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1. Introduction

This manual contains theory, examples and desamiptof GenStat procedures for uncertainty
analysis and regression-based sensitivity andiggiaStat Committee, 2005). For the actual use of
the software presented, a moderate experienceé3gitistat is required. But it is hoped that a large
part of the manual will also constitute interestiegding for those unfamiliar with GenStat.

USAGE contains procedures for sampling from cowtirsumultivariate distributions of model
input. Model output corresponding to the input slemg calculated outside USAGE. Various
procedures are available for the subsequent amalfygncertainty or sensitivity.

The distributions of the individual inputs are defil per input. Association between inputs is
specified via rank correlation. Thus a great fléybis achieved for defining input distributions.
Restricted random samples — latin hypercube sarapkmples with forced correlations — can be
generated for efficiency reasons if the model take much computer time.

The USAGE procedures for the subsequent analyssemitivity focus upon regression-based
methods, but an example is given of a regressemdnalysis of the effect of independent groups
of inputs.

In the literature diverse sensitivity measures éuainty contributions) have been proposed. In
USAGE uncertainty and uncertainty contributions exelusively quantified as variances and
variance components.

GenStat seems to be no more and no less suitaliedertainty and sensitivity analysis than other
high-quality statistical software. But the use alvanced statistical software has a definite
advantage over the use of general purpose sofsuate as FORTRAN or C, because standard
statistical routines, and routines for graphicsl&Ddre readily available.

Another major advantage of imbedding the routinestandard statistical software, is that the user
can more easily extend the fixed menu of routinegeatly offered. It is shown for instance, how
the sampling variability of an uncertainty meastaa be assessed with a bootstrap method from
the analysis of one ordinary random sample congisif independent draws of the input vector.
Other examples are the transformation of inputsowtputs before the analysis, e.g. rank-
transformation, or the use of readily available ed@etlection techniques in order to find a small
number of influential inputs.

1.1. Themodd

We will restrict ourselves to deterministic modelsom the viewpoint of the analyst of
uncertainty or sensitivity, the model will be seenfollows. A scalar (one-dimensional) model
output y depends on a k-vector x %) of inputs:

y = f(X) = f(Xq...%).

The function f is deterministic; usually it is evated by simulation; f represents a single output.
Different outputs are analyzed separately, althalgi are usually calculated simultaneously. The
input vector x may comprise initial values, parargtexogenous variables, etcetera.
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1.2. Uncertainty and sengitivity analysis

In the analyses discussed in this manual, the tanugrabout the value of the input vector x is
modelled byrandomness of x. Usually, the study of the combined effecalbinputs on the output
is calleduncertainty analysis (UA) while the study of the contributions of conmgots of vector x

to the uncertainty of f(x) is callegengtivity analysis (SA) (e.g. Saltelli et al., 2000). Jansen
(2005) introduces the tergiochastic sengitivity analysis in order to distinguish the above sketched
form of sensitivity analysis from all kinds of detenistic sensitivity analyses where the input is
not random. Uncertainty analysis concerns the acguwf prediction with the current knowledge,
whereas sensitivity analysis pertains to the psp® improve the accuracy by additional
knowledge. Large uncertainty contributions — ogdasensitivity — of individual inputs, or groups
of inputs, indicate that it would be worthwhileget to know more about these inputs, whereas it
would be pointless to spend much effort gaining mé#armation about the other inputs. Thus, the
analysis provides information for decisions on aede priorities. Obviously, it may explain poor
validation results. And it may be of help in théeston of parameters that need to be calibrated: i
particular not to calibrate parameters that catikeuncertainty.

The structure of the model is assumed to be gBatusually more information is required for
model predictions: initial values have to be meaguparameters have to be estimated, exogenous
variables may not be known at the time when predistare made. The current paradigm for the
study of input uncertainty propagation is to repnésnput uncertainty byandomness of the
inputs. (Alternatively, input uncertainty may b@nesented by &t of plausible inputs; but that
approach may be largely treated as a special dasmapmness, namely uniform distributions
over the set.) Uncertainty analysis studies thaliegsuncertainty in the model output. The
analysis can only give an optimistic preview ofdicgon error, since structural errors in the model
will not show up; these can only become appareattine validation where model predictions are
compared with new observations.

Input uncertainty is represented by a multivar@abability distribution, say D, of the vector
X = (Xg... X):

X = (X...%) ~ D.

The multivariate distribution D describes the maagidistributions, i.e. the distributions of the
individual inputs x and their dependencies.

UA and SA start with a characterization of the attgdistribution, given the model and the
distribution of the inputs. In this manual the ahiiity of the distribution will be characterizeg b
its variance, which is assumed to be finite. Ttatal uncertainty, VTOT, is the variance of f(x)
induced by the randomness of all sourgesxdescribed by the distribution D:

VTOT = Var[f(x)] X ~D.

Increasingly often, the effect of input uncertastis studied by computer experiments rather than
analytically. The same trend occurs in generalsstat, where many novel techniques rely on
Monte Carlo simulation. The analytic approach nexgisimple, usually linear, model
approximations, and it fails if no satisfactory apgimation can be found. The computer-
experimental approach has the advantage of corategitoplicity, but the draw-back that it may
require many model runs. Moreover, analytic restdtsd to be general, whereas computer-
experimental results are often somewhat anecdbiydileir dependence on experimental details.
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Regression-based and regression-free sengtivity analyses

The procedures of USAGE perform regression-basedvbsh means that the relation between
the studied model output y, and the model inputskx is approximated by a regression relation.
Apart from the commonly used linear analysis, aalysis based on spline regression can be
chosen, which often provides a more adequate @déeariof the input/output relation. The
analysis of the contribution of (groups of) inpuits prediction uncertainty is based on the
regression approximation. For a satisfying anaglybis percentage of variance accounted for by
the regression should be close to 100, since asgign-based analysis is blind for the variation in
the model output that is not accounted for by #geassion.

Individual inputs or groups of inputs?

Many common algorithms for SA focus upon uncenaarid sensitivity measures iofividual
inputs. Nevertheless, one would often prefer tdystincertainty from coherent groups of inputs,
for instance all parameters associated with a sabps, or all inputs stemming from some
exogenous process. After a single-input SA, onendfties to interpret the results in terms of
groups of inputs associated to specific subprosesse

Crop growth models may provide an example of tlevamce of group uncertainty contributions.
These models have weather data as input, whichcomaprise hundreds of uncertain numbers. It
is futile to study the uncertainty contributionarfe weather item like the mean temperature at the
tenth of June, but it makes sense to ask how mua#riainty is caused by the weather.

If the inputs consist adtochastically independent groups, various regression-free group-oriented
sensitivity analyses are feasible. One such asaljflibe discussed. A group-oriented sensitivity
analysis is also possible fdependent input groups, but that requires quite a bit dotaag work,
and will not be discussed in this report.

Deterministic sengitivity analysis

Deterministic sensitivity analysis may be useful iflaspection of the model and its software
implementation. The analysis may suggest modelldicagions, such as deletion of insensitive
subprocesses. The questions addressed are focceistenether some response is affected at all by
some input; whether one can find a small subsetpofts dominating the response; whether the
response increases or decreases according to atiqectvhether the response is continuous,
differentiable, etcetera.

We will briefly mention the most common types otatministic sensitivity analysis. Ifocal
sensitivity analysis one studies output changesmwety small input changes around some given
vector value, for instance a nominal value or #tkd valueOne-at-a-time sensitivity analysis
studies the model's response to change of one, iapdixed values of the other inputs. In
particular, one may study the response to nearifiremus change over some range, for instance
in order to inspect whether the response is camtisumonotonically increasing, or one-topped.
For completeness we also mentfadorial senstivity analysis, although it will not be treated in
this report (see for instance Kleijnen, 1987).his analysis, inputs are varied according to a so-
called factorial design. In the most common faatatesign, the two-level design, each input has a
low and a high level. Such an analysis may be tmedstance to study interaction between
inputs: the phenomenon that the response to one dgpends on the setting of the other inputs.

Usage Manual 5



Factorial designs might also be used to search $onall number of sensitive inputs between very
large numbers of spurious inputs.

1.3. Communication between USAGE and model software

Typically, the software presented in this manuaised as follows. A GenStat program generates
an ASCII file with a sample of model inputs. Suhsagly, the user produces an ASCII file with
corresponding model output, using his own modelkodware. After that, another GenStat
program performs an uncertainty or sensitivity ygial The communication between the software
components is left to the user, because it depgratggly on the specific modelling environment.
Thus, the user himself should take care that tmebeus in the intermediate files have enough
decimals, for instance by using E-notation.

1.4. Outline of the manual

The estimation of the probability distribution betinputs forms the major problem of uncertainty
and sensitivity analysis, but since the subjesirtsially unbounded, it falls outside the scope of
USAGE in its present form. Section 2 contains aflsketch of some subjects that often play a
role in the assessment of input uncertainty ofesystnodels in agricultural and environmental
research. Section 3 gives definitions of uncesacdntributions (sensitivity measures). The
construction of samples from the input distributisrdiscussed in Section 4. These samples are
used in Sections 5 and 6 for the estimation of imicgy and sensitivity. Section 5 is devoted to
regression-based sensitivity analysis for individuagrouped inputs, whereas Section 6 treats
regression-free sensitivity analysis of independeptit groups. In Section 7, we give some
examples. Section 8 contains references.

Section 9 contains Appendix |, which discusses sorathematical details. A formal description
of the USAGE procedures is given in Appendix ligigm 10).

2. Assessing input uncertainty

The estimation of the probability distribution Dtbe inputs x..xc constitutes the major problem
of uncertainty and sensitivity analysis. Virtualipy part of statistics may play a role in this
estimation problem. We will only give a brief sketaf some subjects that often play a role in the
assessment of input uncertainty of system models.

Various types of data may be available for the tifigation of parameter uncertainty, for instance

analyses from the literature, data sets that hajgplee available, or experiments performed for the
purpose. Presently, an increasing number of datapascluding geographical databases, is
becoming available via Internet. The experimentsidng information on parameter uncertainty

should cover a range of situations relevant forithended model application, in particular a

sufficiently large area and a sufficiently long érspan.

Sometimes a database contains a sample of modks ithat can serve directly as description of

input uncertainty. For instance historical weatlegn, or an accurate and representative sample of
soil measurements.
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Parameter uncertainty is caused by natural vamidietween the systems modelled and by
estimation error. Both may cause correlation instheultaneous distribution describing parameter
uncertainty. Natural covariation between parameteas are evaluated in separate experiments
cannot be evaluated. The best solution would sedme to assume independence unless there is
counterevidence, since introducing unwarrantedetadgion would amount to saying that one
knows more than one actually does.

Any kind of statistical techniqgue may be requiredassess parameter uncertainty, but meta-
analysis, the overall analysis of analyses of sépaxperiments, deserves special mention (e.g.
Hedges & Olkin, 1985). Meta-analysis can be appt®dntegrate analyses from literature.
Typically, separate literature sources pertainutassgstems, so one has to perform various meta-
analyses, each pertaining to a small number ohnpeteas of a particular subprocess. Another
approach that deserves to be mentioned, is toastiparameter uncertainty from calibration on
whole-system observations, i.e. the kind of obsems that the model predicts (Keesman & Van
Straten, 1990; Janssen & Heuberger, 1995). Thisoapp is not without problems. A major
problem arises if one has to fix some uncertaiarpaters, so that the other, calibrated, parameters
will tend to compensate errors in the fixed onag] ¢éhereby lose their physical meaning.
Moreover, one needs a realistic measurement-errmdeimfor a realistic post-calibration
uncertainty assessment. Information to formulatd sun error model, for instance from duplicate
measurements, is often lacking. Nevertheless,ubed of post-calibration uncertainty seems to
hold great promises.

A database with soil or weather data should comté@rmation about error in its data. And, for
upscaling, also about spatial covariation of thereBoil maps are often constructed by kriging. In
such a case, the kriging interpolation error presidn estimate of map uncertainty (including
covariation).

A thorough quantification of input uncertainty daa very difficult and time consuming (see for
instance Metselaar & Jansen, 1995-a). In mostgisyjan exhaustive data-based analysis of input
uncertainty will not be possible, and one will hawdimit the analysis to some subset of inputs.
Objective data may sometimes need to be supplechégtexpert judgement. Special purpose
software may be of help to translate expert opimtma probability distribution (e.g. Van Lenthe
& Molenaar, 1993). And finally, one may decide thaless ambitious, deterministic sensitivity
analysis forms a more realistic alternative.

3. Definition of uncertainty contributions (sensitivity measur es)

The total uncertainty is expressed completely leydistribution of f(x) that is induced by the
multivariate distribution D of input vector x. Thariance of f(x), or a few selected quantiles, may
serve as summary measures of uncertainty. We sdlthe variance as summary measure of
uncertainty.

Problems arise, however, with the concepinekrtainty contributions or sensitivity measures. In

the literature, many types of uncertainty contidmg occur; see for instance Janssen (1994) for a
fairly complete overview. The many possibilitiesynreell cause some embarrassment of choice.
Our approach will be to define various kinds ofenainty contribution as the answers to various

specific questions of the typdiow much would the output variance decrease if specific
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information about the input would become available, in addition to the information contained in
input distribution D.

The specification of uncertainty asriance provides a practicable restriction of the abundant
possibilities. It is implicity assumed that therigace is finite. The variance is a convenient

measure of prediction uncertainty, because theanvegi can be more easily decomposed into
meaningful parts than other conceivable measuresaartainty. In fact this has been the reason to
introduce the concept of variance. With this meastire analysis of uncertainty contributions

becomes essentially a form of analysis of vari@eceponents. Application of analysis of variance

components to model output, stems from the 199980(S1990; Jansen, Rossing and Daamen,
1994; Sobol, 1995; McKay, 1996; Saltelli, Tarantta Chan, 1999; Jansen, 1999; Saltelli, Chan
and Scott, 2000, Ch 8).

The variance of f(x), induced by the distributiorofXx = (x...X() will be called VTOT
VTOT = Var[f(x)] x~D

Let S denote a subset of the x’s, for instancepamncular x, a group of parameters corresponding
to a particular submodel, or some aggregate ofenags variables. The uncertainty contribution
of subset S will be expressed in two ways. Firdthg top marginal variance, TMVg, is the
variance reduction that would occur in case oneldvgat perfect new information about the
inputs S. Secondly, tHaottom marginal variance, BMVs is the variance that will remain as long
as one gets no new information about S. In botescéise new information is added to the
information already present in input distribution D

Stated differently, TMY is thevariance accounted for by S whereas BMY is thevariance not
accounted for without S

Usually, TMV and BMV are expressed as fraction ercpntage of VTOT. The concepts of top
and bottom marginal variances have been introdinceh/SA by various authors, under various
names, (Krzykacz, 1990; Sobol, 1990, 1995; Jari§94; McKay, 1996). The next table mentions
various names used in the literature for TMWTOT and BM\&/ VTOT which have the same
meaning for anndependent group S of inputs (of course the group S may edswist of a single
input).

TMV</VTOT BMV</VTOT

relative top marginal variance relative bottom marginal variance
correlation ratio complementary correlation ratio
first order sensitivity index total effect sensitivity index

Most authors concentrate on what we call top matgiariances, often for single inputs. But we
will argue that bottom marginal variances shoultb®overlooked (see also Saltelli et al., 1999);
and we have already argued that it is often betteonsider the effect of groups of inputs instead
of individual inputs. The top and bottom marginafi@nces of individual inputs are closely related
to some well-known uncertainty measures e.g. tiealfi correlation coefficient. For instance, if x
is multinormal and the response f(x) is linear ,ithe top marginal variance is equal to the squared
linear correlation coefficient.

Unfortunately, BM\§ and TMVs need not be equal. When the input group S and the
complementary input group, say T, are independerd, may show that BMy> TMV s, with
equality if f is additive in S and T, that is ikj(is thesum of a function of S and a function of T
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(which implies that the response of the model ¢hange in S is the same for different values of
T). Thus, in case of independence, a differencedet BM\s and TM\Vs signals non-additivity

of f, also callednteraction between S and T. Differences between Txd BMVs may also be
caused bylependence between S and T. For instance, the distributiaf 0 may be such that the
value of S can almost be derived from the valug, @ind conversely. In that extreme case, where
S and T are nearlgxchangeable, the bottom marginal variances of S and T wouldrall, but
their top marginal variances might still be consathée. Alternatively, the dependence between S
and T, and the nature of f(x), may happen to bk that S and T a@mplementary in predicting
f(x), which would result in small values of the tmyarginal variances of S and T, but considerable
values of the bottom marginal variances.

In summary, differences between the two types whnee indicate interaction and/or dependence.
The situation that the TMV of a group is greatantits BMV can only be caused by dependence.

In general, TMV is a much more useful concept tBMV, and we advise to use BMV only in
exceptional cases. TM\assesses the maximal improvement of predictiorigioa that might be
attained by better knowledge about group S, ordtiebcontrol of that group. If TMy/is large,
additional research about S might prove fruitftilit iwould be utterly unrealistic, however, to
expect to gain better knowledge about some inp@IS, you might use BMMo assess the
uncertainty that would always remain even if yoocsgded in eliminating all uncertainties about
the other inputs. If, in such a case, BMWould be very large, research about the othertsnpu
would seem rather futile.

Mathematical details about marginal variances i@&edd in Appendix I; their estimation with
USAGE will be treated in Sections 5-7.

4. Generation of random samples

Monte Carlo sampling from uncertain inputs comrigiestly the sampling from univariate
distributions, possibly supplemented by methodsti@duce dependencies (Iman & Conover,
1982).

Additionally, spatial or temporal stochastic sintisla may be required. Weather databases or
weather generators may be used to account for areaticertainty. Generators of spatio-temporal
or weather processes are not implemented in USAGE.

It is desirable that the samples generated wileotesthe natural limitations imposed by the
model. One should, for instance, take care thatsitiye input cannot acquire negative values.
USAGE has simple facilities to impose bounds onpdesn

Computer random generators are commonly initialized a user-supplied seed. Most often the
seed is an integer number; and the random genesatoitialized just once, at the first call
(GenStat Committee, 2005). When the same seeceds tlee same random sequence will be
generated. We will not philosophize about the iogtion that such random generators are not
really random: enough has already been said elsevabeut this subject. Results of seeded Monte
Carlo analyses can be reproduced, which is an &sehanyhow, samples should be so large that
the result is quite insensitive to the seed used.
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4.1. Univariate samples

In USAGE a random scalar, say y, from a continuowsulative distribution say F is drawn
indirectly. First a standard homogeneous scalardsawn (i.e. homogeneous on the interval from
0 to 1.) Then one calculates the target scalarch that F(y)=u. The scalar y thus obtained is
random because u is random, and it has the dedistdbution F. We will apply this indirect
method most of the time because it allows efficierawing of efficient samples, like latin
hypercube samples that will be introduced latememeer, the indirect method also facilitates the
introduction of correlations in multivariate sangp(see Sections 4.4 and 4.5).

Standard homogeneous variates, on interval (Orilhbealrawn with the GenStat directivRAND
Homogeneous variates on arbitrary intervals antyetesived. The directivéllISTOGRAMan be
used to obtain a summary view of the resulting $amfhe USAGE procedursBUMMARIZE
produces summary statistics such as mean, stadelaetion, coefficient of variation, percentiles
etcetera. Appendix Il contains a formal descriptibthe procedure.

\\Define the sample size and the seed for the rando m generator
SCALAR n ;1000

SCALAR seed ; 171096

VARIATE [NVALUES=N] uni

\\Draw random sample uni from a uniform distributio non (0,1)
CALCULATE uni = URAND(seed)

SUMMARIZE [PRINT=#,quantiles] uni

DHISTOGRA [KEY=0] uni

The USAGE procedurEDCONTINUOUSan be used to transform homogeneous (0,1) \@riate
into various types of continuous scalar randomalsdes. (ED stands for ‘equivalent deviate'.) The
currently available distributions are: beta, gamiognormal, normal and uniform (in alphabetical
order). In USAGE, the first four distributions che specified either by the first two moments
(mean and variance), or by a pair of quantiles.urirm distribution can only be specified by its
bounds. A lower bound can be given for the gamnthlagnormal distributions (default 0);
whereas a lower and an upper bound can be spefifieithe beta and uniform distributions
(default 0 and 1). Appendix Il contains a formata#tion of the procedulEDCONTINUOUS

When producing a sample to be used as input todelane has to be sure that the input values
lie in the ranges allowed by the model. Thus oné afien need to draw from the gamma,
lognormal and beta distributions rather than tH@unded normal distribution.

The lognormal and gamma distributions are usefudmniates, such as masses or concentrations,
that have a natural lower bound — most often 0. fidw distributions are much alike, and
sometimes the choice between them will be a maittaiste and tradition. Both can be bell-shaped
and mirrored-j-shaped. The gamma distribution, hawnetends to be less “tail heavy” than the
lognormal and thus assigns smaller probability Xtveenes. The exponential distribution is a
special case of the gamma distribution. The bedailalition is especially useful for variates that
have natural upper and lower limits, for instapegtitions, percentages or probabilities. The
distribution can be bell-shaped, j-shaped and neid¢pshaped; the uniform distribution is a
special case of the beta distribution.

USAGE can be used to get a feeling for the didinbs mentioned. The program below shows
how USAGE procedurEDCONTINUOUSan be used to transform homogeneous (0,1) esriat
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into various types of continuous scalar randomabdes. Procedur8UMMARIZEs used to
inspect the results.

\\Draw uni_ab uniform(a,b)

SCALAR a,b; value=40,60

EDCONTINUOUS [DISTRIBUTION=uniform; LOWER=a; UPPER= b] CUMPR=uni; DEVIATE=uni_ab
SUMMARIZE [PRINT=#,quantiles] uni_ab

\\Draw norl from normal(mu, sigmasquare)

VARIATE [NVALUES=n] nor

SCALAR mu, sigmasquare; 65, 1

CALCULATE uni = URAND(0)

EDCONTINUOUS [DISTRIBUTION=normal ; MEAN=mu; VARIAN CE=sigmasquare] \
CUMPR=uni ; DEVIATE=norl

\\Draw nor2 from standard normal with 10%-point -1 and 90%-point 1

VARIATE vals; (-1, 1)

VARIATE probs ; 1(0.10, 0.90)

CALCULATE uni = URAND(0)

EDCONTINUOUS [DISTRIBUTION=normal ; METHOD=quantlE S ; PROPORTIONS=probs ; \
QUANTILES=vals] CUMPR=uni ; DEVIATE=nor2

SUMMARIZE [PRINT=#,quantiles] norl, nor2

\\Draw Inorl from lognormal with mean mu and varian ce sigmasquare
VARIATE [NVALUES=n] Inor

CALCULATE uni = URAND(0)

EDCONTINUOUS [DISTRIBUTION=lognormal ; MEAN=65 ; VA RIANCE=1] uni ; Inorl

\\Draw Inor2 from lognormal on (O, infinity), with 5%-point 5 and 95%-point 10

VARIATE vals ; (5, 10)

VARIATE probs ; 1(0.05, 0.95)

CALCULATE uni = URAND(0)

EDCONTINUOUS [DISTRIBUTION=lognormal ; METHOD=quant il ; PROPORTIONS=probs ;\
QUANTILES=vals] CUMPR=uni ; DEVIATE=Inor2

SUMMARIZE [PRINT=#,quantiles ; PROPORTIONS=0.05, 0. 95] Inor1, Inor2

\\Draw gam1 from gamma distribution with given mean and variance
VARIATE [NVALUES=n] gaml

CALCULATE uni = URAND(0)

EDCONTINUOUS [DISTRIBUTION=gamma ; MEAN=65 ; VARIAN CE=1] uni ; gaml

\\Draw gam2 from gamma(0, infinity), with 5%-point 5 and 95%-point 10

VARIATE vals; (5, 10)

VARIATE probs ; 1(0.05, 0.95)

CALCULATE uni = urand(0)

EDCONTINUOUS [DISTRIBUTION=gamma ; METHOD=quantiles ; ; PROPORTIONS=probs ;\
QUANTILES=vals] CUMPR=uni ; DEVIATE=gam?2

SUMMARIZE [PRINT=#,quantiles ; PROPORTIONS=0.05,0.9 5] gaml, gam2

\\Draw bet1 from beta distribution on (3,9) with gi ven mean and variance

CALCULATE uni = URAND(0)

EDCONTINUOUS [DISTRIBUTION=beta ; MEAN=5 ; VARIANCE = =1; LOWER=3; UPPER=9]\
uni ; betl

\\Draw bet2 from beta distribution on (0, 10), with 25%-point 5 and 75%-point 8

VARIATE vals; (5, 8)

VARIATE probs ; 1(0.25, 0.75)

CALCULATE uni = URAND(0)

EDCONTINUOUS [DISTRIBUTION=beta ; LOWER=0 ; UPPER=1 0 ; METHOD=quantiles ;\
PROPORTIONS=probs ; QUANTILES=vals] CUMPR =uni ; DEVIATE=bet2

SUMMARIZE [PRINT=#,quantiles ; PROPORTIONS=0.25,0.7 5] betl, bet2
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Warning: When a beta or gamma distribution is specified ipair of quantileEEDCONTINUOUS
tries to find the parameters of the distribution fogans of a non-linear optimization (via
FITNONLINEAR) which may occasionally fail without any warnii®p please check the results in
this case.

4.2. Multivariate samples
Direct sampling from multivariate normal and student distributions

The multinormal distribution is specified by a \@cbf means and a covariance matrix. The
following example yields 1000 draws of 3 variatesf a 3-dimensional normal distribution with
mean zero and a given (valid) variance-covarianagixn For details, see the formal description
of USAGE procedur&MULTIVARIATEIn Appendix Il.

SCALAR k;3

VARIATE [NVALUES=1000] X[1...K]

SYMMETRIC [ROWS=K] vcov ; !( 0.0000430, \
-0.0015080, 1.11300, \

-0.0007942, 0.04264, 0 .1389)
VARIATE mu;!(0.022, 0.796, 2.186)
GMULTIVARIATE [DISTRIBUTION=normal ; NVALUES=1000 ; PRINT=summary ; \
SEED=768241 ; MEAN=mu ; VCOVARIANCE=vcov] NUMBERS=x

CORRELATE [PRINT=correlations] x[]

Similarly, the multi-student distribution is spéetf by a vector of means, a covariance matrix, and
a number of degrees of freedom. It should be nibi@idthe means and the covariance matrix are
not equal to mean and the covariance matrix ofstbdent distribution itself, but of a normal
distribution that plays a role in the definitiontbe student distribution (see Section 9.3). Adding
the nextGMULTIVARIATEstatement to the example above, yields 1000 dod®s/ariates from

a 3-dimensional student distribution with 18 degretfreedom, with defining mean zero and
some given (admissible) variance-covariance maox. details, see the formal description of
USAGE procedur&MULTIVARIATEIN this manual.

GMULTIVARIATE [DISTRIBUTION=student ; NVALUES=1000 ; PRINT=summary ; \
SEED=768241 ; MEAN=mu ; VCOVARIANCE=vcov ; DF=18] NUMBERS=x

Indirect sampling frommore general multivariate distributions

Suppose one wants to draw from a multivariateibligton with given marginal distributions of
any type. If the component variates are independeet may just draw them independently with
theEDCONTINUOUSBrocedure, as described in Section 4.1. We will sloow how to draw from

a multivariate distribution with prescribed rankretation matrix. The method stems from Iman
and Conover (1982). Two remarks should be madedefe proceed. Firstly, the method is only
approximate: the rank correlation matrix of thetrthstion from which the draws are made is
merely close to the prescribed rank correlatiori.\Buy close: the rank correlations of the sampled
distribution differ at most 0.02 from the desirealues; in virtually all cases this error will be
negligible compared with the estimation error af tiank correlation. Secondly, a multivariate
distribution is not uniquely defined by its mardgand its rank correlation.
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The next example shows how to draw from a mul@tardistribution, with given marginals that
are normal, gamma and beta, each defined by ita arghvariance. The rank correlation is given
by a symmetric matrix, named rankcor below, whiobusd be a valid correlation matrix.

SCALAR n ;1000

SCALAR seed; 161096

VARIATE [NVALUES=n] x[1...3], uni[1...3]

SCALAR mean[l1...3]; 0.125, 0.125, 0.0050

SCALAR var[l...3] ; 0.004, 0.001, 0.00001

SYMMETRIC [ROWS=3] rankcor ; !(1, 0, 1, 0.5, 0, 1)

GUNITCUBE [NVALUES=n ; RCORRELATION=rankcor ; SEED=  seed] NUMBERS=uni

EDCONTINUOUS [DISTRIBUTION=normal ; MEAN=mean[1] ; VAR=var[1]] uni[1] ; x[1]
EDCONTINUOUS [DISTRIBUTION=gamma ; MEAN=mean([2] ; VAR=var[2]] uni[2] ; x[2]
EDCONTINUOUS [DISTRIBUTION=beta ; MEAN=mean[3]; VAR=var[3]] uni[3] ; x[3]

PEN  NUMBER=1; SYMBOL=2; SIZE=0.2
DSCATTER X[]

USAGE proceduré&SUNITCUBEproduces uniform variates from a multivariaterdistion with
the required rank correlations. From these, theatemsr X...xs with the required (marginal)
distributions are obtained by the proced&@CONTINUOUSwhich was introduced in the
previous subsection. Ranks and rank correlatiansi@altered biFDCONTINUOUS he standard
GenStat procedu@SCATTERvisualizes the resulting multivariate distributiop means of the
scatterplots of the different pairs of variates.

4.3. Restricted random sampling

Up to this point, we only discussed ordinary randeempling, where each sampled vector is
drawn independently of the other ones. This ishibst-understood sampling technique. There
exist, however, many alternative sampling techrégqaaging from slightly less random to entirely
deterministic. Their reason of existence is thatdktimation results of subsequent analyses are
hoped to be more accurate at the same sampldbeeestricted random sampling methods that
will be discussed are also called estimation-vagaeduction techniques.

In uncertainty and sensitivity analysis, latin hypde samples are often used to achieve improved
estimation accuracy (McKay et al., 1979; Iman & Qaer, 1980; Stein, 1987; Owen, 1992). The
method enforces close resemblance of the samplginalar to the marginals of the target
distribution. Latin hypercube samples will be d&sed in Section 4.4.

There also exist various techniques aimed at dingy@eample correlations. The method of Iman
& Conover (1982), which enforces rank correlatioangnplemented in USAGE (see Section 4.5).

Being very simple, the theory of ordinary randomgling is well-developed. Ordinary random
sampling is not maximally efficient, but it has teat advantage that one can more easily assess
the accuracy of the results. For instance, theracgwf a mean of an ordinary random sample of
size n is calculated in the usual way as 1/n tithessample variance. However, the uncertainty
contributions in which we are interested are nttneged by sample means, so the 1/n rule cannot
be applied. Instead, with an ordinary random santipéebias and the sampling variability of an
estimate of an uncertainty contribution can be ss&gk via bootstrap techniques. Bootstrap
technigues are not implemented in the presentoredi USAGE, but an example of application

of the bootstrap will be given in Section 7.3.
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The theory of the various restricted random samdekess developed. Some estimates of
uncertainty contributions are known to be slightipsed. Most often, the variability of the
estimates is inferred from the results of the a®a\of a number of independent restricted random
samples.

In summary, restricted random samples may be asiedprove estimation accuracy, but because
of possible bias it is harder to assess that angurarge ordinary random samples seem to be the
best choice unless the computer time requiredrtdglve model many times becomes prohibitive.
The sampling variability of estimation results fragstricted samples can only be assessed by
repeating the whole procedure. On the other hasatstvap methods can be used to estimate bias
and sampling variability of estimates from ordineagdom samples.

4.4. Controlling sample marginals: latin hypercube sampling

Latin hypercube sampling is a much-used variandact®n technique. One may force close
adherence to the required marginal distributionsrtaans of theGUNITCUBEoption setting
STRATIFICATION=latin

SCALAR K;3

SCALAR n;10

SCALAR seed ; 291096
VARIATE [NVALUES=n] uni[1...K]

GUNITCUBE [NVALUES=n ; STRATIFICATION=latin ; SEED= seed] NUMBERS=uni

SCALAR lower, upper, marks ; -0.0001, 1.0001, 0. 1

AXES [EQUAL=scale] WINDOW=1 ; STYLE=grid ; XLO WER=lower ; XUPPER=upper ; \
XMARKS=marks ; YLOWER=lower ; YUPPER=uppe r; YMARKS=marks

PEN  NUMBER=1; SYMBOL=2
DGRAPH [KEYWINDOW=0] uni[2] ; uni[1]

Figure 1 shows the graph of uni[2] versus uni[Xje Variates uni[] are stratified so that each has
exactly one value in each of the intervals (0, 1/(0010, 2/10) ... (9/10, 1). In a sample of size
one has consecutive intervals of size 1/n. Thisaglefining property of a uniform latin hypercube
sample. For the rest everything is random: thetimtavithin the intervals, and the association
between the variates.

A latin hypercube sample with arbitrary marginaés de constructed by means of USAGE
procedureEDCONTINUOUS-or example, one may continue the program with:
VARIATE [NVALUES=n] X[1...3]

SCALAR mean[1...3]; 0.125, 0.125, 0.00500
SCALAR var[l...3] ; 0.004, 0.001, 0.00001

EDCONTINUOUS [DISTRIBUTION=normal ; MEAN=mean([1] ; VAR=var[1]] uni[1] ; x[1]
EDCONTINUOUS [DISTRIBUTION=gamma ; MEAN=mean[2];  VAR=var[2]] uni[2] ; x[2]
EDCONTINUOUS [DISTRIBUTION=beta ; MEAN=mean[3]; VAR=var[3]] uni[3] ; x[3]

Latin hypercube sampling can be combined with jpigggam of a rank correlation matrix.
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Figure 1. Two components of a uniform latin hypercube sarapiéze 10.

4.5. Controlling sample correlations

One may force close adherence of the sample randat®mn to the required rank correlation by
means of th&UNITCUBEOptionMETHOD=iman

GUNITCUBE [NVALUES=n ; RCORRELATION=rankcor ; METHO D=iman] NUMBERS=uni

The method was introduced by Iman & Conover (1988g marginal samples will remain as
random as with ordinary random sampling, but tls®@ation between the vector components is
much less random. The rank correlation of samplessstructed is nearly equal to the population
rank correlation, especially with large samplesarifm method for controlling correlations may be
applied in combination with latin hypercube samglin

GUNITCUBE [NVALUES=n ; RCORRELATION=rankcor ; METHO D=iman ;\
STRATIFICATION=latin] NUMBERS=uni
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5. Regression-based sengitivity analysis

This section deals with regression-based sengitiviaillysis given (1) a sample of model inputs
from a joint distribution representing the uncertigiabout these inputs and (2) a corresponding
sample of the model output studied. The model augden its inputs, may have been produced
by specialised modelling software. The procedufeutzies the contributions to the variance of
the model output from individual or pooled modeputs by means of regression. These
contributions are expressed as percentages ofhti@wge of the model output. The top marginal
variance of a set of model inputs is calculatethagpercentage of variance accounted for when
that set of inputs is the only one to be fittedsian approximation of the correlation ratio. The
calculation is successful if the percentage ofavexe accounted for by all inputs considered is
close to 100, since the analysis only accountshfatr part of the variance of the output that is
explained by the regression (thus interactions éetwnputs are not considered). See for instance
Saltelli et al (2000) for a detailed account ofs#rity analysis. The bottom marginal variance of
a set of inputs is calculated as the increaser@nae accounted for when that set is the laséto b
added to all other inputs. The calculation of ®rgput uncertainty contributions is only sensible
when the number of inputs is moderate: it is peg#lfor instance when considering uncertainty
due to numerous weather inputs or abundant inputs d spatial stochastic process.

Linear analysis

Linear sensitivity analysis on variate y with modeduts %...Xc is based on approximations of
model output f by linear functions of x. The toprgiaal variance of an individual termy MV;;,

is estimated by the variance accounted for bydast Isquares approximation of the form ax. b
The top marginal variance of a group G of termqg {XG}, TMV g, is estimated by the variance
accounted for by the least squares approximatitimedbrm a ;g b x;.

The variance accounted for is given by ¢ISMS.s the total mean square minus the residual
mean square. Usually it is expressed relative tqM$/ the so-called fraction of variance
accounted for, also named adjustéd@enStat Committee, 2005).

Similarly, the bottom marginal variance of an indual term x BMV;, is estimated by the
increase in variance accounted for, when the s@sares approximation of f(x) of the type
a+Xx by X is replaced by that of the form & ;. The bottom marginal variance of a group G
of terms {x | iIJG}, BMV g, is estimated by the increase in variance accddatewhen the least
squares approximation of f(x) of the type Hi+s by X; is replaced by that of the form &y ;.

In USAGE, the linear analysis for all individualsxtan be performed as follows with procedure
RUNCERTAINTY

VARIATE [NVALUES=n] X[1..K], y

MODEL y
RUNCERTAINTY X=x[1...]

The linear analysis for pooled x’s, e.g. x[1,2]3xpnd x[4...K], can be performed by using
pointers as follows:
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VARIATE [NVALUES=n] X[1...K], y

POINTER pooll ; Ip(x[1], x[2])
POINTER pool2 ; 'p(x[3])

POINTER pool3; 'p(x[4...K])

MODEL vy

RUNCERTAINTY X=pooll, pool2, pool3

Obviously, such a linear sensitivity analysis witlly work if f(x) can be well approximated by a
linear function, as evidenced by a close-to-onaeval the adjusted#f the full approximation
a +Zj Q Xj.

Additive analysis

If model output f cannot be well approximated binaar function of the x’s, one may try to
approximate f(x) by a more general additive funttiosing splines for instance. Analogous to
linear analysis, spline sensitivity analysis isdobgn comparison of the variances accounted for by
different least squares approximations of modedwitf{x).

The top marginal variance of an individugl XMV;, is estimated by the increase in variance
accounted for by an approximation of the form a(>)swhere gx;) denotes a smoothing spline
in x. The top marginal variance of a group G of terms| {JG}, TMV g, is estimated by the
variance accounted for by the least squares appatioin of the form a Zixg S(X)).

Similarly, the bottom marginal variance of indivadus, BMVj, is estimated by the increase in
variance accounted for, when an approximationx)fdf the type a & 5(X;) is replaced by one
of the form a 4%; 5(x;). The bottom marginal variance of a group G ahte{x; | iG}, BMVg,

is estimated by the increase in variance accouotedvhen the least squares approximation of
f(x) of the type a &jnc S(X;) is replaced by that of the form &jt5(x;).

The smoothness of the splines can be controlleshégns of the so-callesffective number of
degrees of freedom (DF; see GenStat Committee, 2005). DF acts muekame as the number of
degrees of freedom of a polynomial: a larger DEltedn closer adherence to the data, at the price
of less smoothness. When DF is not set, the defaluié 2 is used.

The analysis is performed by USAGE procedlR&JNCERTAINTY using the option
CURVE=SPLINE

MODEL y
RUNCERTAINTY [CURVE=spline ; DF=2] X=x[]

The default setting of thEURVEoption islinear . The effective degrees of freedom of the,
individual or pooled, x’s is defined by paramé€&with default value 2.

Approximation of f() by a sum of splines in theiwdual inputs may constitute an improvement
upon linear approximation, since nonlinearitiesthie response of f() to individual inputs are
allowed for. But if the model is strongly non-addit in the x’s, the method fails. Success is
evidenced by a close-to-one value of the adjusfeaf-fRe full approximation a X 5(x).

With a sufficiently large DF, the difference betwekand adjusted“Rs the fraction of variance
due to interactions.

Usage Manual 17



Since theRUNCERTAINT Yapproximation, with linear functions or splineanmot incorporate
interactions, differences between estimates off ¥ and the BMV of an input;xcan only be
caused by correlations between the inputs androglsa variability (see Section 3).

6. Regression-free sengitivity analysis of independent input groups

Suppose that the inputs can be divided into twepeddent groups S and T. Write the model
output studied as f(S, T). The bottom marginalarase of S and the top marginal variance of T
can be estimated from a sample of the followingctire :

f(S11, T1) f(S12 To)
f(So1, To) f(So2, To)

f(Sni, Tn) f(Snz, Tn)
where all $ and T are independent realizations of S and T. Denetaliove two columns by y
and y. The bottom marginal variance of S and the topgmal variance of T may be estimated
by:

BMV(S) = Var(y, - y,)

TMV(T) = Cov(y..Y,)
The two are complementary and add up to the tat@énce. The example is a very simple case of
a class of ANOVA designs and analyses for sertsitanalysis. For methods that enable the

estimation of top and bottom marginal variancemofe than two independent groups of inputs
see Jansen (1994, 1996, 1999) and Sobol (1990).1995

7. Examples

The examples in the next subsections are simpéer ith typical for uncertainty and sensitivity
analysis, except for the last example. Often, pies can be better explained by simple examples.
The first subsection shows the similarities betwssrsitivity analysis and standard regression.

7.1. Parameter uncertainty after regression

Regression analysis leads to an estimate b ofahereter vectop. The estimation quality is
evidenced by an estimate V of the covariance matrof b, and by the number v of residual
degrees of freedom. Under favourable circumstancgsyticular a large and informative data-set,
the estimate b of parameter vedtas approximately multinormally distributed with axe} and
covariance matrix.

The simplest way to describe uncertainty alfdatto express it by a multinormal distribution hwit
b as vector of means, and V as covariance matrix:

B~N(b, V).
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This approach, however, neglects that V is onlg@proximation of the true covariance makix
The inaccuracy in V is accounted for by the soechlmultivariate student distribution
characterized by b, V and

B~t (b, V).

Provided thatv > 2, the multivariate student distribution has méa and variance-covariance
matrix [v/(v—=2)] V. So the student uncertainty distribution \@@ys more uncertainty than the
normal one, especially for small degrees of freed&@r more details, see Appendix 1.)

NOTE. The multinormal and the multistudent disttib have unrestricted ranges. But often
parameters are known to be restricted, for instampesitive values, or to fractions between 0 and
1. Sampling from an unrestricted uncertainty dstron may then give rise to problems. The
following stratagem may be used to circumvent tipesblems. Define the uncertainty distribution
so that its marginals satisfy the restrictions lagk the required means and variances, for instance
by means of beta and gamma distributions. Defigectirrelation structure by means of rank
correlation matrix corrmat(V), or better still bgremat{[v /(v—2)] V}. ProcedureéGUNITCUBEhas

an option to specify the rank correlation matrikeTmethod just sketched may be justified by the
fact that for a multinormal distribution, the cdateon matrix and the rank correlation matrix are
very nearly equal (see Appendix I).

Linear regression

As an example we re-analyse the Tribolium beetkgght loss' data, which are discussed in Sokal
& Rolf (1981, chapter 14).

VARIATE loss; !(8.98, 8.14, 6.67, 6.08, 5.90, 5.8 3,4.68, 4.20,3.72)
VARIATE humidity; !(0, 12.0, 29.5, 43.0, 53.0, 62 .5, 75.5, 85, 93.0)
MODEL loss
FIT  humidity

RKEEP ESTIMATES=mean; VCOV=vcov ; DF=df

The sensitivity analysis can easily be done amaljyi (loc. cit.). But we take the simulatory road
for illustration.

\\Draw a multivariate student parameter sample

SCALAR n ;1000

VARIATE [NVALUES=n]a, b

GMULTIVARIATE [DISTRIBUTION=student ; NVALUES=n ; M EAN=mean ;\
VCOVARIANCE=vcov ; DF=df ; SEED=111296] N UMBERS=!p(a, b)

We start with a graphical analysis with humiditythie range 0...100, see Figure 2; and compatre it
with loc. cit., Figure 14.11.

DELETE [REDEFINE=yes] loss, humidity
CALCULATE humidity =100 *!(1...n) /n

CALCULATE loss = a + b*humidity "C orresponding loss values"

CALCULATE Im = mean$[1] + mean$[2] * humidity "I 0ss at mean parameter values"

PEN 1,2 ; METHOD=point,line ; SYMBOL=2,0; LI NESTYLE=0,1 ; COLOUR=1;\
SIZE=0.3,* ; THICKNESS=*,2

DGRAPH [KEYWIN=0; TITLE=oss vs humidity] loss JIm ; humidity ; PEN=1,2

Usage Manual 19



loss vs humidity

Figure 2: regression line and simulated predicted valueseain parameter values

Next we can calculate the median and 95% two-sidedidence limits at humidity say 100%
(loc. cit., Box 14.3, Item 7).

CALCULATE humidity = 100
CALCULATE loss = a + b*humidity
SUMMARIZE [PRINT=#,quantiles; PROPORTIONS=0.025, 0. 5, 0.975] loss

The above lineyield the 95% interval (3.0, 3.8), and the medah The interval approximates the
exact interval, which can also be calculated aicalig. A larger sample should improve the
approximation.

Photosynthesis

In the previous linear regression, the sensitigitglysis could be most efficiently performed by

hand. The only possible advantage of the MonteoGaralysis lies in its conceptual transparency.
With nonlinear models, however, Monte Carlo simalaimay be preferable in every aspect to

hand calculation, since hand calculation will oftemolve an approximation error that is worse

than the Monte Carlo sampling error. The samplingre&an be made as small as desired, given
enough computer time. The nonlinear saturationecfowphotosynthesis

photos = amax + (rd — amax) x exp[rad x eff H@nax)]

is fitted to a small but very accurate dataset.

VARIATE rad; !(0.00, 103.5, 327.02, 484.78, 736. 96, 996.12)
VARIATE photos ; !(-0.81, 3.61, 10.48, 12.99, 14. 48, 14.91)
EXPRESSION e; le(fit = amax + (rd-amax)*EXP(rad*eff /(rd-amax)))

MODEL photos ; FIT=fit
\\Initial values stem from analysis of similar data
RCYCLE amax, rd, eff; ini=15, 1, .05
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FITNONLINEAR [CALCULATION=e; PRINT=model,summ,esti, corr]
RKEEP ESTIMATES=m ; VCOVARIANCE=vcov ; DF=df

The sensitivity analysis starts with random drasweifthe parameter distribution.

DELETE [REDEFINE=yes] photos, rad, amax, rd, eff

SCALAR n; 1000

VARIATE [NVALUES=n] amax, rd, eff

\\Draw multivariate student parameter sample

GMULTIVARIATE [DISTRIBUTION=student ; NVALUES=n ; M EAN=mean ;\
VCOVARIANCE=vcov ; DF=df ; SEED=111296] ! p(amax, rd, eff)

We start with a graphical analysis with radiationhie range 0...1000 (see Figure 3).

CALCULATE rad =1000 * !(1...n) / n

\\Calculate corresponding photosynthesis values

CALCULATE photos= amax + (rd-amax)*EXP (rad*eff/(rd- amax))

\\pm is photosynthesis curve at mean parameter valu es

CALCULATE pm = mean3$[1] + (mean$[2]-mean$[1]) *\
EXP(rad*mean$[3]/(mean$[2]-mean$[1]))

PEN 1,2 ; METHOD=paint,line ; SYMBOL=1,0; LI NESTYLE=0,1 ; COLOUR=1;\
SIZE=0.3,* ; THICKNESS=*,2
DGRAPH [KEYWIN=0 ; TITLE="photos vs rad photos .pm ; rad ; PEN=1,2
photos vs rad
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Figure 3: fitted curve and simulated predicted values amparameter values

By way of example, we calculate median and 95%digded confidence limits at rad say 500

CALCULATE rad = 500
CALCULATE photos= amax + (rd-amax)*EXP(rad*eff/(rd- amax))
SUMMARIZE [PRINT=#,quantiles ; PROPORTIONS=0.025, 0 .5, 0.975] photos

These lines yield the 95% interval (11.8, 13.4)hWR.8 as median.
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7.2. A historical example: smallpox inoculation

Smallpox was a dangerous infectious disease, Wiaistbeen compared in virulence to the plague
(Carey, 1995). It killed, for instance, five reiggimonarchs during the eighteenth century. Early in
the eighteenth century, in some upper circles irojag) an old Turkish medical technique came
into vogue, called inoculation or variolation. lasva method of immunization against smallpox by
means of a slight artificial infection with thissdase (i.e. human smallpox). Inoculation, however,
was not altogether harmless: one might die fromatiicial infection. This risk had to be
compared with the permanent risk of natural infectiThe physician and mathematician Daniel
Bernoulli constructed a model that should enablapavison of the two risks. The following
analysis proceeds from a very individualistic pahview. For instance, the risk of contaminating
others under either action is neglected. Berndutlivever, also took the risks and benefits for
society into account.

The simple model used by Bernoulli (1760) goes allews. A susceptible has a constant
probability densitya in time to get infected. If infected, he has pholitg B to die from the
infection, and probability B-to recover and stay immune for the rest of hes. IProbability
densityo was estimated at 1/8 per year, and probalfiliag 1/8; independent of the number of
infected in the neighbourhood, of one's age, ofgyléime etcetera. The equality of the two
numbers is a coincidence. Bernoulli was well avlat his model, and its parameters, were only
approximate, but he stated that it conformed ressgrio the facts known. To test the validity of
the model, Bernoulli calculated the fractiansay, of every generation that would be killed by
smallpox, taking into account all other competiagses of death. This fractianwould amount

to about 1/14, which was accepted as a realiglirdi In the further analysis, we will assume that
the 95% interval ok ranges from about 1/28 to about 1/7.

On the other hand, there is the risk,gap die through the inoculation. The victim of dméficial
infection would die shortly afterwards, but for giimity the model assumes immediate death. The
estimates foy ranged from a very optimistic 1/1200 to a veryspasstic 1/60. Bernoulli worked
with the estimate 1/200.

Under this simple model, Bernoulli calculated atiedyly the relative gain from inoculation at
time t reckoned from the moment df inoculation. The relative gain R(t) is definad the
difference of the probabilities to live for at leasears aftergt when inoculated and when not
inoculated, relative to the latter one.

RO =(1-)/(Q-p+pe™)-1 (t>0).

The relative gain equaly ust after inoculation; for large t, it will tertd the limit (1+)/(1-8) — 1.
If B >, the gain will eventually become positive: thstfpositive value occurs after time lag

t=Q/a)In[B/ B -V

Since the model is a simplification, and since patarso, B andy were only known inaccurately,
the decision to inoculate was no easy one. Theamsttician d'Alembert (1761) fiercely criticized
the model of Bernoulli because of its simplificasocand uncertainties. Just like Bernoulli, he was
an ardent advocate of inoculation, but he found riare convincing arguments were required.
D'Alembert hoped that by a refinement of the inattah technique, its risk would decrease to the
level of the risk of deadly contagion, within a rtfosay, by natural smallpox. In 1798, these hopes
were realized by Jenner, a country doctor, who Idped vaccination, a novel immunization
technique based on cowpox instead of human pox.
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One may ask whether the fierce critique of d'Alernia@s truly rational. In order to shred some
light on this question, we shall perform a sengtianalysis. The analysis is intended as an
amusing illustration, and should not be taken #emyously, because the parameter uncertainties
are defined rather loosely. Moreover, one shoulcware that structural model errors are not
addressed by the analysis (as usual).

In the sensitivity analysis we assume thdgt andy are independent, with the distributions given
below; the 95%-intervals of the distributions areeg in the columns low and high:

Uncertainty distributions of smallpox model paragnet The parameters are assumed to be independent.
The means are Bernoulli's estimates.

parameter [ Type mean variance minimum ~ maximpm  low gh hi
o gamma | 0.125 0.004 0 0 0.033 0.28

B beta 0.125 0.001 0 1 0.070 0.19

Y beta 0.005 0.00001 | O 1 0.00082 | 0.013

The means of these distributions are equal toighuees used by Bernoulli. The variances have
been chosen after some computer experimentatioasstm conform reasonably well to the
uncertainties mentioned above. The 95%-interval @dnforms to the optimistic and pessimistic
estimates from d'Alembert. The intervals doandy have been taken quite large, but such that the
interval forr would not become too wide. It appeared fhebntributed most to the uncertainty in
n. for that reason the variance [pfvas taken smaller than that @fWith the above parameter
uncertainties, the ensuing 95% intervalifoanges approximately from 0.040 to 0.13, as irgdnd

A sample of size 1000 is constructed as followh WienStat.

SCALAR k;3

SCALAR n; 1000

SCALAR seed ; 161096

VARIATE [NVALUES=n] alpha, beta, gamma, pi, tau, rgainl, rgainl8, uni[l...K]
SCALAR mean[l..k];0.125, 0.125, 0.00500

SCALAR var[l..K] ;0.004, 0.001, 0.00001

GUNITCUBE [NVALUES=n ; STRATIFICATION=latin ; SEED= seed] NUMBERS=uni
EDCONTINUOUS [DISTRIBUTION=gamma ; MEAN=mean[1] ; V  AR=var[1]] uni[1] ; alpha
EDCONTINUOUS [DISTRIBUTION=beta ; MEAN=mean[2] ; V AR=var[2]] uni[2] ; beta
EDCONTINUOUS [DISTRIBUTION=beta ; MEAN=mean[3]; V AR=var[3]] uni[3] ; gamma
SUMMARIZE [PRINT=#,quantiles ; PROPORTIONS=0.025, 0 .975] alpha, beta, gamma

Next, outside of GenStat the model software calesitihe corresponding model outputs, namely
the probabilityr, the time lag (if y = a missing value is produced), and the relativesy& (1)
and R(18). The subsequent uncertainty and sehsaivalysis is done as follows in GenStat.

SUMMARIZE [PRINT=#,quantiles ; REPRESENTATION=stand A\
PROPORTIONS=0.05,0.25,0.5,0.75,0.95] pi, tau, rgainl, rgainl8
FOR yy=pi, tau, rgainl, rgain18
MODEL vy
RUNCERTAINTY x=alpha, beta, gamma
RUNCERTAINTY [CURVE=spline] X=alpha, beta, gamma ; DF=4
ENDFOR

The main results of the analysis are the estinuditib®e characteristics (mean, quantiles etcetdra) o
the distributions of major model outputs. The tdd@w contains some quantiles.
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guantile T T R(1) R(18)

0.050 0.044 0.065 -0.0019 0.052
0.250 0.061 0.170 0.0037 0.083
0.500 0.074 0.318 0.0083 0.107
0.750 0.090 0.599 0.0146 0.136
0.950 0.116 1.332 0.0254 0.183

In the present case, the estimates of

uncertainty contributions are not very useful, s-
since the main question is whether to be
inoculated, and not what research might be
most effective in order to reduce the
uncertainty. But it does no harm to estimate
uncertainty contributions just for the exercise. 3

Uncertainty about timelag z

The probability thay < is estimated to be 1
(no missing values occurredihp The length 1
1 of the period in which inoculation has a
negative impact, is less than 1.3 year with
probability 0.95; the median value equals 0.3 01
year. The spline sensitivity analysis has o0 005 010 015 020 025 030 035 040 045
adjusted R=71%, considerably more than Figyre4 Sampled values of versus those of;
the 58% of the linear analysis; the difference a spline fit has been added.

is largely caused by nonlinearity of the

response ta (see Figure 4). It is seen that the infection saneso. and the inoculation risk
contribute much to the uncertainty abaut

Uncertainty about relative gain one year after inoculation

It is seen that the mean and median relative gagnyear after inoculation are merely 1%. The
probability of negative gain after one year isl stder 5% (which corresponds with the above
analysis ofr). A linear analysis has a nice adjusted9.8%, which is hardly improved by a

spline analysis. Infection pressureontributes most to the uncertainty.

Uncertainty about relative gain 18 years after inoculation

The relative gain 18 years after inoculation is miacger; the median gain is estimated at 11%. A
spline analysis accounts for 97% of the uncertaopijte satisfying, and appreciably better than
the 88% of the linear analysis. Smallpox death pigtametef causes most of the uncertainty,
whereas the contribution of inoculation risks negligible: that minor risk is almost forgottaiter

18 years.

Indeed, it seems that d'Alembert was right thatmanishment of the risk of inoculation would be
of great help in convincing people of the advargagfanoculation. But even with the state of the
art and the uncertainties of that time, the adgmsteof inoculation seem to outnumber the
disadvantages.
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7.3. Bootstrap per centile confidenceinterval for analysisresults

In this subsection we perform sensitivity analysisa test function rather than on a model. The
test function is given by

f(X) = %2/ V2 + (otXa) [ V(7/4) + 2 (%-Xs) + XeX7 V2 + X.

The arguments are assumed to have the followingodition: the marginal distribution of each x
is normal with mean 0 and variance 1; all corretatiare equal 0, excgix, , X3) andp(Xs , Xs),
which equal 3/4.

The function f(x) may be written as a sum of fumasi of independent groups, namely the groups
{X}, {X2,%}, {Xa,X}, {X6,X%7}, {Xg}. They may be described as independent groups with
additive effects. For such groups, the top andbotharginal uncertainty contributions are equal.
Thus one might speak unequivocally about the usiogytcontributions of these groups. They are
listed in the following table.

Uncertainty contributions of independent group$additive effects.
Group absolute relative (%)

X1 1 12,5

X2, X3 2 25

Xa, X5 2 25

X6, X7 2 25

Xg 1 12.5

The sensitivity analysis in the next example isedasn spline regression. It estimates the
uncertainty contributions of the groups mentior&dce all terms in f(x) can be ‘seen’ by a spline
of this type, we should expect some 25% of theamag to remain out of sight of the sensitivity
analysis.

The analysis for a random sample with 1000 drawsrie with the next program fragment.

SCALAR seed; 231205

SCALAR n ;1000

VARIATE [NVALUES=n]x[1...8],y

SYMMETRIC [ROWS=8] vcov

DIAGONAL [ROWS=§] identity ; !(8(1))

CALCULATE vcov = identity

CALCULATE vcov$[3][2] = 0.75

CALCULATE vcov$[5][4] = 0.75

\\Draw input sample

GMULTIVARIATE [DISTRIBUTION=normal ; NVALUES=1000 ; VCOVARIANCE=vcov ; \
SEED=seed] NUMBERS=x

\\Calculate test function for sampled values

CALCULATE y = X[1]*X[1}/SQRT(2) + (X[2]*+X[3])/SQRT( 1.75) +\
(X[4]-x[B])*2 + X[6]*X[7]*SQRT(2) + x[8]

\\Sensitivity analysis for partially grouped model inputs

POINTER pl, p23, p45 ; 'p(x[1]), 'p(x[2,3]), 'p(x [4,5])

POINTER p67, p8 ; 'p(x[6,7]), 'p(X[8])

MODEL vy

RUNCERTAINTY [CURVE=spline ; TOP%-=top] X=p1, p23, p 45, p67, p8

A fragment from the resulting output is given below
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Uncertainty analysis

Response variate: y
Number of units: 1000
Mean: 0.821
Variance: 8.330
R2-adjusted: 75.5

Bottom and top uncertainty contributions based on s moothing spline fit

input  bottom%  top% Sumdf
pl 113 111 2
p23 250 280 4
p45 239 256 4
p67 01 00 4
p8 124 131 2

Note that the estimates of the top and bottom makgariances are close to each other, which is
an expression of the fact that in this examplettie®retical values of both types of variance
components are equal, while the estimates arelat@dulifferently. The blindness of the analysis
for the effect of xand x is precisely as expected. The low value (75%pfsted R might form

a reason to turn to a regression-free alternative.

We will nevertheless continue this example to destrate how one can calculate confidence
limits for an analysis based on a sample of inddgeinconsecutive draws, instead of say a latin
hypercube sample. The calculation is quite elemgn¥au just draw nboot samples of size N,
from the original sample of size N. In the new skanpome elements of the original may occur
more than once, while some other elements may enatone draws ‘with replacement’. Repeat
the original sensitivity analysis for each new skngmd store the sensitivity coefficients. Tae
and (le) percentiles of the nboot values thus obtainedefwh result, constitute an ()2
bootstrap percentile confidence interval (Efron &bshirani, 1993). The calculation is
straightforward:

\\90% bootstrap confidence interval for top margina | variances

SCALAR nboot, nsample ; 100, 1000

VARIATE [NVALUES=nsample] xsample[1...8], ysample , index

VARIATE [NVALUES=nboot] t1, t23, t45, t67, t8

POINTER psamplel, psample23, psample45, psample67 , psample8 ; \
Ip(xsample[1]), 'p(xsample[2,3]), 'p(xsam ple[4,5]), \

Ip(xsample[6,7]), !p(xsample[8])
FOR [NTIMES=nboot ; INDEX=ii]
CALCULATE index = 1 + INTEGER(nsample * URAND(O ; nsample))
CALCULATE ysample,xsample[] = (y,x[])$[index]
MODEL ysample
RUNCERTAINTY [PRINT=* ; CURVE=spline ; TOP%=top] X=psamplel, psample23, \
psample45, psample67, psample8
CALCULATE (t1,t23,t45,t67,t8)%[ii] = top$[1...5]
ENDFOR
SUMMARIZE [PRINT=#,quantiles ; PROPORTIONS=0.05, 0. 95] 11, t23, t45, 167, t8
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A fragment from the result is given below:

Summary description

Variate Mean Sd Median Nm v Nval
t1 1.150E+01 2.472E+00 1.128E+01 0 100
t23 2.823E+01 2.296E+00 2.817E+01 0 100
t45 2.595E+01 2.235E+00 2.582E+01 0 100
t67 8.672E-01 5.855E-01 8.785E-01 0 100
t8 1.336E+01 1.991E+00 1.323E+01 0 100

*Quantiles 0.050 0.950
Variate
t1 8.067E+00 1.584E+01
t23 2.453E+01 3.188E+01
t45 2.184E+01 2.968E+01
t67 8.303E-03 1.833E+00
t8 9.954E+00 1.683E+01
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9. Appendix |: Some mathematical details

9.1. GUNI TCUBE

Ordinary random samples

In this subsection it will be shown how procedure
GUNITCUBEwith options RCORRELATION=r¢
METHOD=simple & STRATIFICATION=none
draws a sample from a continuous multivariate
distribution with standard homogeneous marginals’
and rank correlations very close to the desirel ran
correlation.,

The procedure is based on the property that the
Pearson and rank correlations of a multinormal
distribution are very nearly equal (see Figure 5).
Applying this property, GUNITCUBEworks as
follows. Firstly, a multinormal sample of k Figure5 Bivariate normal distribution: rar_wk
variates, sayqz... &, is drawn with mean 0, and correlation versus ordinary correlation.
covariance matrix C. The standard normal

marginals zare transformed into standard homogenegly xneans of the mapping X ®(z),
whered denotes the standard normal distribution function.

0 1

Pearson and rank corrdation of the normal distribution

Before we can demonstrate the property mentionedhave to introduce the concept of rank
correlation for random variates, since, originaink correlation is only defined for samples. The
distributional rank correlation between two contins random variates xand », with marginals

F1 and | is defined as the correlation between the correipg standard homogeneous variates
Fi(x1) and FK(x2). Some authors use the term grade correlatiogadst

Obviously, the distributional rank correlation beem two standard homogeneous variates is equal
to their ordinary Pearson correlation. Moreovee, dmstributional rank correlation between two
variates is invariant under monotonically incregsiransformations per variate. There exists a
close connection between distributional and samgik correlation: the sample rank correlation
of a large ordinary random sample from a pair ofates with distributional rank correlatign,

will tend top.

It will be shown that the distributional rank cdateon between any two standard homogeneous
variates xand x from whichGUNITCUBEIraws a sample is close to the desired vgtue ¢

rcorr(x, X) = corr(, X
(6/r) arcsin(g/2)
=G +nj
in which the approximation errgj; satisfiesr;| < 0.018.
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We will give a proof for the first two variates and %. Amazingly, no such proof was given by
Iman and Conover (1982), who proposed the methedof@ their desired rank correlatiga loy

p, and denote their actual rank correlatiorphyThe variateszand z are bivariate normal with
standard normal marginals and correlation Thus, %=®(z;) and »=®(z;) are standard
homogeneous; so both have mean 1/2 and varian2eTligir correlation may be calculated via
the introduction of two auxiliary standard normatiatese; ande; that are independent of each
other and of zand z. By the definition ofb, one has

Xi =®(z) =P <z)=PE&-2<0),
so that the expectation Ekg] satisfies
E[®(z1) D(z))] =E[PE1—z<0|2) PEe2—2<0]2)]=PE1—2z<0 n e—2<0).

Now g;— 7 ande;— z have normal distributions with mean 0, variancarl correlatiop/2. The
probability that both are negative is given by

PEi—z<0n e—-2<0)=1/4 + arcsip(2) / (2r)
(see for instance Abramowitz and Stegun, 1964;i@r26.3.19). So that
E[x1 x] = E[®(z1) D(20)] = 1/4 + arcsing/2) / (2n).

The correlation between and x follows asp = (6f) arcsing/2); which concludes the first part
of the proof. The closeness®fto p is ascertained numerically: ma<{p |) appears to have the
value 0.018 (see Figure 5).

A different interpretation

In the previous section it was shown tlEINITCUBEwith a rank correlation matrix draws a
sample from a continuous multivariate distributieith standard homogeneous marginals and
rank correlations very close to the desired ramketaion. Note that a distribution is not uniquely
defined by its marginals and correlation matrixtlsat there are more distributions satisfying the
specifications.

Amazingly, the procedure can also be interpreted different wayGUNITCUBEdraws from a
maximum-entropy distribution with standard homogerse marginals and normal-score
correlation matrix C. This distribution is uniqasd its property of maximal entropy is attractive
in the context of uncertainty and sensitivity as@ly of all distributions satisfying the given
constraints, the one with maximal entropy contaires least information. Adopting any other
distribution would be tantamount to assuming thatkmow more than we actually do (Jansen,
1997).

Restricted random samples

When GUNITCUBEis called with the optioMETHOD=iman the procedure takes a somewhat
different road. But again, the procedure is basedhe near equality of rank and Pearson
correlations in the multinormal distribution. Détaof the procedure are given in Iman and
Conover (1982)GUNITCUBEmMplements the procedure described there, usingleaWaerden
scores.

When GUNITCUBEis called with the optiolSTRATIFICATION=latin , the sample of x’s
produced thus far is not the final output. Aftee tkis have been drawn as described above, a
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second sample is drawn: a simple uncorrelated hgfrercube sample, independent of the first
sample, having the same dimensions. The final botmsists of the values of the latin hypercube
sample, ranked component wise according to thenplea

9.2. Marginal variances

The variance of y = f(x), induced by the distribatD of x = (%...x) will be called VTOT
VTOT = Varly] y = f(x), x~D

Let S denote a subset of the Xx’s, possibly ondesixgThe uncertainty contribution of subset S
will be expressed in two ways. By the top margiraiance: the variance reduction that would
occur in case one would get perfect new informatibout the inputs S. And by the bottom
marginal variance: the variance that will remaitoag as one gets no new information about S. In
both cases the new information is added to therdton already present in input distribution D.

More formally, the variance that would remain irse&anput group S should become perfectly
known, has the expectation E[ Var[f(x) | S] ]. Aatiagly, the top marginal variance TM\f S
is defined as

TMVs= VTOT - E[ Var[f(x) | S] ].

Let -S indicate the complementary subset of allimmot comprised in S. The variance that would
remain in case -S should become perfectly knows e expectation E[ Varl[f(x) | -S]]. Thus we
define the bottom marginal variance of S as

BMVs = E[ Var[f(x) | -S] ].
Obviously
BMVs+ TMV_s=VTOT.
The following well-known variance decompositionertbr conditional distributions
Varly] = Var[ Ely | S]] + E[ Varly | S]]
leads to an equivalent expression for TMV
TMVs=Var[ E[y| S] ].

In USAGE, marginal variances are expressed asdracof VTOT. When S consists of a single
input %, n% = TMV; / VTOT is equal to the square of the so-calledetation ratio of y andx
Note that the correlation ratio is not the samihasorrelation coefficient. When E[yi] is linear

in X, 0% is equal to the squared correlation coefficiemitvben y and x sayp%. But when E[y | %

is nonlinear in xn? is greater thap?.

Analogously, when S consists of more than one coepp Rs = TMVs/ VTOT is called the
(theoretical)squared multiple correation, coefficient of determination, or fraction of variance
accounted for; the adjective ‘theoretical' is used to convey tha concept is not based upon a
specific form of E[y | S] as function of S and hesm it applies to a distribution rather than to a
finite sample.
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9.3. Multivariate Student distribution

The multivariate student distribution describesutheertainty about the coefficients of an ordinary
linear regression when the variance of the obdenstis unknown. The output of such a
regression contains a vector of estimates m, an@etcovariance matrix V, and a number of
degrees of freedom These characterize the multivariate studentloligton.

A multivariate student vector, with parameters andv, is generated as
t(b, V) ~ b + N(O, V) N(x,2l v)

where N(0, V) is multinormal with mean 0 and vagiarV/; and where the scalgf has a chi-
square distribution with degrees of freedom. Note that parameter b islwalya the mean of the
target distribution: whern=1, the multistudent distribution has no mean! @aissuringly, when

v > 1, the multistudent distribution has a meanithagjual to b. The parameter V is never equal to
the covariance matrix of the multistudent distiidmort the latter covariance matrix exists only if
v > 2, and then it equalg/(v-2)] V.
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10. Appendix I I: Description of USAGE procedures

Contents:

EDCONTINUOUS calculates equivalent deviates for continuousibligions
GMULTIVARIATE generates random numbers from multivariate noom&tudent’s t distribution

GUNITCUBE generates random numbers from a distribution méhginal uniform distributions
RUNCERTAINTY calculates contributions of model inputs to theéavece of a model output
SUMMARIZE prints summary statistics for variates
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Procedure EDCONTINUOUS M.JW. Jansen, J.C.M. Withagen & J.T.N.M. Thissen

EDCONTINUOUSalculates equivalent deviates for continuousibigtons

Options

DISTRIBUTION = gtring Type of distribution requiredbéta , gamma lognormal , normal ,
uniform ); defaultnormal

METHOL gtring Method by which the defining parameters of thetritistion are
specified fnoments, quantiles ); defaultmoments

MEAN= scalar Mean of distribution; defauit

VARIANCE= scalar Variance of distribution; default

PROPORTIONS variate Two cumulative lower probabilities of distributicstefault*

QUANTILES= variate Two quantiles (equivalent deviates) correspondinBROPORTIONS
default*

LOWER: scalar Lower bound of beta, gamma, lognormal or uniforistridbution;
default O

UPPER= scalar Upper bound of beta or uniform distribution; défau

Parameters

CUMPROBABILITY=variates or scalars
Cumulative lower probabilities for which equivaledeviates are
required; must be set

DEVIATE =variatesorscalars ~ To saveequivalent deviates correspondingCttMPROBABILITY

Description

ProcedureEDCONTINUOUS:alculates equivalent deviates corresponding tengicumulative lower
probabilities for five continuous distributions: the gamma, lognormal, normal and uniform. The
CUMPROBABILITY parameter specifies the cumulative lower prol#sli and the corresponding
equivalent deviates are saved by means oDEWEATE parameter. ThBISTRIBUTION option specifies
the type of distribution. Th®IETHOMption specifies how the parameters of the digioh are defined.
When METHOD=momentsthe first two moments must be set by MEANand VARIANCE options.
Alternatively, whenMETHOD=quantiles the distribution is characterised by a pair of olative lower
probabilities with corresponding quantiles, andansPROPORTION&NAdQUANTILES must be set. The
uniform distribution is characterised by th®@wWERand UPPERoOption settings, and other options are
ignored. Lower and upper bounds for the otheridigions can be specified by optiddBPERandLOWER
these must be compatible with other option settings

Options:DISTRIBUTION , METHOPMEANVARIANCE PROPORTIONSQUANTILES LOWERUPPER
ParametersCUMPROBABILITYDEVIATE.

Method

Internal calls are made to GenSta&BfunctionsSEDNORMALEDBETAandEDGAMMAN most cases, the
required EDfunction parameters are derived from simple, wetiwn relations betweeBD-function
parameters and moments or quantiles. However, whggta or gamma distribution is specified by two
guantiles, theeDfunction parameters are derived by means ofthiRONLINEAR directive, which may
cause numerical problems

Action with RESTRICT

Deviates are only calculated for the set of unitashich CUMPROBABILITYis restricted. Other units will
remain unaffected.
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References
None.

Procedures Used
None.

Similar procedures

GRANDOMenerates pseudo-random numbers from probabibtyilmitions. GMULTIVARIATE generates
pseudo-random numbers from multivariate normaltod@&ht’s t distributionGRMULTINORMAgenerates
pseudo-random numbers from the multivariate nodisalibution

Example

PRINT  !t('Examples of how to use Biometris proc edure EDCONTINUOUS') ; \
JUSTIFICATION=left

VARIATE  cum;!(0.01, 0.02 ... 0.99)

EDCONTINUOUS [DIST=normal ; METHOD=quantiles ; PROP ORTION=!(.05, .95) ; \

QUANTILES=!(6.9, 8.2)] CUMPROBABILITY= cum ; DEVIATE=v[1]
EDCONTINUOUS [DIST=beta ; METHOD=quantiles ; PROPOR TION=!(.25, .75) ;\
QUANTILES=!(0.3, 0.5)] CUMPROBABILITY= cum ; DEVIATE=v[2]

EDCONTINUOUS [DIST=gamma ; MEAN=2 ; VARIANCE=1] CUM PROBABILITY=cum ; \
DEVIATE=v[3]

TEXT title ; 'Example of EDCONTINUOUS: v[1] :

DHISTOGRAM [WINDOW=5 ; KEY=0 ; TITLE=title ;S CREEN=keep] V[1]

DHISTOGRAM [WINDOW=6 ; KEY=0 ; TITLE=V[2] ;S CREEN=keep] v[2]
DHISTOGRAM [WINDOW=7 ;: KEY=0; TITLE='V[3] ;S CREEN=keep] v[3]
DGRAPH  [WINDOW=8 ; KEY=0 ; TITLE='V[2,3] ; S CREEN=keep] v[2] ; v[3]
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Procedure GMULTIVARIATE  M.JW. Jansen, J.CM. Withagen & J.T.N.M. Thissen
GMULTIVARIATEgenerates random numbers from multivariate noom&tudent t distribution

Options

PRINT =dtring Whether to print a summaryufnmary); default* prints no output
DISTRIBUTION =diring Type of distribution requirech¢rmal , student ); defaultnormal
NVALUES= scalar Number of values to generate; default 1

MEANS-= variate The mean for the multivariate Normal or Studernt'distribution;

default is a variate with values all equal to O
VCOVARIANCE diagonal matrix or symmetric matrix
The variance-covariance matrix for the multivaridid®rmal or
Student’s t-distribution; default is to use an itgmatrix
DF = scalar Number of degrees of freedom for Student’s tilistion; default
SEED= scalar Seed to generate the random numbers; defaulttthees an existing
sequence or initialises the sequence automatichllgo random
numbers have been generated in this job

Parameters

NUMBERS pointersor matrices  Saves the random numbers as either a pointeséb af variates or a
matrix

Description

ProcedureGMULTIVARIATE generates pseudo-random numbers from a multigaNatmal or from a
multivariate Student’s t distribution. The typedidtribution can be set by tIl@STRIBUTION option. The
meanmu is specified by the optioMEANSas a variate of lengh the variance-covariance matiigma is
specified by the optioiCOVARIANCES a diagonal or symmetric matrix wthows and columns; and the
optionNVALUESspecifies the number of values to be generatei@ thatvCOVARIANCHENuSt be positive
semi-definite. TheDF option must be used to specify the number of @ésgoé freedom for the Student
distribution and must be at least 3.

The SEEDoption can be set to initialise the random-nungegrerator, hence giving identical results if
the procedure is called again with the same optibI8EEDis not set, generation will continue from the
previous sequence in the program, or, if this & fifst generation, the generator will be initiedisby
CALCULATE

The numbers can be saved usingNb®/BER®arameter, in either a pointer to a set of vesjate a
matrix. If theNUMBERStructure or structures are already declared, ti@iensions must be compatible
with the settings of th&lVALUES MEANSand VCOVARIANCEoptions. The dimensions are also used, if
necessary, to set defaults for the options. ByullefdEANSS taken to be a variate of zero values, and
VCOVARIANCEHsS taken to be the identity matrix. If the settofgNUMBERS$ not already declared, it will
be defined as a pointer to a set of variates viitiedsions deduced from the option settings.

OptionS:PRINT, DISTRIBUTION, NVALUESMEANSVCOVARIANCHEDF, SEED
Parameter®iUMBERS

Method

Pseudo-random numbers from a multivariate Nornsfildution are generated by forming a matrix Y of
columns of univariate Normal random numbers, usirg Box-Muller method (Box & Muller 1958),
followed by a linear transformation

X=AY +nmy,
where A is calculated by a Choleski decompositohi,= Sgma. See, for example, Johnson (1987, pages
52-55) or Tong (1990, pages 181-186). Pseudo-ramidonbers from the multivariate Student distribution
are generated according to the definition of théivauiate Student distribution:

t(mu, Sgma, df) ~mu + MN(0, Sgma) / Sqrt(Chi-squaredf)/df)
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where MN(0,Sgma) is multivariate normal with mean 0 and varianogagcianceSgma; and where the
scalar Chi-squaredf) has a chi-square distribution with degrees of freedom. See, for example, Box &
Tiao (1973). Note that the variance-covariance imatf the multivariate Student distribution equals
[of / (df - 2)] Sgma.

Action with RESTRICT

Variates that have been restricted will receiv@uiutiromGMULTIVARIATEoNIy in those units that are not
excluded by the restriction. Values in the excludeitis remain unchanged. Note that XhW&LUESoption
must equal the full size of the variates. Restnition thevEANS/ariate are ignored.

References

Box, G.E.P. and Muller, M.E. (1958). A note on gatien of normal deviateé\nnals of Mathematical
Satistics, 28, 610-611.

Johnson, M.E. (1987Multivariate Satistical Smulation. John Wiley & Sons, New York.

Tong, Y.L. (1990)The Multivariate Normal Digtribution. Springer-Verlag, New York.

Box, G.E.P. & Tiao, G.C. (1973Bayesan inference in dtatistical analysis. John Wiley & Sons, New
York.

Redated Procedures
None.

Similar Procedures
GRMULTINORMAgienerates pseudo-random numbers from a multiear@mal distribution.

Example

PRINT  !t('Examples of how to use Biometris pro cedure GMULTIVARIATE") ; \
JUSTIFICATION=left

VARIATE [VALUES=1,2,3] mean

SYMMETRIC [ROWS=3; VALUES=1, 0,4, 1,3,9] vcov

GMULTIVARIATE [NVALUES=100 ; MEANS=mean ; VCOVARIAN CE=vcov ; SEED=52] norm

GMULTIVARIATE [PRINT=summary ; DISTRIBUTION=student ; NVALUES=100 ; \
MEANS=mean ; VCOVARIANCE=vcov ; DF=10 ; SEED=52] stud

DSCATTER  norm([]

DSCATTER  stud[]
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Procedure GUNITCUBE M.JW. Jansen, J.C.M. Withagen & J.T.N.M. Thissen
GUNITCUBEgenerates random numbers from a distribution mvahginal uniform distributions

Options

NVALUES= scalar Number of values to generate; default 1 or dedéroed theNUMBERS
parameter

RCORRELATION scalar or symmetricmatrix
Required rank correlation matrix; default the titgmmatrix

SEED= scalar Seed to generate the random numbers; defaulttthees an existing
sequence or initializes the sequence automatigaligo random
numbers have been generated in this job

STRATIFICATION =string Stratification fone, latin ); defaultnone

METHOL gtring Method to achieve rank correlaticsinfple , iman ); defaultsimple

Parameters

NUMBERS pointersor matrices  Saves the random numbers as either a pointeséb af variates or a
matrix

Description

ProcedureGUNITCUBEgenerates pseudo-random numbers from a multigadiatribution with marginal
distributions that are uniform on the interval frdnto 1, and with a given rank-correlation matrix
RCORRELATIONThe numbers can be saved usingNb®&IBER$arameter, in either a pointer to a set of
variates, or a matrix. If theUMBERStructures are already declared, their dimensiarg be compatible
with the settings of thBVALUESandRCORRELATIONptions. Otherwise the dimensions of H¢MBERS
pointer are deduced from these options. The dimeasif NUMBERSre also used, if necessary, to set
defaults for the options. NUMBERS$s not declared in advandeCORRELATIONNust be set. By default
RCORRELATIONS taken to be the identity matrix. If the settofd\UMBERS$ not already declared, it will
be defined as a pointer to a set of variates viitiedsions deduced from the option settings.

An ordinary random sample is obtained by the optsettings STRATIFICATION=none and
METHOD=simple. Option settingSTRATIFICATION=latin can be used to obtain Latin-hypercube
samples, with marginal sample distributions tha¢ aery nearly uniform, while option setting
METHOD=imarimposes close resemblance between the samplé&torrenatrix andRCORRELATION

If RCORRELATIONS set, the required rank correlation will be adiiced according to the specified
METHODoption (thus, METHODhas no effect ifRCORRELATIONiS unset). The combination of
RCORRELATIONSset to an identity matrix andMETHOD=simple is stochastically equivalent to
RCORRELATIONINset.

To avoid values very close to 0 andNUMBERSmaller than 0.000005 and larger than 0.999995atre
to these respective limits.

OptionS:NVALUESRCORRELATIOI\BEED STRATIFICATION, METHOD
Parameter®iUMBERS

Method

The method to construct a latin hypercube sametassfrom McKay e.a. (1979). The method to introduce
the required rank correlation stems from Iman & @@n (1982).

Action with RESTRICT
Any restrictions on variates of theJMBER®ointer will be cancelled and all units will beeds
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References

Iman, R.L. & Conover, W.J. (1982). A distributiore¢ approach to inducing rank correlation amongtinp
variablesCommunications in Satistics - Smulation and Computation, 11(3), 311-334.

McKay, M.D. & Beckman, R.J. & Conover, W.J. (1978).comparison of three methods for selecting
values of input variables in the analysis of outffom a computer codelechnometrics, 21,

239-245.

Procedures Used
None.

Similar procedures
None

Example

PRINT !'t('Example of how to use Biometris procedu
JUSTIFICATION=left

SCALAR nvariates, nvalues, seed ; VALUE=3, 100,

SYMMETRIC [ROWS=nvariates] corr

CALCULATE corr = DIAGONAL(!(#nvariates(1)))

CALCULATE corr$[2,3;1]=-0.8,0.4

GUNITCUBE [NVALUES=nvalues ; RCORRELATION=corr ; S

STRATIFICATION=latin ; METHOD=iman] uni
PRINT  MEAN(uni[])
PRINT  VARIANCE(uni[])
CORRELATE [PRINT=correlations] uni[]
PRINT !'t(Marginal distributions are nearly unifo
GROUPS  wuni[l1...3] ; funi[1...3] ; LIMITS=!(0.1,
TABULATE [CLASSIFICATION=funi[1] ; COUNT=count[1]
TABULATE [CLASSIFICATION=funi[2] ; COUNT=count[2]
TABULATE [CLASSIFICATION=funi[3] ; COUNT=count[3]
PRINT  [SERIAL=yes] count[]
DSCATTER uni[]
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re GUNITCUBE') ; \

937456

EED=seed ; \

rm’) ; JUSTIFICATION=left
0.2...0.9)

]

]

]
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Procedure RUNCERTAINTY M.J.W. Jansen, J.C.M. Withagen & J.T.N.M. Thissen

RUNCERTAINT¢alculates contributions of model inputs to theavece of a model output

Options

PRINT = strings What to print(fullmodel , uncertainty ); default fulmodel
uncertainty

PLOT= gtring Graphical output requiredii§togram ); default*

CURVE=gring Type of curve to be fittedifear , spline ); defaultlinear

ESTIMATES= variate To save regression coefficients of all variates (only when
CURVE-=linear )

BOTTOM% variate To save bottom marginal variances as percentatie afariance of the

model output. Increase of percentage variance ataddor when ax
structure is last to be added

TOPY%= variate To save top marginal variances as percentage mdnea of the
variance of the model output. Percentage variaoceuated for when
anX structure is the only one to be fitted.

ADJUSTEDRZ scalar To saveadjusted prcentage of variance accounted for bxafariates

Parameters

X = pointers or variates Set of model inputs for which uncertainty conttibns are to be
calculated. If a pointer is specified it must optynt to variates

DF=scalars Effective degrees of freedom of the smoothingngglito fit for eaclx
structure; default 2

FITTEDVALUES= variates Variates to store the fitted values for eadiructure when that input is

the only one to be fitted

Description
ProcedureRUNCERTAINTYperforms uncertainty analysis given (1) a samplaadel inputs from a joint
distribution representing the uncertainty abousé¢hmputs and (2) a corresponding sample of thesmod
output studied. The model output, given its inputay have been produced by specialised modelling
software. The procedure calculates the contribsitiorthe variance of the model output from indiaidor
pooled model inputs by means of regression. Thesgiloutions are expressed as percentages of the
variance of the model output. The top marginalarare of a model input is calculated as the pergergh
variance accounted for when that input is the only to be fitted,; it is an approximation of theretation
ratio. The bottom marginal variance of an inputafculated as the increase of variance accounted fo
when that input is the last to be added to allratiputs. The calculation is successful if the patage of
variance accounted for by all inputs is close t0, Hince the analysis only accounts for that pathe
variance of the output that is explained by thereggjon (thus interactions between inputs are not
considered). See Jansen et al (2002) and Saitall{2000) for a detailed account of uncertaimigigsis.

A call to RUNCERTAINTYMust be preceded byMODELstatement which defines the response variate
with the model outputs. Only the first responseataris analysed and options other ti#iGHTSshould
not be set in thMODELstatement. Generalized models are not allowedmiddel inputs are specified by
the X parameter that can consist of variates or poimteosie or more variates. If a pointer is specifiesl
total contribution of the variates of the pointeraalculated. The calculation applies multiple dine
regression or spline regressionvadn theX structures plus a constant term. The choice betlireear and
spline regression can be made by means atiry/Eoption. When usinGQURVE=spline , the degrees of
freedom of the smoothing spline can be set sepafateesachX structure by means of tig= parameter.
On output the full model has been fitted, aEEPand RDISPLAY can be used to further store and
display the fit of the full model.
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Cases with one or more missing values in the respwoariate, weight vector or any term in the full
model are excluded from the analysis. This implieg, when terms have missing values for different
units,FIT used on a subset of model inputs may give diffessults thaRUNCERTAINTY

The option settingPRINT=fullmodel  prints the fit of the full model while suppressiall warning
messages. SettingRINT=uncertainty prints the top and bottom marginal %variances haf X
structures and, in cas®JRVE=linear , the parameter estimates of the full model. Thoopsetting
PLOT=histogram option draws a histogram of the top and bottongmal %variances side by side for
each of theX structures. The results of the uncertainty analgsin be saved by means of options
ESTIMATES(in caseCURVE=linear ), BOTTOMY OP%andADJUSTEDR2The fitted values of the models
with individual X structures only (pointers and/or variates) casadwed by means of ti¢TTEDVALUES
parameter. These fittedvalues correspond to theéwginal %variances.

Options:PRINT, PLOT, CURVEESTIMATES BOTTOM% OP%ADJUSTEDR?2
ParametersX, DF, FITTEDVALUES

Method

The procedure calculates the percentage of varianceunted for the relevant regressions. The top
marginal %variance for an input X is calculated @8(vary-rmstop)/vary, where vary is the varianicéne
response and rmstop is the residual mean squdhe eohodel with only input X. The bottom marginal
%variance for an input X equals 100(rmsbottom-rhdgaty, where rmsall is the residual mean squére o
the full model with all inputs, and rmsbottom is tiesidual mean square of the full model withoptiirX.

A TERMSstatement in the procedure deals with missingegaluthex variates.

Action with RESTRICT

Only the response variate can be restricted. Thdysis is restricted accordingly. Restrictions be t
X structures are not allowed. The sa®TTEDVALUES variates will be unrestricted, but only units not
excluded by the restriction will have values.

References

Jansen M.J.W. ,Withagen J.C.M. & Thissen J.T.N200B).USAGE: uncertainty and sengitivity analysis
in a GenSat environment. Manual. Version 2.0. Wageningen: Biometris.
Saltelli, A. & Chan, K. & Scott, E.M. (2000; edsSpngitivity analysis. Chichester: Wiley.

Procedures Used

None.

Similar procedures

GMULTIVARIATEandGUNITCUBEcan be used to generate random in8&LECTselects best subsets of
predictor variables in regressicRSCREENyerforms screening tests for generalised or nauitite linear
models RSEARCHhelps search through models for a regressionmargkised linear model.
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Example

PRINT  !t('Examples of how to use Biometris proc
JUSTIFICATION=left

POINTER  par ;!Ip(a0, al, a2)

POINTER  soil ; 'p(ph, cd)

READ par[1...3], esp, soil[1,2], lcdp ; DEC

59 42 43 69 59 66 2199
5343495350 30 1134
67 67 32 64 62 53 2042
44 45 48 52 34 42 870
5050 48 42 56 47 1374
39 62 58 53 68 50 1894
40 61 50 64 58 49 1616
51 48 44 58 45 54 1147

53 44 47 65 44 64 1354 :

MODEL lcdp

55 39 48 52 57 54 1726
4948 7152 29 73 1292
51 49 52 51 47 44 1224
43 44 54 59 64 66 2028
64 69 54 55 61 50 2004
61 395947 3547 948
44 55 56 51 52 50 1388
76 49 48 48 50 37 1190

RUNCERTAINTY [CURVE-=linear] X=par,esp,soil

RUNCERTAINTY [CURVE=spline] X=par,esp,soil ; DF=1,1

42

edure RUNCERTAINTY") ;\

IMALS=1
60 59 50 46 58 43 1631
64 52 44 55 51 43 1411
47 33 54 48 30 51 1043
5540 38 59 46 62 1435
47 55 57 46 59 40 1405
73 375241 45 38 992
48 50 41 35 42 60 1167
47 51 46 28 66 64 1973
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Procedure SUMMARIZE J.C.M. Withagen

SUMMARIZBprints summary statistics for variates

Options

PRINT = gtrings What characteristics to printhé€an, sd, %cv, median , min, max, nmy,
nvalues , quantiles ); defaultmean, sd, median , nmv, nvalues

PROPORTIONS numbers Proportions at which to calculate quantiles; defaa, .25, .50, .75, .90

REPRESENTATION string Representation of values of summary statistiespopential
standard ); defaultexponential

Parameters

DATA= variates Data to summarize; must be set

Description

ProcedurssSUMMARIZEEalculates summary statistics for values storedvariate as specified by thaTA
parameter. The statistics to be calculated areateti by thé>RINT option. The summary is printed in a
table with variate identifiers as rows and names tleé summary statistics as columns. If
PRINT=quantiles  quantiles are calculated at the proportions spedify thePROPORTION®ption and
printed in a separate table. By default valuepsesented in E-format. They can be presented mulzte
output format by the setting tREPRESENTATIOMption tostandard

OptionS:PRINT, PROPORTIONSREPRESENTATION
ParameterDATA

Method

The procedure uses standard GenStat directives.

Action with RESTRICT
Any restriction on the data will be applied toclculations.

References
None.

Procedures Used

None.

Similar procedures
DESCRIBEsaves and/or prints summary statistics for varigigtsin a different format

Example

PRINT !'t(Example of how to use Biometris procedur e SUMMARIZE') ; \
JUSTIFICATION=left

CALCULATE data[1...5] = URAND(50697,4(0) ; 100)

SUMMARIZE [PRINT=#,quantiles ; REPRESENTATION=stand ard] data[]
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