

Flume and Rainfall Simulator for Overland Flow Studies

Mazhar Ali¹, Geert Sterk² and Manuel Seeger¹

Technical Specifications

Flume

Length (L)
Width (w)
Depth (d)
Slope
3.0 m
0.5 m
0.04 m
0 to 15°

Upper Stopper
L = 0.20, w = 0.5, d = 0.04 m
L = 0.15, w = 0.5, d = 0.04 m

Water Supply

Flow Rate Measurements Water-meter
Flow Rate 33 to 1033 cm³/sec

Flow Velocity

Velocity Measurements Dye Tracing Technique

Dye Used LycopeneTest Length 1.24 m

Water Depth

Depth Measurements 2 Point Gauges Accuracy 0.1 mm Rainfall Simulator

Nozzle Lechler 461.008 71 mm/hr
Nozzle Lechler 460.788 36 mm/hr
Height above Flume Bed 3.0 m
Area Covered 2 m²

Available Sediment

 Median Grain Size (D₅₀) 0.233, 0.536, 0.719 and 1.022 mm

Bed Roughness

Roughness Measurements Laser Scanner

Accuracy 1mm
Scan Area 1 m²

Applications

The flume and other available equipments can be used for following studies:

- Overland flow studies
- Hillslope studies
- Soil stability studies
- Interception studies
- · Calibration of field equipment
- Sediment detachment and transport studies

P.O. Box 47 6700 AA Wageningen, The Netherlands Tel: +31 317 485729 E-mail: mazhar.ali@wur.nl manuel.seeger@wur.nl P.O. box 80115 3508 TC Utrecht, The Netherlands Tel: +31 302 533051 E-mail: g.sterk@geo.uu.nl

Evaluation of Sediment Transport Equations Under Overland Flow Conditions

Mazhar Ali1 and Geert Sterk2

Background

- Empirical and physically-based equations are used in most water erosion models for soil detachment and sediment transport.
- Most equations were derived for streamflow conditions due to non-availability of experimental data for overland flow conditions.
- But hydraulic and sediment transport conditions in streamflow are different from overland flow conditions (depth, velocity, slope, etc), which makes the use of streamflow transport equations questionable.

Study Objectives

- To study the effect of bed roughness, rainfall amount and intensity on sediment transport capacity in the laboratory under different flow conditions.
- To evaluate the performance of existing soil transport equations using the laboratory data, and identify the bestperforming transport equations.
- To adapt the best performing transport equations by including the effects of bed roughness and rainfall effects.

Methodology

- Seven well-known and widely-used sediment transport equations are critically analyzed and a literature review of previous tests has been made.
- 1214 flume experiments are being carried out to collect the hydraulic and sediment parameters under four different conditions;
 - Smooth bed
 - 2. Rough bed
 - 3. Smooth + Rainfall
 - 4. Rough + Rainfall

Preliminary Results

 Interaction of detachment and deposition along flume is dependent on the discharge at same slope.

P.O. Box 47 6700 AA Wageningen Tel: +31 317 485729 E-mail: mazhar.al@wur.ni P.O. box 80115 3508 TC Utrecht Tel: +31 302 533051 E-mail: g.sterk@geo.uu.nl