Enzymes and Surfaces (dr. M.C.R. Franssen)

The Enzymes and Surfaces Research Group, led by dr. Maurice C.R. Franssen, focuses on replacement of expensive cofactors of enzymes by cheap models, enzymatic modification of surfaces, the use of immobilised enzymes for detection purposes, and the application of enzymes for the synthesis of biorenewables. Maurice also contributes from time to time to studies on biosynthesis routes of terpenes.

Nicotinamide cofactor biomimetics

Nicotinamide adenine dinucleotide (NAD)-dependent enzymes catalyse an impressive array of redox reactions with exquisite selectivity, often unattainable with classical chemical catalysts. Their requirement for NAD or its phosphorylated form NADP influences their use in biocatalysis, as these cofactors are extremely expensive.

We recently re-introduced synthetic nicotinamide coenzyme biomimetics (NCBs) for practical oxidoreductase-driven biocatalytic reactions. NCBs are cost-effective and can be accepted by several redox enzymes, replacing the natural coenzyme. In contrast to natural-based or sugar-based nicotinamide biomimetics, synthetic NCBs lack the adenosine and ribonucleotide moieties and bear simpler substituents on N1 of the dihydropyridine moiety (see the Figure below). We are currently exploring the applicability of these mimics to various classes of redox enzymes.

Nicotinamide cofactor biomimetics.jpg


  • A. Guarneri, A.H. Westphal, J. Leertouwer, J. Lunsonga, M.C.R. Franssen, F. Hollmann, W.J.H. van Berkel and C.E. Paul. Flavoenzyme-mediated regioselective aromatic hydroxylation with coenzyme biomimetics. ChemCatChem 2020, 12, 1368–1375.

Laccases and surfaces

Laccases are oxidative enzymes that are able to convert phenolic molecules to radicals. These may polymerise and/or graft to surfaces. We have studied the reaction of laccase with 4-hydroxybenzoic acid in detail, and the fate of the formed radical in the presence of a poly(ethersulfone) [PES] surface. Although SEM pictures (see Figure 1) point to grafting, recent studies revealed that physisorption of the formed polymers is actually leading to the observed structures. In general, distinguishing grafting from physisorption is a daunting task, see the review of Slagman et al. (ChemBioChem 2018, 19, 288) for guidelines.

Figure 1. SEM pictures of blank (left picture) and modified PES membranes, using various reaction conditions for the enzymatic modification.


  • S. Slagman, H. Zuilhof and M.C.R. Franssen. Elucidating the mechanism behind the laccase-mediated modification of poly(ethersulfone). RSC Adv. 2018, 8, 27101-27110.
  • S. Slagman, H. Zuilhof and M.C.R. Franssen. Laccase-mediated grafting on biopolymers and synthetic polymers – a critical review. ChemBioChem 2018, 19, 288-311.
  • S. Slagman, J. Escorihuela, H. Zuilhof and M.C.R. Franssen. Characterization of the laccase-mediated oligomerization of 4-hydroxybenzoic acid. RSC Adv. 2016, 6, 99367 - 99375.
  • S. van der Veen, N. Nady, M.C.R. Franssen, H. Zuilhof, R.M. Boom, T. Abee and K. Schroën. Listeria monocytogenes repellence by enzyme-catalyzed modified PES surfaces. J. Appl. Polym. Sci. 2015, 132, 41576.
  • N. Nady, M.C.R. Franssen, H. Zuilhof, R.M. Boom and K. Schroën. Enzymatic modification of polyethersulfone membranes. Water 2012, 4, 932-943.
  • N. Nady, K. Schroën, M.C.R. Franssen, R. Fokkink, M.S. Mohy Eldin, H. Zuilhof and R.M. Boom. Enzyme-catalyzed modification of PES surfaces: reduction in adsorption of BSA, dextrin and tannin. J. Colloid Interface Sci. 2012, 378, 191–200.

    Enzymes for detection

    We also use enzymes for detection purposes, e.g. of masked mycotoxins and lactate (see Figure below and Alonso et al., 2016).


    • S. Slagman, S.P. Pujari, M.C.R. Franssen and H. Zuilhof. One-step generation of reactive superhydrophobic surfaces through growth of SiHCl3-based nanofilaments. Langmuir 2018, 34, 13505-13513.
    • J.M. Alonso, A.A.M. Bielen, W. Olthuis, S.W.M. Kengen, H. Zuilhof and M.C.R. Franssen. Self-assembled monolayers of 1-alkenes on oxidized platinum surfaces as platforms for immobilized enzymes for biosensing. Appl. Surface Sci. 2016, 383, 283-293.
    • J.M. Alonso, B. Fabre, A.K. Trilling, L. Scheres, M.C.R. Franssen and H. Zuilhof. Covalent attachment of 1-alkenes to oxidized platinum surfaces. Langmuir 2015, 31, 2714-2721.
    • S.A. van den Berg, J.M. Alonso, K. Wadhwa, M.C.R. Franssen, T. Wennekes and H. Zuilhof. Microwave-assisted formation of organic monolayers from 1-alkenes on silicon carbide. Langmuir 2014, 30, 10562–10565.
    • M.W.F. Nielen, C.A.G.M. Weijers, J. Peters, L. Weignerova, H. Zuilhof and M.C.R. Franssen. Rapid enzymatic hydrolysis of masked deoxynivalenol and zearalenone prior to liquid chromatography mass spectrometry or biosensor immunoassay analysis. World Mycotoxin J. 2014, 7, 107-113.

      Enzymatic preparation of biorenewables

      • A. But, A. van Noord, F. Poletto, J.P.M. Sanders, M.C.R. Franssen, E.L. Scott. Enzymatic halogenation and oxidation using an alcohol oxidase-vanadium chloroperoxidase cascade. Mol. Catal. 2017, 443, 92–100.
      • M. Schurink, S. Wolterink-van Loo, J. van der Oost and M.C.R. Franssen. Substrate specificity and stereoselectivity of two Sulfolobus KDG aldolases towards azido substituted aldehydes. ChemCatChem, 2014, 6, 1073-1081.
      • P. Falcicchio, S. Wolterink-van Loo, M.C.R. Franssen and J. van der Oost. DHAP-dependent aldolases from (hyper)thermophiles: biochemistry and applications. Extremophiles 2014, 18, 1-13.
      • M.C.R. Franssen, P. Steunenberg, E.L. Scott, H. Zuilhof and J.P.M. Sanders. Immobilised enzymes in biorenewables production. Chem. Soc. Rev., 2013, 42, 6491 - 6533.
      • P. Steunenberg, M. Sijm, H. Zuilhof, J.P.M. Sanders, E.L. Scott and M.C.R. Franssen. Lipase-catalyzed aza-Michael reaction on acrylate derivatives. J. Org. Chem. 2013, 78, 3802-3813.
      • P. Steunenberg, M. Uiterweerd, M. Sijm, E.L. Scott, H. Zuilhof, J.P.M. Sanders and M.C.R. Franssen. Enzyme catalysed polymerization of β-alanine esters, a sustainable route towards the formation of poly-β-alanine. Curr. Org. Chem. 2013, 17, 682-690.

        Biosynthetic routes

        • Q. Liu, A. Beyraghdar Kashkooli, D. Manzano, I. Pateraki, L. Richard, P. Kolkman, M. Fátima Lucas, V. Guallar, R. de Vos, M.C.R. Franssen, A. van der Krol and H. Bouwmeester. Kauniolide synthase is a P450 with unusual hydroxylation and cyclisation-elimination activity. Nature Commun. 2018, 9, 4657.
        • M. Henquet, N. Prota, J.J.J. van der Hooft, M. Varbanova-Herde, R.J.M. Hulzink, M. de Vos, M. Prins, M.T.J. de Both, M.C.R. Franssen, H. Bouwmeester and M. Jongsma. Identification of a drimenol synthase and drimenol oxidase from Persicaria hydropiper, involved in the biosynthesis of insect deterrent drimanes. Plant J. 2017, 90, 1052-1063.
        • P.M. Becker, P.G. van Wikselaar, M.C.R. Franssen, R.C.H. de Vos, R.D. Hall and J. Beekwilder. Evidence for a hydrogen-sink mechanism of (+)catechin-mediated emission reduction of the ruminant greenhouse gas methane. Metabolomics 2014, 10, 179-189.
        • A.M. Ramirez, N. Saillard, T. Yang, M.C.R. Franssen, H.J. Bouwmeester and M.A. Jongsma. Biosynthesis of sesquiterpene lactones in Pyrethrum (Tanacetum cinerariifolium). PLoS One 2013, 8, e65030.