Screening for recombinants of Crambe abyssinica after transformation by the PMF1 marker-free vector based on chemical selection and meristematic regeneration

Qi, W.; Tinnenbroek-Capel, I.E.M.; Salentijn, E.M.J.; Schaart, J.G.; Cheng, J.; Denneboom, C.; Zhang, Z.; Zhang, X.; Zhao, H.; Visser, R.G.F.; Huang Bangquan; Loo, E.N. van; Krens, F.A.


The T-DNA region of pMF1 vector of marker-free system developed by Wageningen UR, has Recombinase R-LBD gene fusion and nptII and codA gene fusion between two recombination sites. After transformation applying dexamethasone (DEX) can activate the recombinase to remove the T-DNA fragment between recombination sites. The recombinant ought to be selected on 5-fluorocytocine (5-FC) because of codA converting 5-FC into 5-fluorouracil the toxic. A PMF1 vector was transformed into hexaploid species Crambe abyssinica. Two independent transformants were chosen for DEX-induced recombination and later 5-FC selection. In contrast to earlier pMF1 experiments, the strategy of stepwise selection based on meristematic regeneration was engaged. After a long period of 5-FC selection, recombinants were obtained successfully, but most of the survivors were wildtype and non-recombinant. The results revealed when applying the PMF1 marker-free system on C. abyssinica, 1) Increasing in the DEX concentration did not correspondingly enhance the success of recombination; 2) both of the DEX-induced recombination and 5-FC negative selection were apparently insufficient which was leading to the extremely high frequency in chimerism occurring for recombinant and non-recombinant cells in tissues; 3) the strategy of stepwise selection based on meristem tissue regeneration was crucial for successfully isolating the recombinant germplasm from the chimera.