 0.00001 
SYMMETRIC [ROWS=3] rankcor ; !(1, 0, 1, 0.5, 0, 1) 
GUNITCUBE [NVALUES=n ; RCORRELATION=rankcor ; SEED= seed] NUMBERS=uni 
EDCONTINUOUS [DISTRIBUTION=normal ; MEAN=mean[1] ; VAR=var[1]] uni[1] ; x[1] 
EDCONTINUOUS [DISTRIBUTION=gamma  ; MEAN=mean[2] ; VAR=var[2]] uni[2] ; x[2] 
EDCONTINUOUS [DISTRIBUTION=beta   ; MEAN=mean[3] ; VAR=var[3]] uni[3] ; x[3] 
PEN       NUMBER=1 ; SYMBOL=2 ; SIZE=0.2 
DSCATTER  x[] 

USAGE procedure GUNITCUBE produces uniform variates from a multivariate distribution with 
the required rank correlations. From these, the variates x1...x3 with the required (marginal) 
distributions are obtained by the procedure EDCONTINUOUS, which was introduced in the 
previous subsection. Ranks and rank correlations are unaltered by EDCONTINUOUS. The standard 
GenStat procedure DSCATTER visualizes the resulting multivariate distribution by means of the 
scatterplots of the different pairs of variates. 
 
 
4.3. Restricted random sampling 
 
Up to this point, we only discussed ordinary random sampling, where each sampled vector is 
drawn independently of the other ones. This is the best-understood sampling technique. There 
exist, however, many alternative sampling techniques ranging from slightly less random to entirely 
deterministic. Their reason of existence is that the estimation results of subsequent analyses are 
hoped to be more accurate at the same sample size. The restricted random sampling methods that 
will be discussed are also called estimation-variance reduction techniques. 
 
In uncertainty and sensitivity analysis, latin hypercube samples are often used to achieve improved 
estimation accuracy (McKay et al., 1979; Iman & Conover, 1980; Stein, 1987; Owen, 1992). The 
method enforces close resemblance of the sample marginals to the marginals of the target 
distribution. Latin hypercube samples will be discussed in Section 4.4. 
 
There also exist various techniques aimed at controlling sample correlations. The method of Iman 
& Conover (1982), which enforces rank correlations, is implemented in USAGE (see Section 4.5). 
 
Being very simple, the theory of ordinary random sampling is well-developed. Ordinary random 
sampling is not maximally efficient, but it has the great advantage that one can more easily assess 
the accuracy of the results. For instance, the accuracy of a mean of an ordinary random sample of 
size n is calculated in the usual way as 1/n times the sample variance. However, the uncertainty 
contributions in which we are interested are not estimated by sample means, so the 1/n rule cannot 
be applied. Instead, with an ordinary random sample, the bias and the sampling variability of an 
estimate of an uncertainty contribution can be assessed via bootstrap techniques. Bootstrap 
techniques are not implemented in the present version of USAGE, but an example of application 
of the bootstrap will be given in Section 7.3. 
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The theory of the various restricted random samples is less developed. Some estimates of 
uncertainty contributions are known to be slightly biased. Most often, the variability of the 
estimates is inferred from the results of the analyses of a number of independent restricted random 
samples. 
 
In summary, restricted random samples may be used to improve estimation accuracy, but because 
of possible bias it is harder to assess that accuracy. Large ordinary random samples seem to be the 
best choice unless the computer time required to run the model many times becomes prohibitive. 
The sampling variability of estimation results from restricted samples can only be assessed by 
repeating the whole procedure. On the other hand, bootstrap methods can be used to estimate bias 
and sampling variability of estimates from ordinary random samples. 
 
 
4.4. Controlling sample marginals: latin hypercube sampling 
 
Latin hypercube sampling is a much-used variance reduction technique. One may force close 
adherence to the required marginal distributions by means of the GUNITCUBE option setting 
STRATIFICATION=latin . 

SCALAR    k ; 3 
SCALAR    n ; 10 
SCALAR    seed ; 291096 
VARIATE   [NVALUES=n] uni[1...k] 
GUNITCUBE [NVALUES=n ; STRATIFICATION=latin ; SEED= seed] NUMBERS=uni 
SCALAR    lower, upper, marks ; -0.0001, 1.0001, 0. 1 
AXES      [EQUAL=scale] WINDOW=1 ; STYLE=grid ; XLO WER=lower ; XUPPER=upper ; \ 
          XMARKS=marks ; YLOWER=lower ; YUPPER=uppe r ; YMARKS=marks 
PEN       NUMBER=1 ; SYMBOL=2 
DGRAPH    [KEYWINDOW=0] uni[2] ; uni[1] 

Figure 1 shows the graph of uni[2] versus uni[1]. The variates uni[] are stratified so that each has 
exactly one value in each of the intervals (0, 1/10), (1/10, 2/10) ... (9/10, 1). In a sample of size n, 
one has consecutive intervals of size 1/n. This is the defining property of a uniform latin hypercube 
sample. For the rest everything is random: the location within the intervals, and the association 
between the variates.  
 
A latin hypercube sample with arbitrary marginals can be constructed by means of USAGE 
procedure EDCONTINUOUS. For example, one may continue the program with: 

VARIATE   [NVALUES=n] x[1...3] 
SCALAR    mean[1...3] ; 0.125, 0.125, 0.00500 
SCALAR    var[1...3]  ; 0.004, 0.001, 0.00001 
EDCONTINUOUS [DISTRIBUTION=normal ; MEAN=mean[1] ; VAR=var[1]] uni[1] ; x[1] 
EDCONTINUOUS [DISTRIBUTION=gamma  ; MEAN=mean[2] ; VAR=var[2]] uni[2] ; x[2]  
EDCONTINUOUS [DISTRIBUTION=beta   ; MEAN=mean[3] ; VAR=var[3]] uni[3] ; x[3] 

Latin hypercube sampling can be combined with prescription of a rank correlation matrix.  
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Figure 1. Two components of a uniform latin hypercube sample of size 10. 
 
 
4.5. Controlling sample correlations 
 
One may force close adherence of the sample rank correlation to the required rank correlation by 
means of the GUNITCUBE option METHOD=iman: 

GUNITCUBE [NVALUES=n ; RCORRELATION=rankcor ; METHO D=iman] NUMBERS=uni 

The method was introduced by Iman & Conover (1982). The marginal samples will remain as 
random as with ordinary random sampling, but the association between the vector components is 
much less random. The rank correlation of samples so constructed is nearly equal to the population 
rank correlation, especially with large samples. Iman's method for controlling correlations may be 
applied in combination with latin hypercube sampling: 

GUNITCUBE [NVALUES=n ; RCORRELATION=rankcor ; METHO D=iman ; \ 
          STRATIFICATION=latin] NUMBERS=uni 
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5. Regression-based sensitivity analysis 
 
This section deals with regression-based sensitivity analysis given (1) a sample of model inputs 
from a joint distribution representing the uncertainty about these inputs and (2) a corresponding 
sample of the model output studied. The model output, given its inputs, may have been produced 
by specialised modelling software. The procedure calculates the contributions to the variance of 
the model output from individual or pooled model inputs by means of regression. These 
contributions are expressed as percentages of the variance of the model output. The top marginal 
variance of a set of model inputs is calculated as the percentage of variance accounted for when 
that set of inputs is the only one to be fitted; it is an approximation of the correlation ratio. The 
calculation is successful if the percentage of variance accounted for by all inputs considered is 
close to 100, since the analysis only accounts for that part of the variance of the output that is 
explained by the regression (thus interactions between inputs are not considered). See for instance 
Saltelli et al (2000) for a detailed account of sensitivity analysis. The bottom marginal variance of 
a set of inputs is calculated as the increase of variance accounted for when that set is the last to be 
added to all other inputs. The calculation of single-input uncertainty contributions is only sensible 
when the number of inputs is moderate: it is pointless for instance when considering uncertainty 
due to numerous weather inputs or abundant inputs from a spatial stochastic process.  
 
Linear analysis 
 
Linear sensitivity analysis on variate y with model inputs x1...xk is based on approximations of 
model output f by linear functions of x. The top marginal variance of an individual term xi, TMVi, 
is estimated by the variance accounted for by the least squares approximation of the form a + bi xi. 
The top marginal variance of a group G of terms {xi | i∈G}, TMV G, is estimated by the variance 
accounted for by the least squares approximation of the form a + Σi∈G bi xi. 
 
The variance accounted for is given by MStot - MSres, the total mean square minus the residual 
mean square. Usually it is expressed relative to MStot, by the so-called fraction of variance 
accounted for, also named adjusted R2 (GenStat Committee, 2005). 
 
Similarly, the bottom marginal variance of an individual term xi, BMVi, is estimated by the 
increase in variance accounted for, when the least squares approximation of f(x) of the type 
a + Σj≠I bj xj is replaced by that of the form a + Σj bj xj. The bottom marginal variance of a group G 
of terms {xi | i∈G}, BMV G, is estimated by the increase in variance accounted for, when the least 
squares approximation of f(x) of the type a + Σj∉G bj xj is replaced by that of the form a + Σj bj xj.  
 
In USAGE, the linear analysis for all individual x’s can be performed as follows with procedure 
RUNCERTAINTY: 

VARIATE   [NVALUES=n] x[1...k], y 
... 
MODEL     y 
RUNCERTAINTY X=x[1...k] 

The linear analysis for pooled x’s, e.g. x[1,2], x[3] and x[4…k], can be performed by using 
pointers as follows: 
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VARIATE   [NVALUES=n] x[1...k], y 
... 
POINTER   pool1 ; !p(x[1], x[2]) 
POINTER   pool2 ; !p(x[3]) 
POINTER   pool3 ; !p(x[4...k]) 
MODEL     y 
RUNCERTAINTY X=pool1, pool2, pool3 

Obviously, such a linear sensitivity analysis will only work if f(x) can be well approximated by a 
linear function, as evidenced by a close-to-one value of the adjusted-R2 of the full approximation 
a + Σj bj xj.  
 
Additive analysis 
 
If model output f cannot be well approximated by a linear function of the x’s, one may try to 
approximate f(x) by a more general additive function, using splines for instance. Analogous to 
linear analysis, spline sensitivity analysis is based on comparison of the variances accounted for by 
different least squares approximations of model output f(x). 
 
The top marginal variance of an individual xi, TMVi, is estimated by the increase in variance 
accounted for by an approximation of the form a + si(xi), where si(xi) denotes a smoothing spline 
in xi. The top marginal variance of a group G of terms {xi | i∈G}, TMV G, is estimated by the 
variance accounted for by the least squares approximation of the form a + Σi∈G si(xi). 
 
Similarly, the bottom marginal variance of individual xi, BMVi, is estimated by the increase in 
variance accounted for, when an approximation of f(x) of the type a + Σj≠i sj(xj) is replaced by one 
of the form a + Σj sj(xj). The bottom marginal variance of a group G of terms {xi | i∈G}  ,  BMVG, 
is estimated by the increase in variance accounted for, when the least squares approximation of 
f(x) of the type a + Σj∉G sj(xj) is replaced by that of the form a + Σj sj(xj). 
 
The smoothness of the splines can be controlled by means of the so-called effective number of 
degrees of freedom (DF; see GenStat Committee, 2005). DF acts much the same as the number of 
degrees of freedom of a polynomial: a larger DF results in closer adherence to the data, at the price 
of less smoothness. When DF is not set, the default value 2 is used. 
 
The analysis is performed by USAGE procedure RUNCERTAINTY, using the option 
CURVE=SPLINE: 

MODEL     y 
RUNCERTAINTY [CURVE=spline ; DF=2] X=x[] 

The default setting of the CURVE option is linear . The effective degrees of freedom of the, 
 individual or pooled, x’s is defined by parameter DF with default value 2. 
 
Approximation of f() by a sum of splines in the individual inputs may constitute an improvement 
upon linear approximation, since nonlinearities in the response of f() to individual inputs are 
allowed for. But if the model is strongly non-additive in the x’s, the method fails. Success is 
evidenced by a close-to-one value of the adjusted-R2 of the full approximation a + Σj sj(xj).  
 
With a sufficiently large DF, the difference between 1 and adjusted-R2 is the fraction of variance 
due to interactions. 
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Since the RUNCERTAINTY approximation, with linear functions or splines, can not incorporate 
interactions, differences between estimates of the TMV and the BMV of an input xi can only be 
caused by correlations between the inputs and by sampling variability (see Section 3). 
 
 
6. Regression-free sensitivity analysis of independent input groups 
 
Suppose that the inputs can be divided into two independent groups S and T. Write the model 
output studied as f(S, T). The bottom marginal variance of S and the top marginal variance of T 
can be estimated from a sample of the following structure : 

 f(S11, T1) f(S12, T1) 
 f(S21, T2) f(S22, T2) 
      …      … 
 f(SN1, TN) f(SN2, TN) 

where all Sij and Ti are independent realizations of S and T. Denote the above two columns by y1 
and y2. The bottom marginal variance of S and the top marginal variance of T may be estimated 
by: 

 )yVar(yV(S)M̂B 212
1 −=  

 )y,Cov(yV(T)M̂T 21=  

The two are complementary and add up to the total variance. The example is a very simple case of 
a class of ANOVA designs and analyses for sensitivity analysis. For methods that enable the 
estimation of top and bottom marginal variances of more than two independent groups of inputs 
see Jansen (1994, 1996, 1999) and Sobol (1990, 1995). 
 
 
7. Examples 
 
The examples in the next subsections are simpler than is typical for uncertainty and sensitivity 
analysis, except for the last example. Often, principles can be better explained by simple examples. 
The first subsection shows the similarities between sensitivity analysis and standard regression. 
 
 
7.1. Parameter uncertainty after regression 
 
Regression analysis leads to an estimate b of the parameter vector β. The estimation quality is 
evidenced by an estimate V of the covariance matrix Σ of b, and by the number v of residual 
degrees of freedom. Under favourable circumstances, in particular a large and informative data-set, 
the estimate b of parameter vector β is approximately multinormally distributed with mean β and 
covariance matrix Σ.  
 
The simplest way to describe uncertainty about β is to express it by a multinormal distribution with 
b as vector of means, and V as covariance matrix: 

 β ~ N(b, V) . 
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This approach, however, neglects that V is only an approximation of the true covariance matrix Σ. 
The inaccuracy in V is accounted for by the so-called multivariate student distribution 
characterized by b, V and ν: 

 β ~ tν (b, V). 

Provided that ν > 2, the multivariate student distribution has mean b, and variance-covariance 
matrix [ν /(ν–2)] V. So the student uncertainty distribution conveys more uncertainty than the 
normal one, especially for small degrees of freedom. (For more details, see Appendix I.) 
 
NOTE. The multinormal and the multistudent distribution have unrestricted ranges. But often 
parameters are known to be restricted, for instance to positive values, or to fractions between 0 and 
1. Sampling from an unrestricted uncertainty distribution may then give rise to problems. The 
following stratagem may be used to circumvent these problems. Define the uncertainty distribution 
so that its marginals satisfy the restrictions and have the required means and variances, for instance 
by means of beta and gamma distributions. Define the correlation structure by means of rank 
correlation matrix corrmat(V), or better still by corrmat{[ν /(ν–2)] V}. Procedure GUNITCUBE has 
an option to specify the rank correlation matrix. The method just sketched may be justified by the 
fact that for a multinormal distribution, the correlation matrix and the rank correlation matrix are 
very nearly equal (see Appendix I). 
 
Linear regression 
 
As an example we re-analyse the 'Tribolium beetles weight loss' data, which are discussed in Sokal 
& Rolf (1981; chapter 14). 

VARIATE   loss; !(8.98, 8.14, 6.67, 6.08, 5.90, 5.8 3, 4.68, 4.20, 3.72) 
VARIATE   humidity; !(0, 12.0, 29.5, 43.0, 53.0, 62 .5, 75.5, 85, 93.0) 
MODEL     loss 
FIT       humidity 
RKEEP     ESTIMATES=mean; VCOV=vcov ; DF=df 

The sensitivity analysis can easily be done analytically (loc. cit.). But we take the simulatory road 
for illustration. 

\\Draw a multivariate student parameter sample 
SCALAR    n ; 1000 
VARIATE   [NVALUES=n] a, b 
GMULTIVARIATE [DISTRIBUTION=student ; NVALUES=n ; M EAN=mean ; \ 
          VCOVARIANCE=vcov ; DF=df ; SEED=111296] N UMBERS=!p(a, b) 

We start with a graphical analysis with humidity in the range 0...100, see Figure 2; and compare it 
with loc. cit., Figure 14.11. 

DELETE    [REDEFINE=yes] loss, humidity 
CALCULATE humidity = 100 * !(1...n) / n 
CALCULATE loss = a + b*humidity                  "C orresponding loss values" 
CALCULATE lm = mean$[1] + mean$[2] * humidity    "l oss at mean parameter values" 
PEN       1,2 ; METHOD=point,line ; SYMBOL=2,0 ; LI NESTYLE=0,1 ; COLOUR=1 ; \ 
          SIZE=0.3,* ; THICKNESS=*,2 
DGRAPH    [KEYWIN=0; TITLE='loss vs humidity'] loss ,lm ; humidity ; PEN=1,2 
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Figure 2: regression line and simulated predicted values at mean parameter values 
 
Next we can calculate the median and 95% two-sided confidence limits at humidity say 100% 
(loc. cit., Box 14.3, Item 7). 

CALCULATE humidity = 100 
CALCULATE loss = a + b*humidity 
SUMMARIZE [PRINT=#,quantiles; PROPORTIONS=0.025, 0. 5, 0.975] loss 

The above lines yield the 95% interval (3.0, 3.8), and the median 3.4. The interval approximates the 
exact interval, which can also be calculated analytically. A larger sample should improve the 
approximation. 
 
Photosynthesis 
 
In the previous linear regression, the sensitivity analysis could be most efficiently performed by 
hand. The only possible advantage of the Monte Carlo analysis lies in its conceptual transparency. 
With nonlinear models, however, Monte Carlo simulation may be preferable in every aspect to 
hand calculation, since hand calculation will often involve an approximation error that is worse 
than the Monte Carlo sampling error. The sampling error can be made as small as desired, given 
enough computer time. The nonlinear saturation curve for photosynthesis 

 photos = amax + (rd – amax) × exp[rad × eff / (rd – amax)] 

is fitted to a small but very accurate dataset. 

VARIATE   rad ; !(0.00, 103.5, 327.02, 484.78, 736. 96, 996.12) 
VARIATE   photos ; !(-0.81, 3.61, 10.48, 12.99, 14. 48, 14.91) 
EXPRESSION e; !e(fit = amax + (rd-amax)*EXP(rad*eff /(rd-amax))) 
MODEL     photos ; FIT=fit 
\\Initial values stem from analysis of similar data  
RCYCLE    amax, rd, eff; ini=15,  1, .05 
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FITNONLINEAR [CALCULATION=e; PRINT=model,summ,esti, corr] 
RKEEP     ESTIMATES=m ; VCOVARIANCE=vcov ; DF=df 

The sensitivity analysis starts with random draws from the parameter distribution. 

DELETE    [REDEFINE=yes] photos, rad, amax, rd, eff  
SCALAR    n ; 1000 
VARIATE   [NVALUES=n] amax, rd, eff 
\\Draw multivariate student parameter sample  
GMULTIVARIATE [DISTRIBUTION=student ; NVALUES=n ; M EAN=mean ; \ 
          VCOVARIANCE=vcov ; DF=df ; SEED=111296] ! p(amax, rd, eff)          

We start with a graphical analysis with radiation in the range 0...1000 (see Figure 3). 

CALCULATE rad = 1000 * !(1...n) / n 
\\Calculate corresponding photosynthesis values 
CALCULATE photos= amax + (rd-amax)*EXP(rad*eff/(rd- amax)) 
\\pm is photosynthesis curve at mean parameter valu es 
CALCULATE pm = mean$[1] + (mean$[2]-mean$[1]) * \ 
          EXP(rad*mean$[3]/(mean$[2]-mean$[1])) 
PEN       1,2 ; METHOD=point,line ; SYMBOL=1,0 ; LI NESTYLE=0,1 ; COLOUR=1 ; \ 
          SIZE=0.3,* ; THICKNESS=*,2 
DGRAPH    [KEYWIN=0 ; TITLE='photos vs rad'] photos ,pm ; rad ; PEN=1,2 
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Figure 3: fitted curve and simulated predicted values at mean parameter values 
 
By way of example, we calculate median and 95% two-sided confidence limits at rad say 500 

CALCULATE rad = 500 
CALCULATE photos= amax + (rd-amax)*EXP(rad*eff/(rd- amax)) 
SUMMARIZE [PRINT=#,quantiles ; PROPORTIONS=0.025, 0 .5, 0.975] photos 

These lines yield the 95% interval (11.8, 13.4), with 12.8 as median. 
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7.2. A historical example: smallpox inoculation 
 
Smallpox was a dangerous infectious disease, which has been compared in virulence to the plague 
(Carey, 1995). It killed, for instance, five reigning monarchs during the eighteenth century. Early in 
the eighteenth century, in some upper circles in Europe, an old Turkish medical technique came 
into vogue, called inoculation or variolation. It was a method of immunization against smallpox by 
means of a slight artificial infection with this disease (i.e. human smallpox). Inoculation, however, 
was not altogether harmless: one might die from the artificial infection. This risk had to be 
compared with the permanent risk of natural infection. The physician and mathematician Daniel 
Bernoulli constructed a model that should enable comparison of the two risks. The following 
analysis proceeds from a very individualistic point of view. For instance, the risk of contaminating 
others under either action is neglected. Bernoulli, however, also took the risks and benefits for 
society into account. 
 
The simple model used by Bernoulli (1760) goes as follows. A susceptible has a constant 
probability density α in time to get infected. If infected, he has probability β to die from the 
infection, and probability 1-β to recover and stay immune for the rest of his life. Probability 
density α was estimated at 1/8 per year, and probability β at 1/8; independent of the number of 
infected in the neighbourhood, of one's age, of place, time etcetera. The equality of the two 
numbers is a coincidence. Bernoulli was well aware that his model, and its parameters, were only 
approximate, but he stated that it conformed reasonably to the facts known. To test the validity of 
the model, Bernoulli calculated the fraction, π say, of every generation that would be killed by 
smallpox, taking into account all other competing causes of death. This fraction π would amount 
to about 1/14, which was accepted as a realistic figure. In the further analysis, we will assume that 
the 95% interval of π ranges from about 1/28 to about 1/7. 
 
On the other hand, there is the risk, say γ, to die through the inoculation. The victim of the artificial 
infection would die shortly afterwards, but for simplicity the model assumes immediate death. The 
estimates for γ ranged from a very optimistic 1/1200 to a very pessimistic 1/60. Bernoulli worked 
with the estimate 1/200.  
 
Under this simple model, Bernoulli calculated analytically the relative gain from inoculation at 
time t reckoned from the moment t0 of inoculation. The relative gain R(t) is defined as the 
difference of the probabilities to live for at least t years after t0, when inoculated and when not 
inoculated, relative to the latter one. 

 R(t) = (1 – γ) / (1 – β + βe-αt) – 1   (t > 0). 

The relative gain equals –γ just after inoculation; for large t, it will tend to the limit (1–γ)/(1–β) – 1. 
If β > γ, the gain will eventually become positive: the first positive value occurs after time lag 

 τ = (1 / α) ln [β / (β – γ)]. 

Since the model is a simplification, and since parameters α, β and γ were only known inaccurately, 
the decision to inoculate was no easy one. The mathematician d'Alembert (1761) fiercely criticized 
the model of Bernoulli because of its simplifications and uncertainties. Just like Bernoulli, he was 
an ardent advocate of inoculation, but he found that more convincing arguments were required. 
D'Alembert hoped that by a refinement of the inoculation technique, its risk would decrease to the 
level of the risk of deadly contagion, within a month say, by natural smallpox. In 1798, these hopes 
were realized by Jenner, a country doctor, who developed vaccination, a novel immunization 
technique based on cowpox instead of human pox.  
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One may ask whether the fierce critique of d'Alembert was truly rational. In order to shred some 
light on this question, we shall perform a sensitivity analysis. The analysis is intended as an 
amusing illustration, and should not be taken very seriously, because the parameter uncertainties 
are defined rather loosely. Moreover, one should be aware that structural model errors are not 
addressed by the analysis (as usual). 
 
In the sensitivity analysis we assume that α, β and γ are independent, with the distributions given 
below; the 95%-intervals of the distributions are given in the columns low and high: 
 

Uncertainty distributions of smallpox model parameters. The parameters are assumed to be independent. 
The means are Bernoulli's estimates. 

parameter Type mean variance minimum maximum low high 

α 
β 
γ 

gamma 
beta 
beta 

0.125 
0.125 
0.005 

0.004 
0.001 
0.00001 

0 
0 
0 

∞ 
1 
1 

0.033 
0.070 
0.00082 

0.28 
0.19 
0.013 

 
The means of these distributions are equal to the figures used by Bernoulli. The variances have 
been chosen after some computer experimentation so as to conform reasonably well to the 
uncertainties mentioned above. The 95%-interval of γ conforms to the optimistic and pessimistic 
estimates from d'Alembert. The intervals for α and γ have been taken quite large, but such that the 
interval for π would not become too wide. It appeared that β contributed most to the uncertainty in 
π: for that reason the variance of β was taken smaller than that of α. With the above parameter 
uncertainties, the ensuing 95% interval for π ranges approximately from 0.040 to 0.13, as intended. 
 
A sample of size 1000 is constructed as follows with GenStat. 

SCALAR    k ; 3 
SCALAR    n ; 1000 
SCALAR    seed ; 161096 
VARIATE   [NVALUES=n] alpha, beta, gamma, pi, tau, rgain1, rgain18, uni[1...k] 
SCALAR    mean[1...k] ; 0.125, 0.125, 0.00500 
SCALAR    var[1...k]  ; 0.004, 0.001, 0.00001 
GUNITCUBE [NVALUES=n ; STRATIFICATION=latin ; SEED= seed] NUMBERS=uni 
EDCONTINUOUS [DISTRIBUTION=gamma ; MEAN=mean[1] ; V AR=var[1]] uni[1] ; alpha 
EDCONTINUOUS [DISTRIBUTION=beta  ; MEAN=mean[2] ; V AR=var[2]] uni[2] ; beta 
EDCONTINUOUS [DISTRIBUTION=beta  ; MEAN=mean[3] ; V AR=var[3]] uni[3] ; gamma 
SUMMARIZE [PRINT=#,quantiles ; PROPORTIONS=0.025, 0 .975] alpha, beta,  gamma 

Next, outside of GenStat the model software calculates the corresponding model outputs, namely 
the probability π, the time lag τ (if γ ≥ β a missing value is produced), and the relative gains, R(1) 
and R(18). The subsequent uncertainty and sensitivity analysis is done as follows in GenStat. 

SUMMARIZE [PRINT=#,quantiles ; REPRESENTATION=stand  ; \ 
          PROPORTIONS=0.05,0.25,0.5,0.75,0.95] pi, tau, rgain1, rgain18 
FOR yy=pi, tau, rgain1, rgain18 
  MODEL     yy 
  RUNCERTAINTY x=alpha, beta, gamma 
  RUNCERTAINTY [CURVE=spline] X=alpha, beta, gamma ; DF=4 
ENDFOR 

The main results of the analysis are the estimates of the characteristics (mean, quantiles etcetera) of 
the distributions of major model outputs. The table below contains some quantiles. 
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 quantile π τ R(1) R(18) 
 0.050 0.044 0.065 -0.0019 0.052 
 0.250 0.061 0.170 0.0037 0.083 
 0.500 0.074 0.318 0.0083 0.107 
 0.750 0.090 0.599 0.0146 0.136 
 0.950 0.116 1.332 0.0254 0.183 
 
In the present case, the estimates of 
uncertainty contributions are not very useful, 
since the main question is whether to be 
inoculated, and not what research might be 
most effective in order to reduce the 
uncertainty. But it does no harm to estimate 
uncertainty contributions just for the exercise. 
 
Uncertainty about time lag τ  
 
The probability that γ < β is estimated to be 1 
(no missing values occurred in τ). The length 
τ of the period in which inoculation has a 
negative impact, is less than 1.3 year with 
probability 0.95; the median value equals 0.3 
year. The spline sensitivity analysis has 
adjusted R2=71%, considerably more than 
the 58% of the linear analysis; the difference 
is largely caused by nonlinearity of the 
response to α (see Figure 4). It is seen that the infection pressure α and the inoculation risk γ 
contribute much to the uncertainty about τ. 
 
Uncertainty about relative gain one year after inoculation 
 
It is seen that the mean and median relative gain one year after inoculation are merely 1%. The 
probability of negative gain after one year is still over 5% (which corresponds with the above 
analysis of τ). A linear analysis has a nice adjusted R2=94.8%, which is hardly improved by a 
spline analysis. Infection pressure α contributes most to the uncertainty. 
 
Uncertainty about relative gain 18 years after inoculation 
 
The relative gain 18 years after inoculation is much larger; the median gain is estimated at 11%. A 
spline analysis accounts for 97% of the uncertainty: quite satisfying, and appreciably better than 
the 88% of the linear analysis. Smallpox death risk parameter β causes most of the uncertainty, 
whereas the contribution of inoculation risk γ is negligible: that minor risk is almost forgotten after 
18 years. 
 
Indeed, it seems that d'Alembert was right that a diminishment of the risk of inoculation would be 
of great help in convincing people of the advantages of inoculation. But even with the state of the 
art and the uncertainties of that time, the advantages of inoculation seem to outnumber the 
disadvantages. 
 

 

 Figure 4 Sampled values of τ versus those of α; 
a spline fit has been added. 
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7.3. Bootstrap percentile confidence interval for analysis results 
 
In this subsection we perform sensitivity analysis on a test function rather than on a model. The 
test function is given by 

 f(x) = x1
2/ √2 + (x2+x3) / √(7/4) + 2 (x4-x5) + x6x7 √2 + x8. 

The arguments are assumed to have the following distribution: the marginal distribution of each xi 
is normal with mean 0 and variance 1; all correlations are equal 0, except ρ(x2 , x3) and ρ(x4 , x5), 
which equal 3/4. 
 
The function f(x) may be written as a sum of functions of independent groups, namely the groups 
{x 1}, {x 2 , x3}, {x 4 , x5}, {x 6 , x7}, {x 8}. They may be described as independent groups with 
additive effects. For such groups, the top and bottom marginal uncertainty contributions are equal. 
Thus one might speak unequivocally about the uncertainty contributions of these groups. They are 
listed in the following table. 
 

Uncertainty contributions of independent groups with additive effects. 

Group absolute relative (%) 

x1 
x2, x3 
x4, x5 
x6, x7 
x8 

1 
2 
2 
2 
1 

12.5 
25 
25 
25 
12.5 

 
The sensitivity analysis in the next example is based on spline regression. It estimates the 
uncertainty contributions of the groups mentioned. Since all terms in f(x) can be ‘seen’ by a spline 
of this type, we should expect some 25% of the variance to remain out of sight of the sensitivity 
analysis.  
 
The analysis for a random sample with 1000 draws is done with the next program fragment. 

SCALAR    seed ; 231205 
SCALAR    n ; 1000 
VARIATE   [NVALUES=n] x[1...8], y 
SYMMETRIC [ROWS=8] vcov 
DIAGONAL  [ROWS=8] identity ; !(8(1)) 
CALCULATE vcov = identity 
CALCULATE vcov$[3][2] = 0.75 
CALCULATE vcov$[5][4] = 0.75 
\\Draw input sample 
GMULTIVARIATE [DISTRIBUTION=normal ; NVALUES=1000 ;  VCOVARIANCE=vcov ; \ 
          SEED=seed] NUMBERS=x 
\\Calculate test function for sampled values 
CALCULATE y = x[1]*x[1]/SQRT(2) + (x[2]+x[3])/SQRT( 1.75) + \ 
          (x[4]-x[5])*2 + x[6]*x[7]*SQRT(2) + x[8] 
\\Sensitivity analysis for partially grouped model inputs 
POINTER   p1, p23, p45 ; !p(x[1]), !p(x[2,3]), !p(x [4,5]) 
POINTER   p67, p8 ; !p(x[6,7]), !p(x[8]) 
MODEL     y 
RUNCERTAINTY [CURVE=spline ; TOP%=top] X=p1, p23, p 45, p67, p8 

A fragment from the resulting output is given below 
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Uncertainty analysis 
==================== 
 
  Response variate: y 
   Number of units: 1000 
              Mean: 0.821 
          Variance: 8.330 
       R2-adjusted: 75.5 
 
Bottom and top uncertainty contributions based on s moothing spline fit 
--------------------------------------------------- ------------------- 
 
         input       bottom%      top%   Sumdf 
            p1          11.3      11.1       2 
           p23          25.0      28.0       4 
           p45          23.9      25.6       4 
           p67           0.1       0.0       4 
            p8          12.4      13.1       2 

Note that the estimates of the top and bottom marginal variances are close to each other, which is 
an expression of the fact that in this example the theoretical values of both types of variance 
components are equal, while the estimates are calculated differently. The blindness of the analysis 
for the effect of x6 and x7 is precisely as expected. The low value (75%) of adjusted R2 might form 
a reason to turn to a regression-free alternative.  
 
We will nevertheless continue this example to demonstrate how one can calculate confidence 
limits for an analysis based on a sample of independent consecutive draws, instead of say a latin 
hypercube sample. The calculation is quite elementary. You just draw nboot samples of size N, 
from the original sample of size N. In the new sample, some elements of the original may occur 
more than once, while some other elements may be absent: one draws ‘with replacement’. Repeat 
the original sensitivity analysis for each new sample and store the sensitivity coefficients. The α 
and (1-α) percentiles of the nboot values thus obtained for each result, constitute an (1-2α) 
bootstrap percentile confidence interval (Efron & Tibshirani, 1993). The calculation is 
straightforward: 

\\90% bootstrap confidence interval for top margina l variances 
SCALAR    nboot, nsample ; 100, 1000 
VARIATE   [NVALUES=nsample] xsample[1...8], ysample , index 
VARIATE   [NVALUES=nboot] t1, t23, t45, t67, t8 
POINTER   psample1, psample23, psample45, psample67 , psample8 ; \ 
          !p(xsample[1]), !p(xsample[2,3]), !p(xsam ple[4,5]), \ 
          !p(xsample[6,7]), !p(xsample[8]) 
FOR [NTIMES=nboot ; INDEX=ii] 
  CALCULATE index = 1 + INTEGER(nsample * URAND(0 ;  nsample)) 
  CALCULATE ysample,xsample[] = (y,x[])$[index] 
  MODEL     ysample 
  RUNCERTAINTY [PRINT=* ; CURVE=spline ; TOP%=top] X=psample1, psample23, \ 
            psample45, psample67, psample8 
  CALCULATE (t1,t23,t45,t67,t8)$[ii] = top$[1...5] 
ENDFOR 
SUMMARIZE [PRINT=#,quantiles ; PROPORTIONS=0.05, 0. 95] t1, t23, t45, t67, t8 
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A fragment from the result is given below: 

Summary description 
------------------- 
 
   Variate        Mean          Sd      Median   Nm v    Nval 
        t1   1.150E+01   2.472E+00   1.128E+01     0     100 
       t23   2.823E+01   2.296E+00   2.817E+01     0     100 
       t45   2.595E+01   2.235E+00   2.582E+01     0     100 
       t67   8.672E-01   5.855E-01   8.785E-01     0     100 
        t8   1.336E+01   1.991E+00   1.323E+01     0     100 
 
* Quantiles      0.050       0.950 
   Variate 
        t1   8.067E+00   1.584E+01 
       t23   2.453E+01   3.188E+01 
       t45   2.184E+01   2.968E+01 
       t67   8.303E-03   1.833E+00 
        t8   9.954E+00   1.683E+01 
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9. Appendix I: Some mathematical details 
 
 
9.1. GUNITCUBE 
 
Ordinary random samples 
 
In this subsection it will be shown how procedure 
GUNITCUBE with options RCORRELATION=rc, 
METHOD=simple & STRATIFICATION=none  
draws a sample from a continuous multivariate 
distribution with standard homogeneous marginals 
and rank correlations very close to the desired rank 
correlation.,  
 
The procedure is based on the property that the 
Pearson and rank correlations of a multinormal 
distribution are very nearly equal (see Figure 5). 
Applying this property, GUNITCUBE works as 
follows. Firstly, a multinormal sample of k 
variates, say z1 ... zk, is drawn with mean 0, and 
covariance matrix C. The standard normal 
marginals zi are transformed into standard homogeneous xi by means of the mapping xi = Φ(zi), 
where Φ denotes the standard normal distribution function.  
 
Pearson and rank correlation of the normal distribution 
 
Before we can demonstrate the property mentioned, we have to introduce the concept of rank 
correlation for random variates, since, originally, rank correlation is only defined for samples. The 
distributional rank correlation between two continuous random variates x1 and x2, with marginals 
F1 and F2 is defined as the correlation between the corresponding standard homogeneous variates 
F1(x1) and F2(x2). Some authors use the term grade correlation instead.  
 
Obviously, the distributional rank correlation between two standard homogeneous variates is equal 
to their ordinary Pearson correlation. Moreover, the distributional rank correlation between two 
variates is invariant under monotonically increasing transformations per variate. There exists a 
close connection between distributional and sample rank correlation: the sample rank correlation 
of a large ordinary random sample from a pair of variates with distributional rank correlation ρ*, 
will tend to ρ. 
 
It will be shown that the distributional rank correlation between any two standard homogeneous 
variates xi and xj from which GUNITCUBE draws a sample is close to the desired value cij: 

 rcorr(xi, xj) = corr(xi, xj)  
  = (6/π) arcsin(cij/2) 
   = cij + ηij 

in which the approximation error ηij satisfies |ηij| ≤ 0.018. 

 

Figure 5 Bivariate normal distribution: rank 
correlation versus ordinary correlation. 
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We will give a proof for the first two variates x1 and x2. Amazingly, no such proof was given by 
Iman and Conover (1982), who proposed the method. Denote their desired rank correlation c12 by 
ρ, and denote their actual rank correlation by ρ

*. The variates z1 and z2 are bivariate normal with 
standard normal marginals and correlation ρ. Thus, x1=Φ(z1) and x2=Φ(z2) are standard 
homogeneous; so both have mean 1/2 and variance 1/12. Their correlation may be calculated via 
the introduction of two auxiliary standard normal variates, ε1 and ε2 that are independent of each 
other and of z1 and z2. By the definition of Φ, one has 

 xi = Φ(zi) = P(εi < zi) = P(εi – zi < 0) , 

so that the expectation E[x1x2] satisfies 

 E[Φ(z1) Φ(z2)] = E[P(ε1 – z1 < 0 | z1) P(ε2 – z2 < 0 | z2)] = P(ε1 – z1 < 0  ∩ ε2 – z2 < 0). 

Now ε1 – z1 and ε2 – z2 have normal distributions with mean 0, variance 2, and correlation ρ/2. The 
probability that both are negative is given by 

  P(ε1 – z1 < 0 ∩ ε2 – z2 < 0) = 1/4  + arcsin(ρ/2) / (2π) 

(see for instance Abramowitz and Stegun, 1964; formula 26.3.19). So that 

 E[x1 x2] = E[Φ(z1) Φ(z2)] = 1/4  + arcsin(ρ/2) / (2π). 

The correlation between x1 and x2 follows as ρ* = (6/π) arcsin(ρ/2); which concludes the first part 
of the proof. The closeness of ρ* to ρ is ascertained numerically: max(|ρ – ρ*|) appears to have the 
value 0.018 (see Figure 5). 
 
A different interpretation 
 
In the previous section it was shown that GUNITCUBE with a rank correlation matrix draws a 
sample from a continuous multivariate distribution with standard homogeneous marginals and 
rank correlations very close to the desired rank correlation. Note that a distribution is not uniquely 
defined by its marginals and correlation matrix, so that there are more distributions satisfying the 
specifications. 
 
Amazingly, the procedure can also be interpreted in a different way. GUNITCUBE draws from a 
maximum-entropy distribution with standard homogeneous marginals and normal-score 
correlation matrix C. This distribution is unique, and its property of maximal entropy is attractive 
in the context of uncertainty and sensitivity analysis: of all distributions satisfying the given 
constraints, the one with maximal entropy contains the least information. Adopting any other 
distribution would be tantamount to assuming that we know more than we actually do (Jansen, 
1997). 
 
Restricted random samples 
 
When GUNITCUBE is called with the option METHOD=iman, the procedure takes a somewhat 
different road. But again, the procedure is based on the near equality of rank and Pearson 
correlations in the multinormal distribution. Details of the procedure are given in Iman and 
Conover (1982). GUNITCUBE implements the procedure described there, using van der Waerden 
scores. 
 
When GUNITCUBE is called with the option STRATIFICATION=latin , the sample of x’s 
produced thus far is not the final output. After the x’s have been drawn as described above, a 
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second sample is drawn: a simple uncorrelated latin hypercube sample, independent of the first 
sample, having the same dimensions. The final output consists of the values of the latin hypercube 
sample, ranked component wise according to the x-sample. 
 
 
9.2. Marginal variances 
 
The variance of y = f(x), induced by the distribution D of x = (x1...xk) will be called VTOT  

 VTOT = Var[y] y = f(x),  x ~ D 

Let S denote a subset of the x’s, possibly one single x. The uncertainty contribution of subset S 
will be expressed in two ways. By the top marginal variance: the variance reduction that would 
occur in case one would get perfect new information about the inputs S. And by the bottom 
marginal variance: the variance that will remain as long as one gets no new information about S. In 
both cases the new information is added to the information already present in input distribution D. 
 
More formally, the variance that would remain in case input group S should become perfectly 
known, has the expectation E[ Var[f(x) | S] ]. Accordingly, the top marginal variance TMVS of S 
is defined as 

 TMVS = VTOT - E[ Var[f(x) | S] ].  

Let -S indicate the complementary subset of all inputs not comprised in S. The variance that would 
remain in case -S should become perfectly known, has the expectation E[ Var[f(x) | -S]]. Thus we 
define the bottom marginal variance of S as 

 BMVS = E[ Var[f(x) | -S] ].  

Obviously  

 BMVS + TMV–S = VTOT. 

The following well-known variance decomposition rule for conditional distributions 

 Var[y] = Var[ E[y | S] ] + E[ Var[y | S] ]  

leads to an equivalent expression for TMVS: 

 TMVS = Var[ E[y | S] ]. 

In USAGE, marginal variances are expressed as fractions of VTOT. When S consists of a single 
input xi, η

2
i ≡ TMV i / VTOT is equal to the square of the so-called correlation ratio of y and xi. 

Note that the correlation ratio is not the same as the correlation coefficient. When E[y | xi] is linear 
in xi, η

2
i is equal to the squared correlation coefficient between y and xi, say ρ2

i. But when E[y | xi] 
is nonlinear in xi, η

2
i is greater than ρ2

i.  
Analogously, when S consists of more than one component, R2

S ≡ TMVS / VTOT is called the 
(theoretical) squared multiple correlation, coefficient of determination, or fraction of variance 
accounted for; the adjective 'theoretical' is used to convey that the concept is not based upon a 
specific form of E[y | S] as function of S and because it applies to a distribution rather than to a 
finite sample. 
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9.3. Multivariate Student distribution 
 
The multivariate student distribution describes the uncertainty about the coefficients of an ordinary 
linear regression when the variance of the observations is unknown. The output of such a 
regression contains a vector of estimates m, a variance-covariance matrix V, and a number of 
degrees of freedom ν. These characterize the multivariate student distribution. 
 
A multivariate student vector, with parameters b, V and ν, is generated as 

 tν(b, V) ~ b + N(0, V) / √(χν
2/ ν) 

where N(0, V) is multinormal with mean 0 and variance V; and where the scalar χν
2 has a chi-

square distribution with ν degrees of freedom. Note that parameter b is not always the mean of the 
target distribution: when ν=1, the multistudent distribution has no mean! But reassuringly, when 
ν > 1, the multistudent distribution has a mean that is equal to b. The parameter V is never equal to 
the covariance matrix of the multistudent distribution: the latter covariance matrix exists only if 
ν > 2, and then it equals [ν/(ν-2)] V. 
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10. Appendix II: Description of USAGE procedures 
 
 
Contents: 
 
EDCONTINUOUS calculates equivalent deviates for continuous distributions 
GMULTIVARIATE generates random numbers from multivariate normal or Student’s t distribution 
GUNITCUBE generates random numbers from a distribution with marginal uniform distributions 
RUNCERTAINTY calculates contributions of model inputs to the variance of a model output 
SUMMARIZE prints summary statistics for variates 
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Procedure EDCONTINUOUS      M.J.W. Jansen, J.C.M. Withagen & J.T.N.M. Thissen 
EDCONTINUOUS calculates equivalent deviates for continuous distributions  

Options 
DISTRIBUTION  = string Type of distribution required (beta , gamma, lognormal , normal , 

uniform ); default normal 
METHOD = string Method by which the defining parameters of the distribution are 

specified (moments, quantiles ); default moments 
MEAN = scalar Mean of distribution; default * 
VARIANCE = scalar Variance of distribution; default *  
PROPORTIONS = variate Two cumulative lower probabilities of distribution; default * 
QUANTILES = variate Two quantiles (equivalent deviates) corresponding to PROPORTIONS; 

default * 
LOWER = scalar Lower bound of beta, gamma, lognormal or uniform distribution; 

default 0 
UPPER = scalar Upper bound of beta or uniform distribution; default 1 

Parameters 
CUMPROBABILITY = variates or scalars 
 Cumulative lower probabilities for which equivalent deviates are 

required; must be set 

DEVIATE = variates or scalars To save equivalent deviates corresponding to CUMPROBABILITY  

Description 
Procedure EDCONTINUOUS calculates equivalent deviates corresponding to given cumulative lower 
probabilities for five continuous distributions: beta, gamma, lognormal, normal and uniform. The 
CUMPROBABILITY parameter specifies the cumulative lower probabilities and the corresponding 
equivalent deviates are saved by means of the DEVIATE parameter. The DISTRIBUTION  option specifies 
the type of distribution. The METHOD option specifies how the parameters of the distribution are defined. 
When METHOD=moments the first two moments must be set by the MEAN and VARIANCE options. 
Alternatively, when METHOD=quantiles  the distribution is characterised by a pair of cumulative lower 
probabilities with corresponding quantiles, and options PROPORTIONS and QUANTILES must be set. The 
uniform distribution is characterised by the LOWER and UPPER option settings, and other options are 
ignored. Lower and upper bounds for the other distributions can be specified by options UPPER and LOWER; 
these must be compatible with other option settings. 

Options: DISTRIBUTION , METHOD, MEAN, VARIANCE, PROPORTIONS, QUANTILES, LOWER, UPPER. 
Parameters: CUMPROBABILITY, DEVIATE. 

Method 
Internal calls are made to GenStat’s ED-functions EDNORMAL, EDBETA and EDGAMMA. In most cases, the 
required ED-function parameters are derived from simple, well-known relations between ED-function 
parameters and moments or quantiles. However, when a beta or gamma distribution is specified by two 
quantiles, the ED-function parameters are derived by means of the FITNONLINEAR directive, which may 
cause numerical problems. 

Action with RESTRICT 
Deviates are only calculated for the set of units to which CUMPROBABILITY is restricted. Other units will 
remain unaffected. 
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References 
None. 

Procedures Used  
None. 

Similar procedures 
GRANDOM generates pseudo-random numbers from probability distributions. GMULTIVARIATE generates 
pseudo-random numbers from multivariate normal or Student’s t distribution. GRMULTINORMAL generates 
pseudo-random numbers from the multivariate normal distribution 

Example 
PRINT     !t('Examples of how to use Biometris proc edure EDCONTINUOUS') ; \ 
             JUSTIFICATION=left  
VARIATE      cum ; !(0.01, 0.02 ... 0.99) 
EDCONTINUOUS [DIST=normal ; METHOD=quantiles ; PROP ORTION=!(.05, .95) ; \ 
             QUANTILES=!(6.9, 8.2)] CUMPROBABILITY= cum ; DEVIATE=v[1] 
EDCONTINUOUS [DIST=beta ; METHOD=quantiles ; PROPOR TION=!(.25, .75) ; \ 
             QUANTILES=!(0.3, 0.5)] CUMPROBABILITY= cum ; DEVIATE=v[2] 
EDCONTINUOUS [DIST=gamma ; MEAN=2 ; VARIANCE=1] CUM PROBABILITY=cum ; \ 
             DEVIATE=v[3] 
TEXT         title ; 'Example of EDCONTINUOUS: v[1] ' 
DHISTOGRAM   [WINDOW=5 ; KEY=0 ; TITLE=title    ; S CREEN=keep] v[1] 
DHISTOGRAM   [WINDOW=6 ; KEY=0 ; TITLE='v[2]'   ; S CREEN=keep] v[2] 
DHISTOGRAM   [WINDOW=7 ; KEY=0 ; TITLE='v[3]'   ; S CREEN=keep] v[3] 
DGRAPH       [WINDOW=8 ; KEY=0 ; TITLE='v[2,3]' ; S CREEN=keep] v[2] ; v[3] 
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Procedure GMULTIVARIATE      M.J.W. Jansen, J.C.M. Withagen & J.T.N.M. Thissen 
GMULTIVARIATE generates random numbers from multivariate normal or Student t distribution 

Options 
PRINT = string Whether to print a summary (summary); default *  prints no output 
DISTRIBUTION  = string Type of distribution required (normal , student ); default normal  
NVALUES = scalar Number of values to generate; default 1 
MEANS = variate The mean for the multivariate Normal or Student’s t distribution; 

default is a variate with values all equal to 0 
VCOVARIANCE = diagonal matrix or symmetric matrix  

The variance-covariance matrix for the multivariate Normal or 
Student’s t-distribution; default is to use an identity matrix 

DF = scalar Number of degrees of freedom for Student’s t distribution; default *  
SEED = scalar Seed to generate the random numbers; default 0 continues an existing 

sequence or initialises the sequence automatically if no random 
numbers have been generated in this job 

Parameters 
NUMBERS = pointers or matrices Saves the random numbers as either a pointer to a set of variates or a 

matrix 

Description 
Procedure GMULTIVARIATE generates pseudo-random numbers from a multivariate Normal or from a 
multivariate Student’s t distribution. The type of distribution can be set by the DISTRIBUTION  option. The 
mean mu is specified by the option MEANS as a variate of length p; the variance-covariance matrix Sigma is 
specified by the option VCOVARIANCE as a diagonal or symmetric matrix with p rows and columns; and the 
option NVALUES specifies the number of values to be generated. Note that VCOVARIANCE must be positive 
semi-definite. The DF option must be used to specify the number of degrees of freedom for the Student 
distribution and must be at least 3. 
 The SEED option can be set to initialise the random-number generator, hence giving identical results if 
the procedure is called again with the same options. If SEED is not set, generation will continue from the 
previous sequence in the program, or, if this is the first generation, the generator will be initialised by 
CALCULATE. 
 The numbers can be saved using the NUMBERS parameter, in either a pointer to a set of variates, or a 
matrix. If the NUMBERS structure or structures are already declared, their dimensions must be compatible 
with the settings of the NVALUES, MEANS and VCOVARIANCE options. The dimensions are also used, if 
necessary, to set defaults for the options. By default, MEANS is taken to be a variate of zero values, and 
VCOVARIANCE is taken to be the identity matrix. If the setting of NUMBERS is not already declared, it will 
be defined as a pointer to a set of variates with dimensions deduced from the option settings. 

Options: PRINT, DISTRIBUTION , NVALUES, MEANS, VCOVARIANCE, DF, SEED. 
Parameters: NUMBERS. 

Method 
Pseudo-random numbers from a multivariate Normal distribution are generated by forming a matrix Y of 
columns of univariate Normal random numbers, using the Box-Muller method (Box & Muller 1958), 
followed by a linear transformation 
 X = A Y + mu, 
where A is calculated by a Choleski decomposition, AA’ = Sigma. See, for example, Johnson (1987, pages 
52-55) or Tong (1990, pages 181-186). Pseudo-random numbers from the multivariate Student distribution 
are generated according to the definition of the multivariate Student distribution: 
 t(mu, Sigma, df) ~ mu + MN(0, Sigma) / Sqrt(Chi-squared(df)/df) 
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where MN(0, Sigma) is multivariate normal with mean 0 and variance-covariance Sigma; and where the 
scalar Chi-squared(df) has a chi-square distribution with df degrees of freedom. See, for example, Box & 
Tiao (1973). Note that the variance-covariance matrix of the multivariate Student distribution equals 
[df / (df - 2)] Sigma. 

Action with RESTRICT 

Variates that have been restricted will receive output from GMULTIVARIATE only in those units that are not 
excluded by the restriction. Values in the excluded units remain unchanged. Note that the NVALUES option 
must equal the full size of the variates. Restrictions on the MEANS variate are ignored. 

References 
Box, G.E.P. and Muller, M.E. (1958). A note on generation of normal deviates. Annals of Mathematical 

Statistics, 28, 610-611. 
Johnson, M.E. (1987). Multivariate Statistical Simulation. John Wiley & Sons, New York. 
Tong, Y.L. (1990). The Multivariate Normal Distribution. Springer-Verlag, New York. 
Box, G.E.P. & Tiao, G.C. (1973). Bayesian inference in statistical analysis. John Wiley & Sons, New 

York. 

Related Procedures 
None. 

Similar Procedures 
GRMULTINORMAL generates pseudo-random numbers from a multivariate normal distribution. 

Example 
PRINT      !t('Examples of how to use Biometris pro cedure GMULTIVARIATE') ; \ 
              JUSTIFICATION=left 
VARIATE       [VALUES=1,2,3] mean 
SYMMETRIC     [ROWS=3 ; VALUES=1, 0,4, 1,3,9] vcov 
GMULTIVARIATE [NVALUES=100 ; MEANS=mean ; VCOVARIAN CE=vcov ; SEED=52] norm 
GMULTIVARIATE [PRINT=summary ; DISTRIBUTION=student  ; NVALUES=100 ; \ 
              MEANS=mean ; VCOVARIANCE=vcov ; DF=10  ; SEED=52] stud 
DSCATTER      norm[] 
DSCATTER      stud[] 
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Procedure GUNITCUBE      M.J.W. Jansen, J.C.M. Withagen & J.T.N.M. Thissen 
GUNITCUBE generates random numbers from a distribution with marginal uniform distributions  

Options 
NVALUES = scalar Number of values to generate; default 1 or deduced from the NUMBERS 

parameter 
RCORRELATION = scalar or symmetricmatrix 
 Required rank correlation matrix; default the identity matrix 
SEED = scalar Seed to generate the random numbers; default 0 continues an existing 

sequence or initializes the sequence automatically if no random 
numbers have been generated in this job 

STRATIFICATION  = string Stratification (none , latin ); default none  
METHOD = string Method to achieve rank correlation (simple , iman ); default simple 

Parameters 
NUMBERS = pointers or matrices Saves the random numbers as either a pointer to a set of variates or a 

matrix 

Description 
Procedure GUNITCUBE generates pseudo-random numbers from a multivariate distribution with marginal 
distributions that are uniform on the interval from 0 to 1, and with a given rank-correlation matrix 
RCORRELATION. The numbers can be saved using the NUMBERS parameter, in either a pointer to a set of 
variates, or a matrix. If the NUMBERS structures are already declared, their dimensions must be compatible 
with the settings of the NVALUES and RCORRELATION options. Otherwise the dimensions of the NUMBERS 
pointer are deduced from these options. The dimensions of NUMBERS are also used, if necessary, to set 
defaults for the options. If NUMBERS is not declared in advance, RCORRELATION must be set. By default 
RCORRELATION is taken to be the identity matrix. If the setting of NUMBERS is not already declared, it will 
be defined as a pointer to a set of variates with dimensions deduced from the option settings. 
 An ordinary random sample is obtained by the option settings STRATIFICATION=none  and 
METHOD=simple. Option setting STRATIFICATION=latin  can be used to obtain Latin-hypercube 
samples, with marginal sample distributions that are very nearly uniform, while option setting 
METHOD=iman imposes close resemblance between the sample correlation matrix and RCORRELATION. 
 If RCORRELATION is set, the required rank correlation will be introduced according to the specified 
METHOD option (thus, METHOD has no effect if RCORRELATION is unset). The combination of 
RCORRELATION set to an identity matrix and METHOD=simple is stochastically equivalent to 
RCORRELATION unset. 
 To avoid values very close to 0 and 1, NUMBERS smaller than 0.000005 and larger than 0.999995 are set 
to these respective limits. 

Options: NVALUES, RCORRELATION, SEED, STRATIFICATION , METHOD. 
Parameters: NUMBERS. 

Method 
The method to construct a latin hypercube sample stems from McKay e.a. (1979). The method to introduce 
the required rank correlation stems from Iman & Conover (1982). 

Action with RESTRICT 
Any restrictions on variates of the NUMBERS pointer will be cancelled and all units will be used. 
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References 
Iman, R.L. & Conover, W.J. (1982). A distribution-free approach to inducing rank correlation among input 

variables. Communications in Statistics - Simulation and Computation, 11(3), 311-334. 
McKay, M.D. & Beckman, R.J. & Conover, W.J. (1979). A comparison of three methods for selecting 

values of input variables in the analysis of output from a computer code. Technometrics, 21, 
239-245. 

Procedures Used  
None. 

Similar procedures 
None. 

Example 
PRINT   !t('Example of how to use Biometris procedu re GUNITCUBE') ; \ 
           JUSTIFICATION=left  
SCALAR     nvariates, nvalues, seed ; VALUE=3, 100,  937456 
SYMMETRIC  [ROWS=nvariates] corr 
CALCULATE  corr = DIAGONAL(!(#nvariates(1))) 
CALCULATE  corr$[2,3;1] = -0.8, 0.4 
GUNITCUBE  [NVALUES=nvalues ; RCORRELATION=corr ; S EED=seed ; \ 
           STRATIFICATION=latin ; METHOD=iman] uni 
PRINT      MEAN(uni[]) 
PRINT      VARIANCE(uni[]) 
CORRELATE  [PRINT=correlations] uni[] 
PRINT   !t('Marginal distributions are nearly unifo rm') ; JUSTIFICATION=left 
GROUPS     uni[1...3] ; funi[1...3] ; LIMITS=!(0.1, 0.2...0.9) 
TABULATE   [CLASSIFICATION=funi[1] ; COUNT=count[1] ] 
TABULATE   [CLASSIFICATION=funi[2] ; COUNT=count[2] ] 
TABULATE   [CLASSIFICATION=funi[3] ; COUNT=count[3] ] 
PRINT      [SERIAL=yes] count[] 
DSCATTER   uni[] 
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Procedure RUNCERTAINTY      M.J.W. Jansen, J.C.M. Withagen & J.T.N.M. Thissen 
RUNCERTAINTY calculates contributions of model inputs to the variance of a model output  

Options 
PRINT = strings  What to print (fullmodel , uncertainty ); default fullmodel , 

uncertainty  . 
PLOT = string  Graphical output required (histogram ); default * 
CURVE = string Type of curve to be fitted (linear , spline ); default linear 
ESTIMATES = variate To save regression coefficients of all X variates (only when 

CURVE=linear ) 
BOTTOM% = variate To save bottom marginal variances as percentage of the variance of the 

model output. Increase of percentage variance accounted for when an X 
structure is last to be added 

TOP% = variate To save top marginal variances as percentage of variance of the 
variance of the model output. Percentage variance accounted for when 
an X structure is the only one to be fitted. 

ADJUSTEDR2 = scalar  To save adjusted percentage of variance accounted for by all X variates 

Parameters 
X = pointers or variates Set of model inputs for which uncertainty contributions are to be 

calculated. If a pointer is specified it must only point to variates 
DF = scalars Effective degrees of freedom of the smoothing splines to fit for each X 

structure; default 2 
FITTEDVALUES = variates Variates to store the fitted values for each X structure when that input is 

the only one to be fitted 

Description 
Procedure RUNCERTAINTY performs uncertainty analysis given (1) a sample of model inputs from a joint 
distribution representing the uncertainty about these inputs and (2) a corresponding sample of the model 
output studied. The model output, given its inputs, may have been produced by specialised modelling 
software. The procedure calculates the contributions to the variance of the model output from individual or 
pooled model inputs by means of regression. These contributions are expressed as percentages of the 
variance of the model output. The top marginal variance of a model input is calculated as the percentage of 
variance accounted for when that input is the only one to be fitted; it is an approximation of the correlation 
ratio. The bottom marginal variance of an input is calculated as the increase of variance accounted for 
when that input is the last to be added to all other inputs. The calculation is successful if the percentage of 
variance accounted for by all inputs is close to 100, since the analysis only accounts for that part of the 
variance of the output that is explained by the regression (thus interactions between inputs are not 
considered). See Jansen et al (2002) and Saltelli et al (2000) for a detailed account of uncertainty analysis. 
 A call to RUNCERTAINTY must be preceded by a MODEL statement which defines the response variate 
with the model outputs. Only the first response variate is analysed and options other than WEIGHTS should 
not be set in the MODEL statement. Generalized models are not allowed. The model inputs are specified by 
the X parameter that can consist of variates or pointers to one or more variates. If a pointer is specified the 
total contribution of the variates of the pointer is calculated. The calculation applies multiple linear 
regression or spline regression of Y on the X structures plus a constant term. The choice between linear and 
spline regression can be made by means of the CURVE option. When using CURVE=spline , the degrees of 
freedom of the smoothing spline can be set separately for each X structure by means of the DF parameter. 
On output the full model has been fitted, and RKEEP and RDISPLAY can be used to further store and 
display the fit of the full model. 
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 Cases with one or more missing values in the response variate, weight vector or any term in the full 
model are excluded from the analysis. This implies that, when terms have missing values for different 
units, FIT  used on a subset of model inputs may give different results than RUNCERTAINTY. 
 The option setting PRINT=fullmodel  prints the fit of the full model while suppressing all warning 
messages. Setting PRINT=uncertainty  prints the top and bottom marginal %variances of the X 
structures and, in case CURVE=linear , the parameter estimates of the full model. The option setting 
PLOT=histogram  option draws a histogram of the top and bottom marginal %variances side by side for 
each of the X structures. The results of the uncertainty analysis can be saved by means of options 
ESTIMATES (in case CURVE=linear ), BOTTOM%, TOP% and ADJUSTEDR2. The fitted values of the models 
with individual X structures only (pointers and/or variates) can be saved by means of the FITTEDVALUES 
parameter. These fittedvalues correspond to the top marginal %variances. 

Options: PRINT, PLOT, CURVE, ESTIMATES, BOTTOM%, TOP%, ADJUSTEDR2. 
Parameters: X, DF, FITTEDVALUES. 

Method 
The procedure calculates the percentage of variance accounted for the relevant regressions. The top 
marginal %variance for an input X is calculated as 100(vary-rmstop)/vary, where vary is the variance of the 
response and rmstop is the residual mean square of the model with only input X. The bottom marginal 
%variance for an input X equals 100(rmsbottom-rmsall)/vary, where rmsall is the residual mean square of 
the full model with all inputs, and rmsbottom is the residual mean square of the full model without input X. 
A TERMS statement in the procedure deals with missing values in the X variates. 

Action with RESTRICT 
Only the response variate can be restricted. The analysis is restricted accordingly. Restrictions on the 
X structures are not allowed. The saved FITTEDVALUES variates will be unrestricted, but only units not 
excluded by the restriction will have values. 

References 
Jansen M.J.W. ,Withagen J.C.M. & Thissen J.T.N.M. (2005). USAGE: uncertainty and sensitivity analysis 

in a GenStat environment. Manual. Version 2.0. Wageningen: Biometris. 
Saltelli, A. & Chan, K. & Scott, E.M. (2000; eds.). Sensitivity analysis. Chichester: Wiley. 

Procedures Used  
None. 

Similar procedures 
GMULTIVARIATE and GUNITCUBE can be used to generate random inputs. RSELECT selects best subsets of 
predictor variables in regression. RSCREEN performs screening tests for generalised or multivariate linear 
models. RSEARCH helps search through models for a regression or generalised linear model. 
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Example 
PRINT     !t('Examples of how to use Biometris proc edure RUNCERTAINTY') ; \ 
             JUSTIFICATION=left  
POINTER      par  ; !p(a0, a1, a2) 
POINTER      soil ; !p(ph, cd) 
READ         par[1...3], esp, soil[1,2], lcdp ; DEC IMALS=1 
 59 42 43 69 59 66 2199    55 39 48 52 57 54 1726    60 59 50 46 58 43 1631 
 53 43 49 53 50 30 1134    49 48 71 52 29 73 1292    64 52 44 55 51 43 1411 
 67 67 32 64 62 53 2042    51 49 52 51 47 44 1224    47 33 54 48 30 51 1043 
 44 45 48 52 34 42  870    43 44 54 59 64 66 2028    55 40 38 59 46 62 1435 
 50 50 48 42 56 47 1374    64 69 54 55 61 50 2004    47 55 57 46 59 40 1405 
 39 62 58 53 68 50 1894    61 39 59 47 35 47  948    73 37 52 41 45 38  992 
 40 61 50 64 58 49 1616    44 55 56 51 52 50 1388    48 50 41 35 42 60 1167 
 51 48 44 58 45 54 1147    76 49 48 48 50 37 1190    47 51 46 28 66 64 1973 
 53 44 47 65 44 64 1354  : 
MODEL        lcdp 
RUNCERTAINTY [CURVE=linear] X=par,esp,soil 
RUNCERTAINTY [CURVE=spline] X=par,esp,soil ; DF=1,1 ,2 
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Procedure SUMMARIZE      J.C.M. Withagen 
SUMMARIZE prints summary statistics for variates  

Options 
PRINT = strings What characteristics to print (mean, sd , %cv, median , min , max, nmv, 

nvalues , quantiles ); default mean, sd , median , nmv, nvalues  . 
PROPORTIONS = numbers Proportions at which to calculate quantiles; default .10, .25, .50, .75, .90 
REPRESENTATION = string Representation of values of summary statistics (exponential , 

standard ); default exponential 

Parameters 
DATA = variates Data to summarize; must be set 

Description 
Procedure SUMMARIZE calculates summary statistics for values stored in a variate as specified by the DATA 
parameter. The statistics to be calculated are indicated by the PRINT option. The summary is printed in a 
table with variate identifiers as rows and names of the summary statistics as columns. If 
PRINT=quantiles  quantiles are calculated at the proportions specified by the PROPORTIONS option and 
printed in a separate table. By default values are presented in E-format. They can be presented in standard 
output format by the setting the REPRESENTATION option to standard . 

Options: PRINT, PROPORTIONS, REPRESENTATION. 
Parameters: DATA. 

Method 
The procedure uses standard GenStat directives. 

Action with RESTRICT 
Any restriction on the data will be applied to all calculations. 

References 
None. 

Procedures Used  
None. 

Similar procedures 
DESCRIBE saves and/or prints summary statistics for variates, but in a different format. 

Example 
PRINT  !t('Example of how to use Biometris procedur e SUMMARIZE') ; \ 
           JUSTIFICATION=left  
CALCULATE data[1...5] = URAND(50697,4(0) ; 100) 
SUMMARIZE [PRINT=#,quantiles ; REPRESENTATION=stand ard] data[] 

 
 


