
 

Course Guide: Software Engineering 1 MRK - 2021-02-08 

Course Guide: Software Engineering (spring 2021) 

General information 
Course name: Software Engineering 
Code: INF-32306 
Credits: 6 ECTS (168 hours) 
Language: English 
Schedule: all afternoons during the first seven weeks of period 5 

(March 15 – April 30) 
lectures Monday 14:00–15:30 weeks 1, 2, 3, and 7, 
and Thursday 14:00–15:30 weeks 1 and 2; 
rest of the time computer labs and group meetings 

Coordinator/Examiner: drs. M.R. Kramer 
Other staff involved: dr. K.E. Bennin, dr. ir. A Kassahun 

Keywords 
software development, Object Orientation, testing, version management, UML, Java 
 

Profile of the course 
Many students will get involved in software related projects during their professional career. 
Often, they will have to communicate with software developers, either in the role of end users 
or as (formal) clients. In some cases, they will have to write their own programs, for instance 
to complete a thesis project that involves modeling, simulation, optimization, or large-scale 
data processing. For these reasons, it is essential for students to build up competencies in 
software development. 
Software systems are developed to serve a specific purpose for specific groups of users. Such 
systems typically consist of many interacting components. Designing and implementing 
software systems goes beyond small-scale and ad-hoc programming. The techniques for 
building them are known under the term Software Engineering. 
Software engineering is the application of a systematic, disciplined, quantifiable approach to 
the development, operation, and maintenance of software. In other words, it is the application 
of engineering to software. In this course we cover the process of developing a computer 
program from an initial idea to a tested and maintainable software system. 

Learning outcomes 
After successful completion of this course, students are expected to be able to: 
 find occurrences of object-oriented (OO) software concepts in a given computer program 

(source code) or UML model 
 assess adherence to specified software development practices 
 design a software system in UML using object-oriented (OO) techniques 
 construct a working computer program in an OO programming language according to 

defined specifications 
 formulate and execute functional tests for a software system 
 operate a software version management system for sharing software components and 

documentation 

Prerequisites 
We expect that at the start of the course you to have elementary programming knowledge and 
skills (e.g. as taught in the course Programming in Python INF-22306) 
Specifically you should be acquainted with the following concepts and techniques: 



 

Course Guide: Software Engineering 2 MRK - 2021-02-08 

 variables, assignment, expressions, operators 
 functions (and/or procedures, subroutines, methods) and parameters; also making your 

own functions 
 control structures: at least: if, for, while 
 objects and their properties (fields, variables) and operations (methods) 
 arrays, including standard algorithms to traverse arrays (searching, summing, finding the 

largest element, etc.) 

Study materials 
Textbooks (both really used): 

 Paul Deitel and Harvey Deitel: “Java, How to Program (Early Objects)” Global 
Edition 11/E (ISBN 9781292223858) 
[9th International Edition and 10th Early Objects Edition (both out of print) are still 
usable] 

 Martina Seidl, Marion Scholz, Christian Huemer, Gerti Kappel: “UML@Classroom” 
(ISBN 978-3-319-12742-2; digitally available for free via WUR Library) 

Software (previously available in PC-room; now to be installed by participants): 
 Eclipse: Integrated Development Environment (IDE) for Java 
 TortoiseSVN: interface to Subversion (SVN; a version management system) 

or similar software for GIT (choice between SVN and GIT pending) 
Materials on Brightspace: 

 reading guides to the textbooks 
 tutorials on Eclipse and specific operations within Eclipse (a.o. refactoring, version 

management) 
 brief introduction “From Python to Java” 
 self-assessment forms 

Supplementary reading: 
 John Hunt: “Agile Software Construction” (ISBN 978-1-85233-944-9; digitally 

available for free via WUR Library) 

Activities 
During the first two weeks, students acquire the relevant theoretical background and practical 
experience with the techniques and software development environments adopted for the 
course. Lectures introduce concepts of Object Oriented software development and the 
modeling (design) formalism UML (Unified Modeling Language). Dedicated tutorials and 
assignments introduce the programming language Java, software development techniques, 
and an integrated development environment (IDE) that supports these techniques. Students 
apply these techniques individually or in pairs during practical sessions. 
During the rest of the course, groups of (ideally) eight students develop a computer program 
in a series of iterations. Each of these iterations starts with an investigation of functionalities 
to be incorporated in the software during the iteration, and ends with a working program that 
incorporates most – if not all – of the planned functionalities. Early in the fifth week, each 
group should produce a first release of their software. A final release is due at the end of the 
course. 
In practice, customer requirements will change during the software development process. In 
this course, group supervisors play the role of customers and indicate new requirements after 
the first release. To accommodate the new requirements, most probably the structure of the 
software has to be adapted. Restructuring the code (refactoring) is an integral part of the 
software development process. 
Groups use a version management system to track successive versions of their software. 
Because different team members may work simultaneously on the same parts of the software, 
the version management system becomes also crucial to facilitate collaboration, especially to 
detect and solve conflicts between changes introduced by different team members. 



 

Course Guide: Software Engineering 3 MRK - 2021-02-08 

Assessment 
The grade for the course consists of two parts: 
50% for the software product: final release of software built as group case 
 interesting enough from a technical perspective 
 functionalities implemented 
 overall design 
 class design 
 coding 
50% for the software process: steps in the process and techniques applied 
 check in at version management system 
 adding functionalities 
 application of refactoring 
 creating/updating UML models 
 other documentation (e.g. user stories) 
Note that there is no grade for fancy user interfaces. 
 
Each individual student has to fill in two check-lists for all respective grading aspects, one 
check-list for the product and one check-list for the process. Each item in the check-lists has 
to be scored on a three-point scale (+, ±, and ‒) together with a specification of details. 
The work, as well as the associated check-lists, will be assessed by course staff, in order to 
decide grades for both check-lists. 
For each check-list, items scored too low will still be granted, up to an increase of 1.5 points 
and not exceeding a grade of 7.5. Items scored too high give an extra penalty equal to the 
difference in scores (after applying the previous clause). 
In case of a severe imbalance between contributions to group work, the grade for the product 
can be individually adjusted. 
To pass the course, both grades must be sufficient (i.e. at least 5.5). 
When passing, the final grade of the course is the average of the two grades. When failing, the 
final grade is the lower of the two grades. 
Partial scores are valid until the course starts in the same period in the next academic year. 

Principal themes 

Software Engineering life cycle 
The field of Software Engineering has produced a number of ways to guide the software 
development process. In these so-called life cycle models, the same kinds of activities occur in 
different orders and with different interdependencies. Techniques for software requirements 
analysis, architectural design, detailed design, coding, and testing will be practiced in this 
course. For the relations between these techniques, we incorporate the main ideas of Agile 
Software Development in general and Extreme Programming in particular. One of the benefits 
of agile methods in software development is that they aim at frequent delivery of working 
software. 

Object orientation 
The key idea of all modern software development techniques is that software functions should 
be grouped around the kind of data that they process. Data is encapsulated in objects that have 
associated functionality. In real Object-oriented software development, this idea is extended 
with the notions of inheritance and polymorphism. 
This course introduces the object-oriented design formalism UML (Unified Modeling 
Language) and the object-oriented programming language Java. Both UML and Java are 
widely used in software industry. 
In building and organizing larger software systems, the notion of “programming by contract” 
takes encapsulation a step further. Java’s mechanism of interfaces (not to be confused with 



 

Course Guide: Software Engineering 4 MRK - 2021-02-08 

user interfaces) plays an import role in implementing “programming by contract”. In this 
course, we use interfaces as the primary mechanism for polymorphism. 

Test driven development 
Software should be tested before being delivered. Very often, tests are defined after the 
software has been written, or they not defined at all, especially when a project is running out 
of time. With test driven development the order is reversed: tests for a software feature should 
be defined before actually starting to incorporate that feature into the program. Software 
developers retain all tests, and execute the tests after every change they make to the software. 
Moreover, these tests give a formalized description of the intended (or understood) behavior 
of the software system or one of its components. Therefore, test driven development plays an 
important role in the activities of requirements analysis and design as well. From almost the 
start of the course to the end, we consistently apply test driven development in all 
development steps. 

Version management 
Software development is a very dynamic process. Even when a single person is working on a 
project, it is worthwhile to keep track of changes made during the development process. 
When developing software in a team, a system for tracking contributions and changes is 
almost indispensable. A version management system automates the bookkeeping of changes 
and software versions. All group work during the course is supported by a version 
management system. 
Use of a version management system enables developers to return to an earlier version of the 
software, e.g. to find out which change introduced a newly discovered error. The change log 
that is maintained by the version management system helps tracing which changes were made 
for which reasons. Modern version management systems also offer support for merging 
independent changes made by different developers. 

Refactoring 
Many changes to software under development involve rather clerical (and often tedious) 
tasks, e.g. consistently renaming a variable or method (function), moving some code to 
another location, or adding a parameter to an existing method. Such tasks are supported by so-
called refactoring mechanisms. Refactoring simplifies the process of adjusting the structure of 
software and thereby ensures a more flexible software development process. 

Outline of the course 
Week 1, week 2, and part of week 3: Introduction to UML, Java and development process; 
exercises with working environment. 
Week 3/4: Start of group case; problem definition and first iteration. 
Week 4/5: Second iteration leading to first release. 
Rest of week 5 through week 7: Two more iterations. 
During week 7 (or optionally early in week 8): Self-assessment. 

Schedule 
See separate spreadsheet. 
 
[Due to Covid19, all PC work will be done online this year. Last year, we have found ways 
for working online that turned out to work well – given the circumstances. Lectures will be in 
the Virtual Classroom through Brightspace. There is a small chance that some students can 
attend the lectures in the lecture hall.] 


