Use of LiDAR to map and monitor habitats

Mücher, Roupioz, Kramer & Bunce

European LiDAR Mapping Forum World Forum, the Hague 30 November 2010

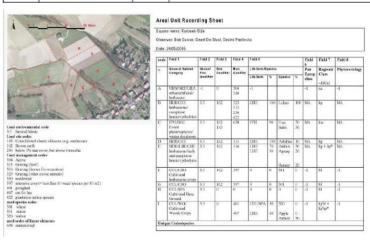
Objective

Can we use LiDAR data to map and monitor plant life forms and General Habitat Categories (GHC's) according to EBONE (Bunce et al. 2008) methodology?

EBONE objective

- To consistently collect European habitat information from each country
- To provide consistent European statistics
- To support Natura 2000 monitoring
- To set-up a integrated European Biodiversity Observation Network

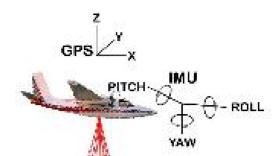
Support of European biodiversity policy



EBONE habitat field recording

- Stratified random samples of 1km²
- Mapping of areal, linear and point habitats.
- Estimation % plant life forms per mapping unit.
- Life form: vegetative form of a plant based on position growth point during adverse period.
- Vegetation structure central.
- Dominant species per lifeform.
- Provides good opportunities for integration with remote sensing.

Life forms to record habitats (GHC's)


HER

Herbaceous

1. Submerged hydrophytes	erged hydrophytes SHY Plants that grow beneath the water.						
2. Emergent hydrophytes	EHY	Plants that grow in aquatic conditions, mainly above water.					
3. Helophytes	HEL	Plants that plants that grow in water	erlogged conditions.				
4. Leafy hemi-cryptophytes	LHE	Broad leaved herbaceous species,	sometimes termed forbs.				
5. Caespitose hemi-cryptophytes	CHE	Perennial monocotyledonous grass	ses and sedges.				
6. Therophytes	THE	Annual plants that survive the unfa	avorable season as seeds.				
7. Succulent chamaephytes	SUC	Plants with succulent leaves.					
8. Geophytes	GEO	Plants with buds below the soil surface.					
9. Cryptogams	CRY	Bryophytes and lichens, including aquatic bryophytes,					
10. Herbaceous chamaephytes	HCH	Plants with non-succulent leaves a	nd non-shrubby form.				
Shrubs and trees	TRS						
11. Dwarf chamaephytes	DCH	Dwarf shrubs: below 0.05 m					
12. Shrubby chamaephytes	SCH	Under shrubs: 0.05-0.3 m	_				
13. Low phanerophytes	LPH	Low shrubs buds: 0.30-0.6 m.	Strict height def.				
14. Mid phanerophytes	MPH	Mid shrubs buds: 0.6-2.0 m	ourse morgine don				
15. Tall phanerophytes	TPH	Tall shrubs buds: 2.0-5.0 m					
16. Forest phanerophytes	FPH	Trees: over 5.0 m					
Leaf retention divisions (to be used	in conjun	ection with TRS)					
Winter deciduous	DEC						
Evergreen	EVR	Combination	- \ . 400 OHO!- I				
Coniferous	CON	Combinations	$s \rightarrow > 130 \text{ GHC's}!$				
Etc.							

Cabo de Gata – Half-Desert in Almeria (SP) **Bare ground (TER) Mid Phanerophytes (MPH) Dwarf Palms (Chamaerops humilis)** (0.6 - 2.0 m)Caespitose hemicriptophytes (CHE) Stipa tenuissima (grasses)

LiDAR

- LiDAR (Light Detection And Ranging) is a remote sensing system used to collect topographic data.
- A lidar uses a laser (emitter) to send a pulse of light to an object and a telescope (receiver) to measure the intensity scattered back (backscattered) to the lidar.
- Aircraft permits the collection of topographic information over a strip ~ 300 meters in width from 600 meter altitude.

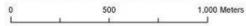
LiDAR - NL

- AHN-1: Actual terrain model of the Netherlands.
 Very accurate based on LiDAR Completed in 2003
 - Precision: 15 centimeters
 - 1 point per m² (or 1 p / 16m²)
- AHN-2: more accurate
 - Precision: 5 centimeters
 - 10 points / m²
 - Complete coverage in 2012
 - Costs ~ €0,30 / ha
- Update is planned every 5 years (subscription waterboards)

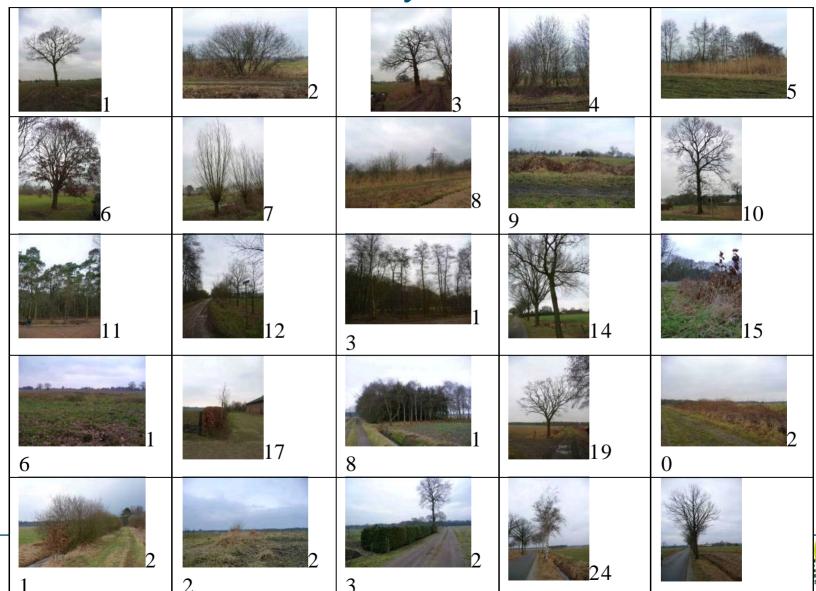
Study area Chaam (Noord-Brabant)

- Acquired by FUGRO in early March 2009
- Spatial resolution: 10 points/m²
- Three scan angles (nadir, forward, backward 30°)
- Multiple returns, intensity, RGB colours
- Classified into ground points & non-ground points

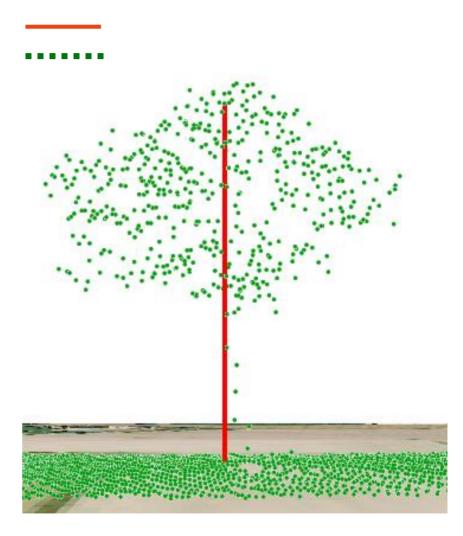
Study area Chaam (3 by 3km)



Objects of interest

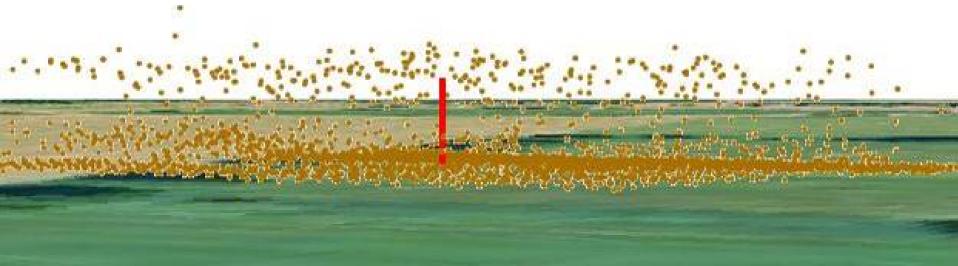

- 01 Single tree
- 02 Hedge row
- 03 Solitary tree
- 04 Hedge row
- 05 Fringe of reed
- 06 Solitary tree
- 07 Row of willows
- 08 Bushes of blackberry and reed
- 09 Blackberry low vegetation
- 10 Solitary tree
- 11 Forest with pines and birch
- 12 Double line of Oak trees
- 13 Line of trees and bushes
- 14 Oak trees in line
- 15 Rough wood at water fringe
- 16 Pitrus in ditch
- 17 Hedge with hornbeam
- 18 Con. forest with edge of dec. trees
- 19 Solitary tree
- 20 Blackberry, low vegetation
- 21 Hedgerow
- 22 Rough field
- 23 Hedge with conifers
- 24_Row with birch trees
- 25 Oak trees in line

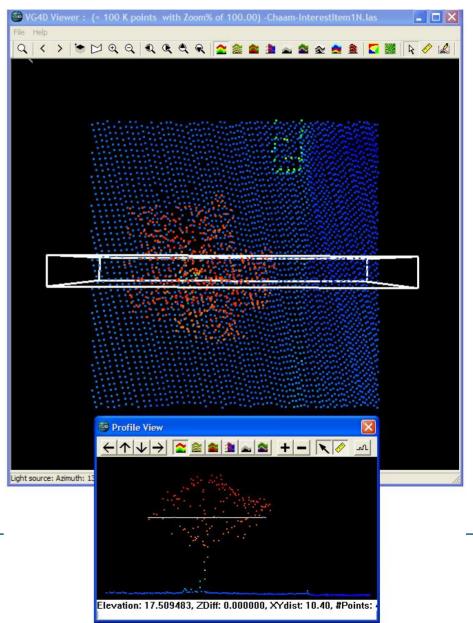
Tree nursery



Plant life forms in study area Chaam

Object 1: Single tree

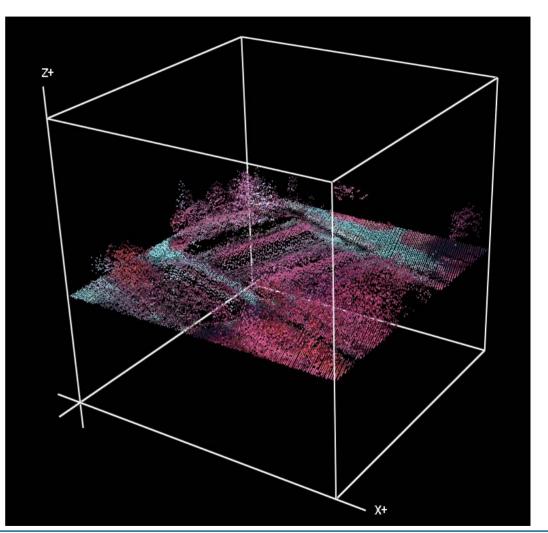

Object 23: hedge & tree


Object 5: Fringe of reed

Height measurements LIDAR

The VG4D viewer

measurements width and height of selected objects in LIDAR point clouds.

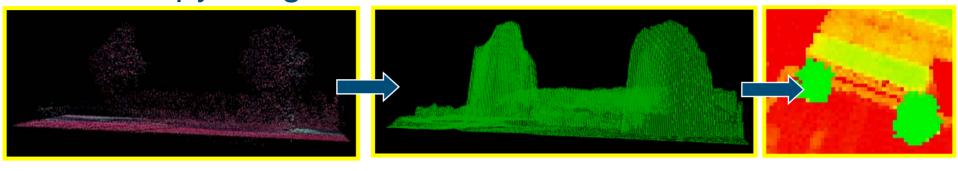


Assessment LiDAR measurements of life forms

Lidar Field work						
object	Height	Width	Height	Width		
Single tree	11.9	9.8	11.71	8	Regression Statis	stics
Hedge row with bush	4.4	2.5 - 5.3	5.20	2.5	Multiple R	0.99
Single tree	11.3		11.54	6	R Square	0.99
Hedge row	7 - 7.8	6.8 - 7.8	8.56	5	Adjusted R Square	0.95
Fringe of reed	2.9	3.6 - 5	2.20	4	Standard Error	1.00
Solitary tree	11.1	7.8	12.53	8	Observations	24
Row of willows	6.7 - 7	2.0 - 3	9.34	2		
Blackberry and reed	1.3 - 5	4.0 - 7	5.20	4		
Blackberry, low vegetation	0.25	-	0.75	4		
Single tree	17.2	9.0 - 12	19.53	10		
Forest with pines and birch	16.4 - 20		17.45	-		
Dould line of Oak trees	8.5 - 8.9	4.7 - 6.4	9.57	5		
Line of trees and bushes	15.9	7.0 - 8	15.89	10		
Oak trees in line	14.0 - 16	8	16.00	8		
Rough wood at water fringe	0.6	0.6 - 2.5	0.75	2		
Pitrus in ditch	ruis		0.75	7		
Hedge with hornbeam	1.2	0.3 - 0.5	1.10	35		
Con. Forest with edge of dec.	10.5		11.10	36		
Solitary tree	10.25	8.5 - 10.8	11.28	5		
Blackberry, low vegetation	1.2	3.5 - 4	1.70	4		
Hedgerow	3.6 - 4.2	4.1 - 5	4.45	4		
Rough field	0	-	1.00	-		
Hedge with conifers	1.6	0.6	1.50	0		EBONE
Row with birch trees	10.6	4.2	11.75	3		OBSERVATION NETWORK
Oak trees in line	11.4	5 - 8	12.82	6		

FUSION software

 FUSION is a LiDAR viewing and analysis software suite developed by USDA



Examples FUSION output

Canopy Height Model

>0.05m

Canopy closure and canopy density

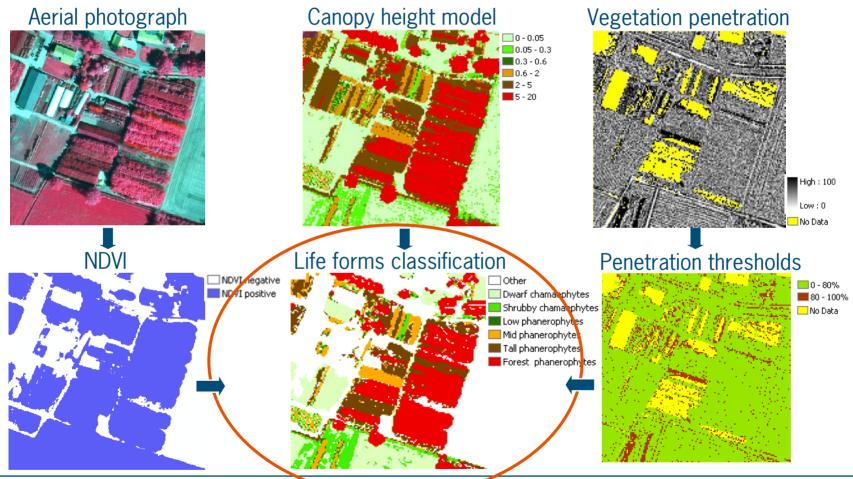
>0.3m

• Percentage of return above or between certain height breaks

100%

0%

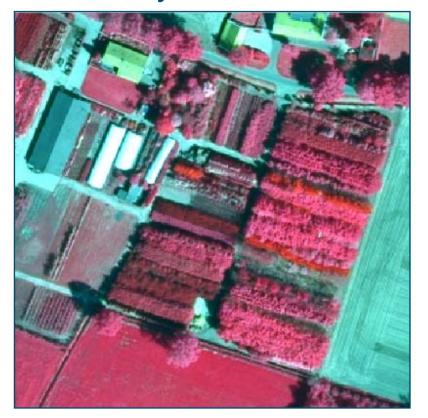
>5m

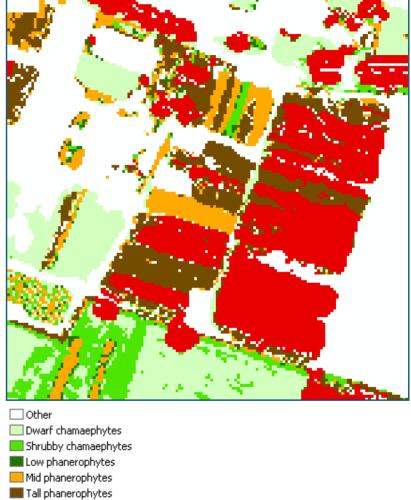


> 0.6 m

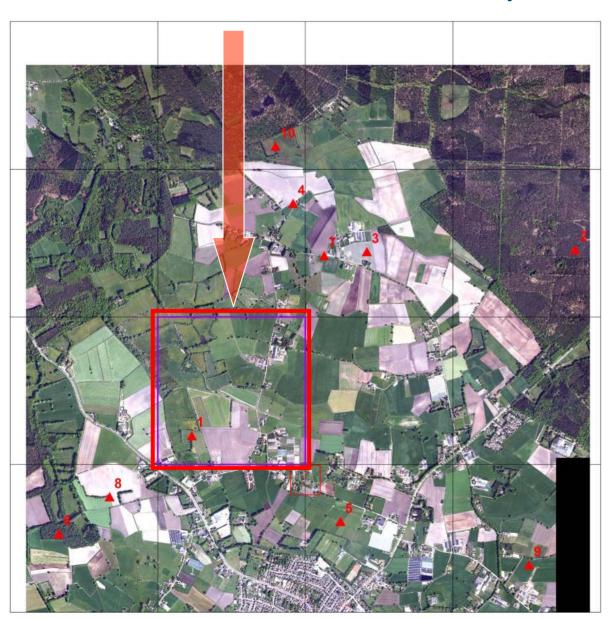
>2m

Decision tree classification method


Based on combined use of AP & LIDAR



Preliminary classification tree nursery



Forest phanerophytes

Selection one 1km² sample

Legend

randompoints

Selected_grid_Chaam

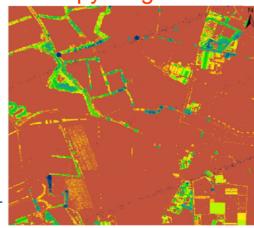
1kmgrid

lufo2008_rgb_chaam.img

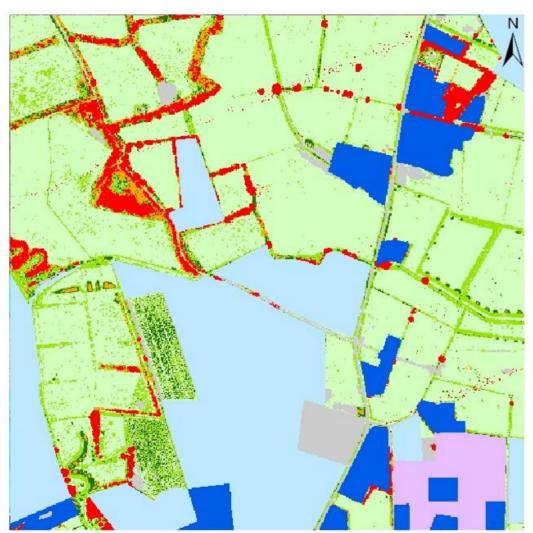
<u>Integration</u>

Knowledge rules:

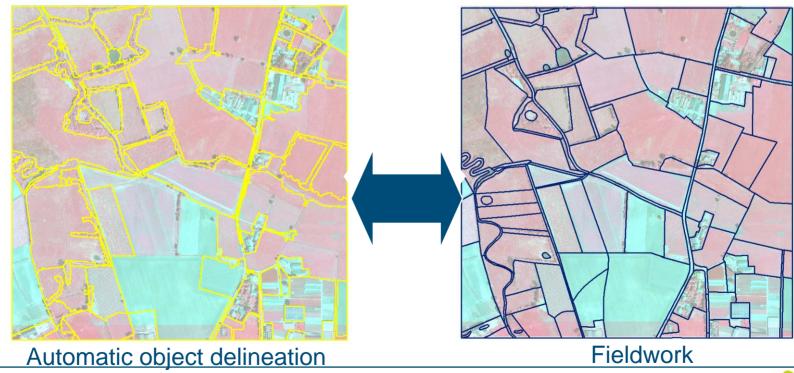
- No vegetation (NDVI information)
- Crop field (top10 data)
- Other (top10 data)
- Tree nursery (top10 data)
- Canopy height model:
 - Canopy height: 0 -10cm (CHE/LHE)
 - Canopy height :10 60cm (LPH)
 - Canopy height: 60cm 2m (MPH)
 - Canopy height: 2 5 m (TPH)
 - Canopy height higher than 5m (FPH)


Strata: Urban/Crops/.. Vegetated / Non-veg.

Top10 vector terrain elements akkerland boomkwekerij


Canopy height model

Classification result


validation based on field work (20-06-2010)

Segmentation to identify habitat patches

- The pixel based classification (2*2m) was smoothed with a majority filter (kernel window of 3x3)
- A multi-resolution segmentation and a spectral difference segmentation methods are performed in eCognition in order to define general habitat patches

Validation at level of habitat patch

FIELDWORK

87.87

96.01

"LIDAR" method

								_	
ID		LHE/CHE_f	LHE/CHE + < 10cm	MPH_f	МРН	TPH_f	ТРН	FPH_f	FPH
	1	100	76.91	0	7.49	0	8.58	0	7.02
1	0	70	87.92	0	7.17	0	3.40	0	1.51
1	1	20	27.94	0	42.65	0	26.47	50	2.94
1	8	100	83.54	0	1.12	0	2.83	0	12.51
2	20	50	83.67	0	1.67	0	2.03	0	12.63
2	23	100	97.01	0	1.66	0	0.36	0	0.97
2	26	80	93.51	0	6.49	45	2.7 50 105 12 2.7 104	51 5	2 58
2	28	90	98.93	0	1.07		14 2 50 49 6 9 11	54	109

0

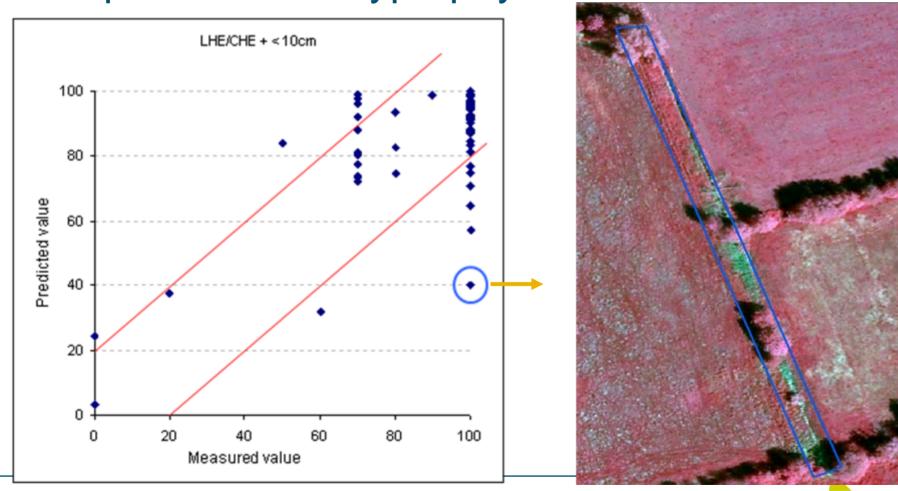
0

3.49

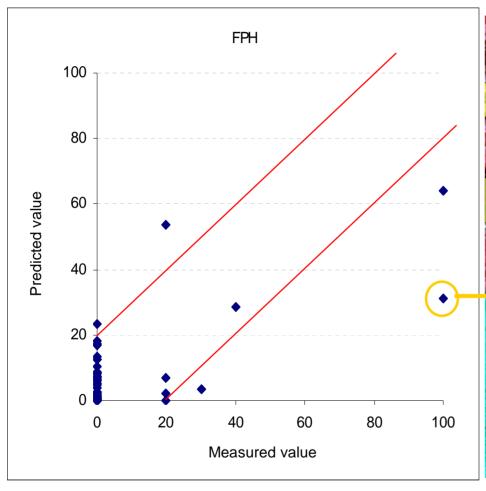
2.28

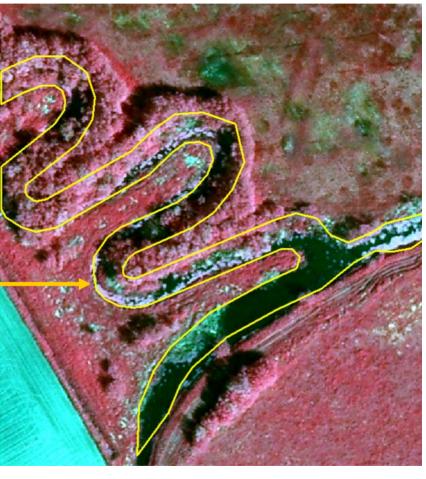
29

30


100

100


Leafy HEmicryptophytes/


Caespitose HEmicryptophytes < 10 cm

ID	LHE/CHE_f	LHE/CHE + < 10cm	MPH_f	MPH	TPH_f	TPH	FPH_f	FPH
85	100	40	0	11	0	26	0	23

Forest PHanerophytes (FPH)

ID	LHE/CHE_f	LHE/CHE + < 10cm	MPH_f	MPH	TPH_f	TPH	FPH_f	FPH
5	0	24	0	23	0	21	100	31

Conclusions & perspectives

- Accurate height measurements of vegetation with LiDAR, but no species information.
- In spring (no leafs yet) good identification already of woody plant life forms.
- Problems to distinguish forbs (LHE) from grasses (CHE).
- Integration of LiDAR with aerial photographs (or VHRS) recommended for habitat mapping.
- Topographic maps can provide strata to distinguish urban, cultivated areas and semi-natural areas.
- Validation highlights uncertainties in RS method but also in field method!
- Combination of LIDAR (height) with hyperspectral data (thematic) way forward!



Thank you for your attention!

© Wageningen UR

