The genome of Chenopodium quinoa

Jarvis, D.E.; Shwen Ho, Yung; Lightfoot, Damien J.; Schmöckel, Sandra M.; Li, Bo; Borm, T.J.A.; Ohyanagi, Hajime; Mineta, Katsuhiko; Mitchell, Craig T.; Saber, Noha; Kharbatia, Najeh M.; Rupper, Ryan R.; Sharp, Aaron R.; Dally, Nadine; Boughton, Berin A.; Woo, Yong H.; Gao, Ge; Schijlen, E.G.W.M.; Guo, Xiujie; Momin, Afaque A.; Negräo, Sónia; Al-Babili, Salim; Gehring, Christoph; Roessner, Ute; Jung, Christian; Murphy, Kevin; Arold, Stefan T.; Gojobori, Takashi; Linden, C.G. van der; Loo, E.N. van; Jellen, Eric N.; Maughan, Peter J.; Tester, Mark


Chenopodium quinoa (quinoa) is a highly nutritious grain identified as an important crop to improve world food security. Unfortunately, few resources are available to facilitate its genetic improvement. Here we report the assembly of a high-quality, chromosome-scale reference genome sequence for quinoa, which was produced using single-molecule real-time sequencing in combination with optical, chromosome-contact and genetic maps. We also report the sequencing of two diploids from the ancestral gene pools of quinoa, which enables the identification of sub-genomes in quinoa, and reduced-coverage genome sequences for 22 other samples of the allotetraploid goosefoot complex. The genome sequence facilitated the identification of the transcription factor likely to control the production of anti-nutritional triterpenoid saponins found in quinoa seeds, including a mutation that appears to cause alternative splicing and a premature stop codon in sweet quinoa strains. These genomic resources are an important first step towards the genetic improvement of quinoa.